Objects detection and online tracking api.
Pre-trained darknet weights file can be downloaded here.
Place weights file under directory
babysister/YOLOv3_TensorFlow/data/darknet_weights/
and then run:
$ python convert_weight.py
Converted TensorFlow checkpoint file will be saved to the same directory.
You can also download the converted TensorFlow checkpoint file via
Google Drive link or Github Release
babysister/runner.py: example usage
Download demo videos from here, place them in demo
folder.
$ python select_rois.py demo/TownCentre_720p.mp4 --is-video 1 --save-to demo/rois.csv
$ python demo.py video demo/TownCentre_720p.mp4 \
--input-size [640,360] \
--score-thresh 0.25 \
--valid-classes ["person"] \
--rois-file demo/rois.csv \
--save-to demo/result/frames/ \
--log-file demo/result/log.csv
$ cd docs
$ ./start.sh
$ ./build.sh
HTML doc will be generated to: docs/_build/html/
Awesome works that made this tool possible.
https://github.com/pjreddie/darknet
https://github.com/wizyoung/YOLOv3_TensorFlow
https://github.com/abewley/sort
All my code is MIT licensed. Libraries follow their respective licenses.