-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclient.py
70 lines (52 loc) · 1.95 KB
/
client.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
from sklearn.datasets import fetch_california_housing
from sklearn.metrics import mean_absolute_error
from sklearn.model_selection import train_test_split
import numpy as np
from Pyfhel import Pyfhel, PyCtxt
import requests
import pickle
url = 'http://localhost:5000/predict'
X, y = fetch_california_housing(return_X_y=True, as_frame=True)
X = X.values
y = y.values.reshape(-1,1)
# get holdout data
_, X, _, y = train_test_split(X, y, test_size=0.1, random_state=0)
# load StandardScaler
with open('ss.pkl', 'rb') as f:
ss = pickle.load(f)
# standardize data
X = ss.fit_transform(X)
# initialize
HE = Pyfhel(context_params={'scheme':'ckks', 'n':2**13, 'scale':2**30, 'qi':[30]*5})
HE.keyGen()
HE.relinKeyGen()
HE.rotateKeyGen()
# serialize context and keys
s_context = HE.to_bytes_context().decode('cp437')
s_relin_key = HE.to_bytes_relin_key().decode('cp437')
s_rotate_key = HE.to_bytes_rotate_key().decode('cp437')
s_public_key = HE.to_bytes_public_key().decode('cp437')
n_samples = 10
y_predict = []
for idx in range(n_samples):
X_row = X[idx]
# append 1 for model intercept
X_row = np.concatenate((X_row, [1]))
# encrypt inputs using public key
enc_X = HE.encrypt(X_row)
# serialize input
s_enc_X = enc_X.to_bytes().decode('cp437')
# send json object to server
r = requests.post(url,json={'context':s_context, 'public_key':s_public_key,
'relin_key':s_relin_key, 'rot_key':s_rotate_key,
'enc_X':s_enc_X})
# get ciphertext from json object
c_res = PyCtxt(pyfhel=HE, bytestring=r.json()['result'].encode('cp437'))
# decrypt resultant array with secret key
res = HE.decryptFrac(c_res)
# get prediction from the position where it's stored
pred = res[X.shape[1]]
print(f'${int(1E5 * pred):,}')
y_predict.append(pred)
mae = 1E5 * mean_absolute_error(y[:n_samples], y_predict)
print(f'\nMAE = ${int(mae):,}')