This repository is a derivative of the mikel-brostrom/yolo_tracking by mikel-brostrom. It builds upon their work and incorporates additional features and modifications specific to this project.
This repository contains a highly configurable two-stage-tracker that adjusts to different deployment scenarios. It can jointly perform multiple object tracking and instance segmentation (MOTS). The detections generated by YOLOv8, a family of object detection architectures and models pretrained on the COCO dataset, are passed to the tracker of your choice. Supported ones at the moment are: DeepOCSORT LightMBN, BoTSORT LightMBN, StrongSORT LightMBN, OCSORT and ByteTrack. They can track any object that your Yolov8 model was trained to detect.
Install with pip:
git clone https://github.com/trinhtuanvubk/yolo8-tracking-counting-speed_estimation.git
cd yolo8-tracking-counting-speed_estimation
pip install -r requirements.txt # install dependencies
Install with Docker:
git clone https://github.com/trinhtuanvubk/yolo8-tracking-counting-speed_estimation.git
cd yolov8-tracking-counting-speed_estimation
docker build -t <image-tag-name> .
docker run --restart always -itd -v $(pwd):/yolo8-tracking-counting-speed_estimation --name <container-name> -w/yolo8-tracking-counting-speed_estimation <image-tag-name>
If you get errors raised by opencv and ffmpeg, you can pull this image:
git clone https://github.com/trinhtuanvubk/yolo8-tracking-counting-speed_estimation.git
cd yolov8-tracking-counting-speed_estimation
docker pull trinhtuanvubk/vutt-yolo8-opencv
docker run --restart always -itd -v $(pwd):/yolo8-tracking --name <container-name> -w/yolov8-tracking-counting-speed_estimation trinhtuanvubk/vutt-yolo8-opencv:tracking
-To run:
$ python3 main.py --scenario track \
--yolo-model weights/yolov8n.pt \
--tracking-method bytetrack \
--speed-method transform_3d \
--source test_data/test1.mp4 \
--classes 0 1 2 3 5 6 7 \
--name test1_line \
--save \
--save-txt \
- Flag:
--scenario
: select method(track
,eval
,evolve
). Just support track now--yolo-model
: select model (yolov8n
,yolo_nas_n
,yolox_n
,yolov8n-seg
,yolov8n-pose
) or other yolo models.--tracking-method
: select tracking method (bytetrack
,deepocsort
,strongsort
,ocsort
,botsort
)--speed-method
: select speed estimation method (twopoints
,twolines
,birdeyes
,transform_3d
)--source
: select source type (0
,img.jpg
,vid.mp4
,path/
,path/*.jpg
,'https://youtu.be/Zgi9g1ksQHc'
,'rtsp://example.com/media.mp4'
) corresponding to webcam, image, video, directory, glob, youtube, rtsp-rtmp-http stream--class
: select subset of classes corresponding index of classes in COCO dataset--name
: the ouput directory name--save
: flag to save output image/video--save-txt
: flag to write the result as .txt file