-
Notifications
You must be signed in to change notification settings - Fork 34
/
inverse_of_sigma_function_fast.pl
executable file
·111 lines (84 loc) · 3.4 KB
/
inverse_of_sigma_function_fast.pl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
#!/usr/bin/perl
# Given a positive integer `n`, this algorithm finds all the numbers k
# such that sigma(k) = n, where `sigma(k)` is the sum of divisors of `k`.
# Based on "invphi.gp" code by Max Alekseyev.
# See also:
# https://home.gwu.edu/~maxal/gpscripts/
use utf8;
use 5.020;
use strict;
use warnings;
use Math::Prime::Util::GMP qw(:all);
use List::Util qw(uniq);
use experimental qw(signatures);
binmode(STDOUT, ':utf8');
sub inverse_sigma {
my ($n) = @_;
my %cache;
my %factor_cache;
my %divisor_cache;
my $results = sub ($n, $m) {
return [1] if ($n == 1);
my $key = "$n $m";
if (exists $cache{$key}) {
return $cache{$key};
}
my (@R, @D);
$divisor_cache{$n} //= [divisors($n)];
foreach my $d (@{$divisor_cache{$n}}) {
if ($d >= $m) {
push @D, $d;
$factor_cache{$d} //= do {
my %factors;
@factors{factor(subint($D[-1], 1))} = ();
[keys %factors];
};
}
}
foreach my $d (@D) {
foreach my $p (@{$factor_cache{$d}}) {
my $r = addint(mulint($d, subint($p, 1)), 1);
my $k = valuation($r, $p) - 1;
next if ($k < 1);
my $s = powint($p, $k + 1);
next if ("$r" ne "$s");
my $z = powint($p, $k);
my $u = divint($n, $d);
my $arr = __SUB__->($u, $d);
foreach my $v (@$arr) {
if (modint($v, $p) != 0) {
push @R, mulint($v, $z);
}
}
}
}
$cache{$key} = \@R;
}->($n, 3);
sort { $a <=> $b } uniq(@$results);
}
my %tests = (
6 => 6187272, 10 => 196602, 11 => 8105688, 16 => 2031554,
25 => 1355816, 31 => 8880128, 80 => 11532, 97 => 5488,
);
while (my ($n, $k) = each %tests) {
my @inverse = inverse_sigma($k);
say "σ−¹($k) = [@inverse]";
if (gcd(@inverse) != $n) {
die "Error for k = $k";
}
}
use Test::More;
plan tests => 4;
is(join(' ', inverse_sigma(42)), join(' ', 20, 26, 41));
is(join(' ', inverse_sigma(7688)), join(' ', 2800, 2928, 4575, 7687));
is(join(' ', inverse_sigma("110680464442257309690")), "46116860184273879040");
is(join(' ', inverse_sigma("9325257382230393314439814176")), "3535399776779654608221686964 4302950338161146561477374638 4637009852153025247015401018 4661529533007908774933879778 4884658628787348878992283572 5187814889839710566412258045 5311639278156872382400698772 5326520187917077557965023252 5328493035801953244119300732 5495240957385767488866317781 6208298641832871739558373002 6411114450283395403677372213 6417519160023938256228496989 6454455748546107757077838269 6799666841209661791779031135 6938435552254756930386764875 6992294299511863162400845113 7215972974344947207602237095 8501184728947212952861568533 8546137477181166087378779593 9130981186767260120388984667 9214242413394317203553625829 9323102747899933426890262757 9325091641128050246166715829 9325201015147968294835238387");
__END__
σ−¹(6187272) = [2855646 2651676]
σ−¹(196602) = [105650 81920]
σ−¹(8105688) = [4953454 4947723]
σ−¹(2031554) = [845200 999424]
σ−¹(8880128) = [6389751 7527079]
σ−¹(5488) = [3783 2716]
σ−¹(11532) = [4880 4400]
σ−¹(1355816) = [457500 390000 811875 624700]