-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgraph.c
267 lines (209 loc) · 5.82 KB
/
graph.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
#include <assert.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <err.h>
#include <stack.h>
#include "errc.h"
#include "graph.h"
/*
* See another graph implem : https://rosettacode.org/wiki/Dijkstra's_algorithm#C
*/
int
graph_init(struct graph* g, uint32_t nodes_max, uint32_t edges_max) {
uint32_t i;
assert(g != NULL);
assert(nodes_max > 0);
assert(edges_max > 0);
g->nds_max = nodes_max;
g->edgs_max = edges_max;
/* count special nodes before the first node */
g->nds_max += GRAPH_ND_FIRST;
g->edgs_max += GRAPH_EDG_FIRST;
/* first edge leaving node */
g->edg_first = malloc(g->nds_max * sizeof(*(g->edg_first)));
if (g->edg_first == NULL) {
return GRAPH_MALLOC_ERROR;
}
memset(g->edg_first, GRAPH_EDG_NULL, g->nds_max * sizeof(*(g->edg_first)));
/* next edge leaving node */
g->edgs_nxt = malloc(g->edgs_max * sizeof(*(g->edgs_dst)));
if (g->edgs_nxt == NULL) {
return GRAPH_MALLOC_ERROR;
}
/* contain the node destination of an arc */
g->edgs_dst = malloc(g->edgs_max * sizeof(*(g->edgs_dst)));
if (g->edgs_nxt == NULL) {
return GRAPH_MALLOC_ERROR;
}
/* edges data */
g->edgs = malloc(g->edgs_max * sizeof(*(g->edgs)));
if (g->edgs == NULL) {
return GRAPH_MALLOC_ERROR;
}
edges_reset_seen(g);
/* nodes data */
g->nds = malloc(g->nds_max * sizeof(*(g->nds)));
if (g->nds == NULL) {
return GRAPH_MALLOC_ERROR;
}
nodes_reset_seen(g);
/* nodes free list */
g->nds_free = malloc(g->nds_max * sizeof(*g->nds_free));
if (g->nds_free == NULL) {
return GRAPH_MALLOC_ERROR;
}
g->edgs_count = 0;
g->edgs_free = GRAPH_EDG_FIRST;
for (i = GRAPH_EDG_FIRST ; i < edges_max ; i++) {
edge_init(g, i);
g->edgs_nxt[i] = i + 1;
}
(g->nds_free)[GRAPH_ND_NULL] = GRAPH_ND_FIRST;
for (i = GRAPH_ND_FIRST ; i < nodes_max ; i++) {
(g->nds_free)[i] = i + 1;
node_init(g, i);
}
g->nds_count = 0;
return SUCCESS;
}
void
graph_clean(struct graph* g) {
assert(g != NULL);
free(g->edg_first);
free(g->edgs_nxt);
free(g->edgs_dst);
free(g->nds_free);
free(g->nds);
free(g->edgs);
}
/* TODO retrieve id in order to create edges ? */
uint32_t
graph_add_node(struct graph* g) {
uint32_t nd_id;
assert(g != NULL);
if (graph_nodes_full(g)) {
err_print("graph nodes full\n");
return GRAPH_ND_NULL;
}
/* take node from free list */
nd_id = g->nds_free[GRAPH_ND_NULL];
g->nds_free[GRAPH_ND_NULL] = g->nds_free[nd_id];
node_reset(g, nd_id);
(g->nds_count)++;
return nd_id;
}
uint32_t
graph_add_edge(struct graph* g, uint32_t u, uint32_t v) {
uint32_t edg_id;
assert(g != NULL);
assert(!graph_edges_full(g));
assert(u < graph_nodes_count(g));
assert(v < graph_nodes_count(g));
if (graph_edges_full(g)) {
err_print("graph edges full\n");
return GRAPH_EDG_NULL;
}
/* fetch from free list */
edg_id = g->edgs_free;
g->edgs_free = g->edgs_nxt[g->edgs_free];
/* fill edge linked list */
(g->edgs_dst)[edg_id] = v;
(g->edgs_nxt)[edg_id] = (g->edg_first)[u];
(g->edg_first)[u] = edg_id;
/* prepare and count it in graph */
edge_reset(g, edg_id);
g->edgs_count++;
return edg_id;
}
int
graph_remove_edge(struct graph* g, uint32_t u, uint32_t v) {
uint32_t i, i_prev;
uint32_t edg_id;
assert(g != NULL);
assert(!graph_edges_empty(g));
assert(u < graph_nodes_count(g));
assert(v < graph_nodes_count(g));
if (graph_edges_empty(g)) {
err_print("graph edges empty\n");
return 1;
}
/* retrieve edge_id */
edg_id = GRAPH_EDG_NULL;
i = g->edg_first[u];
i_prev = i;
while (i != GRAPH_EDG_NULL) {
if (g->edgs_dst[i] == v) {
edg_id = i;
break;
}
i_prev = i;
i = g->edgs_nxt[i];
}
assert(edg_id != GRAPH_EDG_NULL);
g->edgs_count--;
/* if last added edge */
if (edg_id == (g->edg_first)[u]) {
(g->edg_first)[u] = g->edgs_nxt[(g->edg_first)[u]];
return 0;
} else {
g->edgs_nxt[i_prev] = g->edgs_nxt[i];
}
/* return to free list */
g->edgs_nxt[edg_id] = g->edgs_free;
g->edgs_free = edg_id;
return 0;
}
int
graph_remove_node(struct graph* g, uint32_t nd) {
uint32_t i;
uint32_t nh;
/* remove each edges leaving node */
for (i = g->edg_first[nd] ; i != GRAPH_EDG_NULL ; i = g->edgs_nxt[i]) {
nh = g->edgs_dst[i];
graph_remove_edge(g, nd, nh);
}
node_reset(g, nd);
/* add element to free list */
g->nds_free[nd] = g->nds_free[GRAPH_ND_NULL];
g->nds_free[GRAPH_ND_NULL] = nd;
(g->nds_count)--;
return SUCCESS;
}
int
graph_is_cyclic(struct graph* g, uint32_t first_nd) {
uint32_t nh;
uint32_t i, i_edg;
int ret;
struct stack stk = {0};
assert(g != NULL);
assert(first_nd < graph_nodes_count(g));
stack_init(&stk, graph_nodes_count(g));
stack_push(&stk, first_nd);
ret = 0;
while (!stack_is_empty(&stk)) {
i = stack_pop(&stk);
/* detect cycle in marking visited edges :
* 1. mark each edges leaving node at index i
* 2. stack each neighbour of node at index i
*/
i_edg = g->edg_first[i];
while (i_edg != GRAPH_EDG_NULL) {
/* visit edge only once */
if ((g->edgs)[i_edg].seen) {
ret = 1;
goto clean;
}
(g->edgs)[i_edg].seen = 1;
/* push node */
nh = g->edgs_dst[i_edg];
stack_push(&stk, nh);
i_edg = g->edgs_nxt[i_edg];
}
}
clean:
edges_reset_seen(g);
stack_clean(&stk);
return ret;
}