-
Notifications
You must be signed in to change notification settings - Fork 4
/
trs.pl
418 lines (323 loc) · 13.2 KB
/
trs.pl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Reason about Term Rewriting Systems.
Written 2015-2022 by Markus Triska (triska@metalevel.at)
Public domain code. Tested with Scryer Prolog.
Motivating example
==================
Consider a set S that is closed under the binary operation *,
satisfying the equations:
1) e*X = X
2) i(X)*X = e
3) X*(Y*Z) = (X*Y)*Z
The algebraic structure <S, *> is called a group.
From these equations, we can infer additional identities, such as:
e*X = (i(i(X))*i(X))*X =
= i(i(X))*(i(X)*X) =
= i(i(X))*e
Other identities that follow from these equations are i(i(X)) = X,
i(e) = e, and many others.
However, it is not immediately clear which identities are implied
by these equations. In many cases, new terms must be inserted into
equations in order to derive further identities, and it is not
clear how far an ongoing derivation must be extended to derive a
new identity, or if that is possible at all.
Under certain conditions, we can convert such a set of equations
into a set of oriented rewrite rules that always terminate and
reduce identical elements to the same normal form. We call such a
set of rewrite rules a convergent term rewriting system (TRS).
For example (see group/1 below):
?- group(Gs), equations_trs(Gs, Rs), maplist(portray_clause, Rs).
yielding the convergent TRS:
i(A*B)==>i(B)*i(A).
A*i(A)==>e.
i(i(A))==>A.
A*e==>A.
A*B*C==>A*(B*C).
i(A)*A==>e.
e*A==>A.
i(A)*(A*B)==>B.
i(e)==>e.
A*(i(A)*B)==>B.
From this, we see that i(i(X)) = X is one of the consequences of
the equations above. To see whether two terms are identical under
the given equations, we can now simply check whether they reduce to
the same normal form under the computed rewrite rules:
?- group(Gs), equations_trs(Gs, Rs),
normal_form(Rs, i(i(X)), NF),
normal_form(Rs, i(i(i(i(X)))), NF).
...
X = NF .
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
:- use_module(library(clpz)).
:- use_module(library(lists)).
:- use_module(library(dcgs)).
:- use_module(library(pairs)).
:- use_module(library(iso_ext)).
:- use_module(library(format)).
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Variables in equations and TRS are represented by Prolog variables.
A major advantage of this representation is that efficient built-in
Prolog predicates can be used for unification etc. The terms are
also easier to read and type for users when specifying a TRS.
However, care must be taken not to accidentally unify variables
that are supposed to be different. copy_term/2 must be used when
necessary to prevent this. Conversely, we also must retain all
bindings that are supposed to hold.
We use:
Left ==> Right
to denote a rewrite rule. A TRS is a list of such rules.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
:- op(800, xfx, ==>).
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Perform one rewriting step at the root position, using the first
matching rule, if any.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
step([L==>R|Rs], T0, T) :-
( subsumes_term(L, T0) ->
copy_term(L-R, T0-T)
; step(Rs, T0, T)
).
%?- step([f(a) ==> f(a), f(X) ==> b], f(a), T).
%?- step([g(f(X)) ==> X], g(Y), T).
%?- step([f(X) ==> b, f(a) ==> f(a)], f(a), T).
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Reduce to normal form. May not terminate!
For example: R = { a -> a, f(x) -> b },
although f(a) does have a normal form!
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
%?- normal_form([f(X) ==> b, a ==> a], f(a), T).
%?- normal_form([a ==> a, f(X) ==> b], f(a), T).
normal_form(Rs, T0, T) :-
( var(T0) -> T = T0
; T0 =.. [F|Args0],
maplist(normal_form(Rs), Args0, Args1),
T1 =.. [F|Args1],
( step(Rs, T1, T2) ->
normal_form(Rs, T2, T)
; T = T1
)
).
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Critical Pairs
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
%?- critical_pairs([X==>a, Y ==> b], Ps).
critical_pairs(Rs, CPs) :-
phrase(critical_pairs_(Rs, Rs), CPs).
critical_pairs_([], _) --> [].
critical_pairs_([R|Rs], Rules) -->
rule_cps(R, Rules, []),
critical_pairs_(Rs, Rules).
rule_cps(T ==> R, Rules, Cs) -->
( { var(T) } -> []
; roots_cps(Rules, T ==> R, Cs),
{ T =.. [F|Ts] },
inner_cps(Ts, F, [], R, Rules, Cs)
).
roots_cps([], _, _) --> [].
roots_cps([Left0==>Right0|Rules], L0==>R0, Cs0) -->
{ copy_term(f(L0,R0,Cs0), f(L,R,Cs)),
copy_term(Left0-Right0, Left-Right) },
( { unify_with_occurs_check(L, Left) } ->
{ foldl(context, Cs, Right, Reduced) },
[R=Reduced]
; []
),
roots_cps(Rules, L0==>R0, Cs0).
inner_cps([], _, _, _, _, _) --> [].
inner_cps([T|Ts], F, Left0, R, Rules, Cs) -->
{ reverse(Left0, Left) },
rule_cps(T ==> R, Rules, [conc(F,Left,Ts)|Cs]),
inner_cps(Ts, F, [T|Left0], R, Rules, Cs).
context(conc(F,Ts1,Ts2), Arg, T) :-
append(Ts1, [Arg|Ts2], Ts),
T =.. [F|Ts].
