Skip to content

Commit

Permalink
docs: fix simple typo, practictioner -> practitioner (#60)
Browse files Browse the repository at this point in the history
There is a small typo in forensics/README.md.

Should read `practitioner` rather than `practictioner`.
  • Loading branch information
timgates42 authored Aug 27, 2024
1 parent 5d7ec75 commit c700f51
Showing 1 changed file with 1 addition and 1 deletion.
2 changes: 1 addition & 1 deletion forensics/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@ In a CTF context, "Forensics" challenges can include file format analysis, stega

Forensics is a broad CTF category that does not map well to any particular job role in the security industry, although some challenges model the kinds of tasks seen in Incident Response (IR). Even in IR work, computer forensics is usually the domain of law enforcement seeking evidentiary data and attribution, rather than the commercial incident responder who may just be interested in expelling an attacker and/or restoring system integrity.

Unlike most CTF forensics challenges, a real-world computer forensics task would hardly ever involve unraveling a scheme of cleverly encoded bytes, hidden data, mastroshka-like files-within-files, or other such brain-teaser puzzles. One would typically not bust a criminal case by carefully reassembling a corrupted PNG file, revealing a photo of a QR code that decodes to a password for a zip archive containing an NES rom that when played will output the confession. Rather, real-world forensics typically requires that a practictioner find indirect evidence of maliciousness: either the traces of an attacker on a system, or the traces of "insider threat" behavior. Real-world computer forensics is largely about knowing where to find incriminating clues in logs, in memory, in filesystems/registries, and associated file and filesystem metadata. Also, network (packet capture) forensics is more about metadata analysis than content analysis, as most network sessions are TLS-encrypted between endpoints now.
Unlike most CTF forensics challenges, a real-world computer forensics task would hardly ever involve unraveling a scheme of cleverly encoded bytes, hidden data, mastroshka-like files-within-files, or other such brain-teaser puzzles. One would typically not bust a criminal case by carefully reassembling a corrupted PNG file, revealing a photo of a QR code that decodes to a password for a zip archive containing an NES rom that when played will output the confession. Rather, real-world forensics typically requires that a practitioner find indirect evidence of maliciousness: either the traces of an attacker on a system, or the traces of "insider threat" behavior. Real-world computer forensics is largely about knowing where to find incriminating clues in logs, in memory, in filesystems/registries, and associated file and filesystem metadata. Also, network (packet capture) forensics is more about metadata analysis than content analysis, as most network sessions are TLS-encrypted between endpoints now.

This disconnect between the somewhat artificial puzzle-game CTF "Forensics" and the way that forensics is actually done in the field might be why this category does not receive as much attention as the vulnerability-exploitation style challenges. It may also lack the "black hat attacker" appeal that draws many players to participate in CTFs. Regardless, many players enjoy the variety and novelty in CTF forensics challenges. It can also be a more beginner friendly category, in which the playing field is evened out by the fact that there are no $5,000 professional tools like IDA Pro Ultimate Edition with Hex-Rays Decompiler that would give a huge advantage to some players but not others, as is the case with executable analysis challenges.

Expand Down

0 comments on commit c700f51

Please sign in to comment.