-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add
austraits
functions to dataset_test
and allow trait values to…
… be excluded in `exclude_observations` (#123) - Moved austraits functions `trait_pivot_wider` and `trait_pivot_longer` to traits.build in `pivot.R` and added testing within `dataset_test` - Moved code for testing pivot wider into standalone function called `check_pivot_wider()` - Allowed trait values to be excluded in `exclude_observations`, where previously only metadata fields/locations, etc. could be excluded - Added extra tests in `dataset_test` for `exclude_observations` and `taxonomic_updates` sections - Replaced `testthat` functions with own functions to enable customisation of failure messages - Regenerated `taxon_list.csv` for test datasets and documented method
- Loading branch information
1 parent
27ecb28
commit 9a9be4c
Showing
43 changed files
with
1,797 additions
and
1,181 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,138 @@ | ||
#' @title Test whether a dataset can pivot wider | ||
#' | ||
#' @description Test whether the traits table of a dataset can pivot wider with the minimum required columns. | ||
#' | ||
#' @param dataset Built dataset with `test_build_dataset` | ||
#' | ||
#' @return Number of rows with duplicates preventing pivoting wider | ||
#' @export | ||
|
||
check_pivot_wider <- function(dataset) { | ||
|
||
duplicates <- dataset$traits %>% | ||
select( | ||
dplyr::all_of(c("dataset_id", "trait_name", "value", "observation_id", "value_type", | ||
"repeat_measurements_id", "method_id", "method_context_id")) | ||
) %>% | ||
tidyr::pivot_wider(names_from = "trait_name", values_from = "value", values_fn = length) %>% | ||
tidyr::pivot_longer(cols = 7:ncol(.)) %>% | ||
dplyr::rename(dplyr::all_of(c("trait_name" = "name", "number_of_duplicates" = "value"))) %>% | ||
select( | ||
dplyr::all_of(c("dataset_id", "trait_name", "number_of_duplicates", "observation_id", | ||
"value_type")), everything() | ||
) %>% | ||
filter(.data$number_of_duplicates > 1) %>% | ||
nrow() | ||
|
||
if (duplicates == 0) { | ||
invisible(TRUE) | ||
} else { | ||
invisible(FALSE) | ||
} | ||
|
||
} | ||
|
||
|
||
#' @title Pivot long format data into a wide format | ||
#' | ||
#' @description `trait_pivot_wider` "widens" long format data ("tidy data"). | ||
#' | ||
#' Databases built with `traits.build` are organised in a long format where observations are on different rows and the | ||
#' type of observation is denoted by various identifying columns (e.g `trait_name`, `dataset_id`, | ||
#' `observation_id`, etc.). | ||
#' This function converts the data into wide format so that each trait in its own column. | ||
#' | ||
#' @param traits The traits table from database (list object) | ||
#' @return A tibble in wide format | ||
#' @details `trait_pivot_wider` will return a single wide tibble; note that some meta-data columns | ||
#' (unit, replicates, measurement_remarks, basis_of_record, basis_of_value) will be excluded to | ||
#' produce a useful wide tibble. | ||
#' @examples | ||
#' \dontrun{ | ||
#' data <- austraits$traits %>% filter(dataset_id == "Falster_2003") | ||
#' data # Long format | ||
#' traits_wide <- trait_pivot_wider(data) | ||
#' traits_wide # Wide format | ||
#' } | ||
#' @author Daniel Falster - daniel.falster@unsw.edu.au | ||
#' @export | ||
db_traits_pivot_wider <- function(traits) { | ||
|
||
metadata_cols <- c("unit", "replicates", "measurement_remarks", "basis_of_value") | ||
|
||
# A check for if there are more than 1 value_type for a given taxon_name, observation_id and method | ||
check_value_type <- traits %>% | ||
select(dplyr::all_of(c( | ||
"trait_name", "value", "dataset_id", "observation_id", "method_id", "method_context_id", | ||
"repeat_measurements_id", "value_type"))) %>% | ||
dplyr::group_by( | ||
.data$dataset_id, .data$observation_id, .data$method_id, | ||
.data$method_context_id, .data$repeat_measurements_id) %>% | ||
dplyr::summarise(n_value_type = length(unique(.data$value_type))) %>% | ||
arrange(.data$observation_id) %>% | ||
dplyr::filter(.data$n_value_type > 1) | ||
|
||
if (nrow(check_value_type) > 1) { | ||
|
||
traits %>% | ||
tidyr::pivot_wider( | ||
names_from = "trait_name", | ||
values_from = "value", | ||
id_cols = -dplyr::all_of(metadata_cols) | ||
) | ||
|
||
} else { | ||
|
||
metadata_cols <- c(metadata_cols, "value_type") | ||
|
||
traits %>% | ||
tidyr::pivot_wider( | ||
names_from = "trait_name", | ||
values_from = "value", | ||
id_cols = -dplyr::all_of(metadata_cols) | ||
) | ||
} | ||
|
||
} | ||
|
||
|
||
#' @title Pivot wide format data into a long format | ||
#' | ||
#' @description `trait_pivot_longer` "gathers" wide format data into a "tidy" format. | ||
#' | ||
#' This function converts the data into long format where observations are on different rows and the type of | ||
#' observation is denoted by the `trait_name` column. | ||
#' In other words, `trait_pivot_longer` reverts the actions of `trait_pivot_wider`. | ||
#' @param wide_data Output from `trait_pivot_wider` (a tibble of wide data) | ||
#' @return A tibble in long format | ||
#' @details | ||
#' `trait_pivot_longer` will return a tibble with fewer columns than the original traits table | ||
#' The excluded columns include: "unit", "replicates", "measurement_remarks", "basis_of_record", | ||
#' "basis_of_value" # Double check #TODO | ||
#' | ||
#' @examples | ||
#' \dontrun{ | ||
#' data <- austraits$traits %>% | ||
#' filter(dataset_id == "Falster_2003") | ||
#' data # Long format | ||
#' traits_wide <- trait_pivot_wider(data) | ||
#' traits_wide # Wide format | ||
#' | ||
#' values_long <- trait_pivot_longer(traits_wide) | ||
#' } | ||
#' @author Daniel Falster - daniel.falster@unsw.edu.au | ||
#' @author Fonti Kar - fonti.kar@unsw.edu.au | ||
#' @export | ||
db_traits_pivot_longer <- function(wide_data) { | ||
|
||
# The start of the trait columns is after `original_name` | ||
start_of_trait_cols <- which(names(wide_data) == "original_name") + 1 | ||
|
||
wide_data %>% | ||
tidyr::pivot_longer( | ||
cols = start_of_trait_cols:ncol(.), | ||
names_to = "trait_name", | ||
values_drop_na = TRUE | ||
) | ||
|
||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.