%?- foldl(context, [conc(f,[x],[y]),conc(g,[a],[b])], -, R).
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Lexicographic order.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
%?- ord([a,b,c], b, a, Ord).
ord(Fs, F1, F2, Ord) :-
once((nth0(N1, Fs, F1),
nth0(N2, Fs, F2))),
compare(Ord, N1, N2).
lex(Cmp, Xs, Ys, Ord) :- lex_(Xs, Ys, Cmp, Ord).
lex_([], [], _, =).
lex_([X|Xs], [Y|Ys], Cmp, Ord) :-
call(Cmp, X, Y, Ord0),
( Ord0 == (=) -> lex_(Xs, Ys, Cmp, Ord)
; Ord = Ord0
).
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Multiset order.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
%?- foldl(subtract_element(ord([a,b,c])), [a], [a,a,b,c], Rs).
%?- multiset_diff(ord([a,b,c]), [a,a,b,b], [a,b,c], Ds).
multiset_diff(Cmp, Xs0, Ys, Xs) :-
foldl(subtract_element(Cmp), Ys, Xs0, Xs).
subtract_element(Cmp, Y, Xs0, Xs) :- subtract_first(Xs0, Y, Cmp, Xs).
subtract_first([], _, _, []).
subtract_first([X|Xs], Y, Cmp, Rs) :-
( call(Cmp, X, Y, =) -> Rs = Xs
; Rs = [X|Rest],
subtract_first(Xs, Y, Cmp, Rest)
).
mul(Cmp, Ms, Ns, Ord) :-
multiset_diff(Cmp, Ns, Ms, NMs),
multiset_diff(Cmp, Ms, Ns, MNs),
( NMs == [], MNs == [] -> Ord = (=)
; forall(member(N, NMs),
( member(M, MNs), call(Cmp, M, N, >))) -> Ord = (>)
; Ord = (<)
).
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Recursive path order with status.
Stats is a list of pairs [f-mul, g-lex] etc.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
rpo(Fs, Stats, S, T, Ord) :-
( var(T) ->
( S == T -> Ord = (=)
; term_variables(S, Vs), member(V, Vs), V == T -> Ord = (>)
; Ord = (<)
)
; var(S) -> Ord = (<)
; S =.. [F|Ss], T =.. [G|Ts],
( forall(member(Si, Ss), rpo(Fs, Stats, Si, T, <)) ->
ord(Fs, F, G, Ord0),
( Ord0 == (>) ->
( forall(member(Ti, Ts), rpo(Fs, Stats, S, Ti, >)) ->
Ord = (>)
; Ord = (<)
)
; Ord0 == (=) ->
( forall(member(Ti, Ts), rpo(Fs, Stats, S, Ti, >)) ->
memberchk(F-Stat, Stats),
call(Stat, rpo(Fs, Stats), Ss, Ts, Ord)
; Ord = (<)
)
; Ord0 == (<) -> Ord = (<)
)
; Ord = (>)
)
).
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Huet / Knuth-Bendix Completion
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
%?- rule_size(f(g(X),y), T).
rule_size(T, S) :-
( var(T) -> S #= 1
; T =.. [_|Args],
foldl(rule_size_, Args, 0, S0),
S #= S0 + 1
).
rule_size_(T, S0, S) :-
rule_size(T, TS),
S #= S0 + TS.
smallest_rule_first(Rs0, Rs) :-
maplist(rule_size, Rs0, Sizes0),
pairs_keys_values(Pairs0, Sizes0, Rs0),
keysort(Pairs0, Pairs),
pairs_keys_values(Pairs, _, Rs).
%?- smallest_rule_first([f(g(X)) ==> c, f(X) ==> b], Rs).
orient([], _, Ss, Ss, Rs, Rs).
orient([S0=T0|Es0], Cmp, Ss0, Ss, Rs0, Rs) :-
append(Rs0, Ss0, Rules),
maplist(normal_form(Rules), [S0,T0], [S,T]),
( S == T -> orient(Es0, Cmp, Ss0, Ss, Rs0, Rs)
; ( call(Cmp, S, T, >) -> Rule = (S ==> T)
; call(Cmp, T, S, >) -> Rule = (T ==> S)
; false /* identity cannot be oriented */
),
foldl(simpler(Rule, Rules), Ss0, Es0-[], Es1-Ss1),
foldl(simpler(Rule, Rules), Rs0, Es1-[], Es-Rs1),
orient(Es, Cmp, [Rule|Ss1], Ss, Rs1, Rs)
).
