-
Notifications
You must be signed in to change notification settings - Fork 4
/
trader.py
executable file
·139 lines (112 loc) · 4.56 KB
/
trader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
from settings import (
iq, ej, gale_multiply,
gale_seq, symbol, symbols,
timeframe, seq_len, contract,
min_balance, min_payout, min_prob,
expire_time
)
from predict import preprocess_prediciton
from model import train_data
import tensorflow.compat.v2 as tf
import datetime
import time
import sys
NAME = train_data(iq,symbol,symbols,timeframe) + '.h5'
model = tf.keras.models.load_model(f'models/{NAME}')
# define the countdown func.
def countdown(t):
while t:
mins, secs = divmod(t, 60)
timer = '{:02d}:{:02d}'.format(mins, secs)
print(timer, end="\r")
time.sleep(1)
t -= 1
print('Ready for the Nex Trade!!')
def percentage(entry1, entry2):
try:
return ( 100 * entry1 /entry2)
except ZeroDivisionError:
return 0
min_contract = contract
win_count = 0
sell_count = 0
buy_count = 0
Tiedtrade = 0
predict_count = 0
gale_count = 0
bid = True
trade = True
def check_stop_time(hour,minutes):
# BERLIN 05:00 - 13:00 / LONDON 06:00 - 14:00 / NEW YORK 11:00 - 19:00 / SYDNEY 19:00 - 03:00 / TOKYO 21:00 - 05:00
forex_open_close = ['4','12','5','13','10','18','2','20']
for times_market in forex_open_close:
stoptime = times_market
if str(hour) == stoptime and minutes >= 40:
return True
return False
while(1):
hour = datetime.datetime.now().hour
minutes = datetime.datetime.now().minute
if check_stop_time(hour,minutes):
print('wating to pass opening market')
countdown(2400)
predict_count = 10
t = 60
if predict_count >= 10 and predict_count % 2 == 0:
NAME = train_data(iq,symbol,symbols,timeframe) + '.h5'
model = tf.keras.models.load_model(f'models/{NAME}')
predict_count = 0
if ej.iq_get_remaning(iq,timeframe) - 3 == ej.timeframe_to_sec(timeframe):
time_taker = time.time()
pred = preprocess_prediciton(iq,symbol,symbols,timeframe)
pred = pred.reshape(1,seq_len,pred.shape[3])
result = model.predict(pred)
print("probability of PUT: {:.2f}%".format(round(result[0][0],2)))
print("probability of CALL: {:.2f}%".format(round(result[0][1],2)))
print(f'Time taken : {int(time.time()-time_taker)} seconds')
predict_count = predict_count + 1
payout = ej.iq_get_payout(iq,symbol)
balance = ej.iq_get_balance(iq)
print(f'Simbol : {symbol}')
print(f'Balance : {balance}')
print("Payout: {:.2f}%".format(payout))
print("BET: {:.2f}$".format(contract))
print("Next Martingale: {:.2f}$".format(contract * round(gale_multiply/ej.iq_get_payout(iq,symbol),2)))
# print ("Winning Rate : {:.2f}%".format(percentage(win_count,buy_count+sell_count))+'\n'+"Trade N°: "+str(sell_count+buy_count)+'\n')
print ("Winning Rate: {:.2f}%".format(percentage(win_count,buy_count+sell_count-Tiedtrade))+'\n'+"Trade N°: "+str(sell_count+buy_count)+'\n')
if result[0][0] > result[0][1] and result[0][0] > min_prob and ej.iq_get_payout(iq,symbol) >=min_payout and balance > min_balance:
print("PUT")
id = ej.iq_sell_binary(iq,contract,symbol,expire_time)
sell_count += 1
predict_count = predict_count + 1
trade = True
elif result[0][1] > result[0][0] and result[0][1] > min_prob and ej.iq_get_payout(iq,symbol) >=min_payout and balance > min_balance:
print("CALL")
id = ej.iq_buy_binary(iq,contract,symbol,expire_time)
buy_count += 1
predict_count = predict_count + 1
trade = True
else:
trade = False
predict_count = predict_count + 1
if trade:
win = ej.iq_checkwin(iq,id)
if win > 0:
print("Win")
gale_count = 0
win_count += 1
contract = min_contract
elif win < 0:
print("Loss")
gale_count = gale_count + 1
if gale_count >= gale_seq:
gale_count = 0
predict_count = 10
contract = min_contract
else:
contract = contract * round(gale_multiply/ej.iq_get_payout(iq,symbol),2)
elif win == 0:
print('Tied Wait for 10 minutes befor next Trade')
Tiedtrade += 1
countdown(180)
predict_count = 10