Skip to content

White Blood Cell Detection and Classification using SSD, Deploy a Web app

Notifications You must be signed in to change notification settings

tranduchuy682/SSD

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

58 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

White Blood Cell Detection and Classification using Single Shot Multibox Detector and Deployment


This is a PyTorch Tutorial to Object Detection.

This is blatanly "borrowed" from sgrvinod's great tutorial

Basic knowledge of PyTorch, convolutional neural networks is assumed.


Set up

  • Run command
git clone https://github.com/tranduchuy682/SSD.git
pip install -r requirements.txt

Get dataset

  • The dataset can be downloaded or cloned here
  • Format
├── AllDatabase
|  ├── BCCD Database
|  ├── LISCDatabase
|  |    └── Ground Truth Segmentation
|  |    └── Main Dataset
|  |    └── More Dataset without Ground Truth/alll
|  ├── RaabinDatabase
|  |    └── GrTh
|  |    └── TestA
|  |    └── TestB/Test-B
|  |    └── Train
|  ├── bbox.csv
|  ├── test_bbox.csv
|  └── train_bbox.csv
├── train.py
├── utils.py
...
  • Run
cd ssd
git clone https://github.com/tranduchuy682/AllDatabase.git

Prepare the dataset for training and evaluate

  • Run command
python3 create_data_lists.py

Training

  • Backbones: There are 3 backbone have been used
  • VGG16 backbone

  • Resnet18 backbone
  • We have modified our resnet18 backbone to get resnet18* - more suitable with our dataset

  • MobileNetV3 backbone

  • Config
backbone == ["resnet18","mobilenetv3","vgg16"]
epoch = 150 or any int value
  • Run command
python3 train.py resnet18 150

Testing

  • Run command
python3 eval.py

Inference

  • Run command
python3 detect.py

Deploy

  • Run command
python3 app.py
  • Demo