simpler(Rule, Rules, L0==>R0, Es0-Us0, Es-Us) :-
normal_form([Rule], L0, L),
( L0 == L ->
normal_form([Rule|Rules], R0, R),
Es-Us = Es0-[L==>R|Us0]
; Es-Us = [L=R0|Es0]-Us0
).
completion(Es0, Cmp, Ss0, Rs0, Rs) :-
orient(Es0, Cmp, Ss0, Ss1, Rs0, Rs1),
( Ss1 == [] -> Rs = Rs1
; smallest_rule_first(Ss1, [R|Ss]),
phrase((critical_pairs_([R], Rs1),
critical_pairs_(Rs1, [R]),
critical_pairs_([R], [R])), CPs),
completion(CPs, Cmp, Ss, [R|Rs1], Rs)
).
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Try to find a suitable order to create a convergent TRS from
a list of equations.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
equations_trs(Es, Rs) :-
equations_order(Es, Cmp),
equations_trs(Cmp, Es, Rs).
equations_trs(Cmp, Es, Rs) :-
completion(Es, Cmp, [], [], Rs).
equations_order(Es, rpo(Sorted,Stats)) :-
equations_functors(Es, Fs),
pairs_keys_values(Stats, Fs, Values),
maplist(ord_status, Values),
permutation(Fs, Sorted).
ord_status(lex).
ord_status(mul).
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Functors occurring in given equations.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
equations_functors(Eqs, Fs) :-
phrase(eqs_functors_(Eqs), Fs0),
sort(Fs0, Fs).
eqs_functors_([]) --> [].
eqs_functors_([A=B|Es]) -->
term_functors(A),
term_functors(B),
eqs_functors_(Es).
term_functors(Var) --> { var(Var) }, !.
term_functors(T) -->
{ T =.. [F|Args] },
[F],
functors_(Args).
functors_([]) --> [].
functors_([T|Ts]) -->
term_functors(T),
functors_(Ts).
%?- group(Gs), equations_functors(Gs, Fs).
%?- group(Gs), equations_trs(Gs, Rs).
%?- group(Gs), permutation([*,e,i], Ord), equations_trs(rpo(Ord, [(*)-lex,e-lex,i-lex]), Gs, Rs), maplist(portray_clause, Rs).
%?- group(Gs), equations_trs(rpo([*,e,i],[(*)-lex,e-lex,i-lex]), Gs, Rs), maplist(portray_clause, Rs).
%?- group(Gs), equations_trs(rpo([e,*,i],[(*)-lex,e-lex,i-lex]), Gs, Rs), maplist(portray_clause, Rs), length(Rs, L).
%?- group(Gs), equations_trs(rpo([*,i,e],[(*)-lex,e-lex,i-lex]), Gs, Rs), maplist(portray_clause, Rs), length(Rs, L).
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Testing
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
rules(1, [f(f(X)) ==> g(X)]).
rules(2, [f(f(X)) ==> f(X),
g(g(X)) ==> f(X)]).
c(CPs) :-
rules(_, Rules),
critical_pairs(Rules, CPs).
group([e*X = X,
i(X)*X = e,
A*(B*C) = (A*B)*C]).
orient(A=B, A==>B).
%?- critical_pairs([f(X)*Y*Z==>X*Y*Z], Ps).
%?- critical_pairs([i(X) ==> e, A*B*C ==> (A*B)*C], Ps).
%?- critical_pairs([A*B*C ==> (A*B)*C], Ps).
%?- critical_pairs([A*B*D ==> A*B], Ps).
%?- group(Gs0), maplist(orient, Gs0, Gs), critical_pairs(Gs, Ps), maplist(portray_clause, Ps), length(Ps, L).
%?- critical_pairs([f(f(X)) ==> a, f(f(X))==>b], Ps).
%?- c(CPs).
%@ CPs = [g(_A)=g(_A),g(f(_B))=f(g(_B))]
%@ ; CPs = [f(_A)=f(_A),f(f(_B))=f(f(_B)),f(_C)=f(_C),f(g(_D))=g(f(_D))].
%?- critical_pairs([f(X,a) ==> X, a ==> b], Ps).
%?- rules(1, Rs), critical_pairs(Rs, Ps).
%?- critical_pairs([f(X,f(X)) ==> a, f(Y,Y) ==> b], Ps).
/** <Examples>
?- group(Gs), equations_trs(Gs, Rs).
?- group(Gs), equations_order(Gs, Cmp), equations_trs(Cmp, Gs, Rs).
?- Es = [X*X = X^2, (X+Y)^2 = X^2 + 2*X*Y + Y^2],
equations_order(Es, Cmp),
call_with_inference_limit(equations_trs(Cmp, Es, Rs), 10000, !).
*/