Skip to content
This repository has been archived by the owner on Feb 14, 2023. It is now read-only.

TrustyAI service providing cloud-native fairness metrics and explainability

License

Notifications You must be signed in to change notification settings

trustyai-explainability/trustyai-service

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

46 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

trustyai-service

trustyai-service is now part of trustyai-explainability and this repository is archived.

Running

Locally

The demo consists of a "data logger", which writes data inputs and outputs to a MinIO bucket, the TrustyAI service, Prometheus and Grafana.

Build the TrustyAI service container image with:

mvn clean install

Build the remaining images using:

$ cd demo
$ docker compose build

Finally, run the demo using:

$ docker compose up

Issue a metric request to, for instance:

curl -X POST --location "http://localhost:8080/metrics/spd/request" \
    -H "Content-Type: application/json" \
    -d "{
          \"protectedAttribute\": \"gender\",
          \"favorableOutcome\": 1,
          \"outcomeName\": \"income\",
          \"privilegedAttribute\": 1,
          \"unprivilegedAttribute\": 0
        }"

And observe the trustyai_spd metric in Prometheus: http://localhost:9090

To use your own provided data, configure the MinIO container (by pre-populating it with data, according to the steps below) and run the container using (either docker, podman):

docker run -p 8080:8080 \
    --env SERVICE_DATA_FORMAT=CSV \
    --env SERVICE_MODEL_NAME=example \
    --env SERVICE_STORAGE_FORMAT="MINIO" \
    --env MINIO_BUCKET_NAME="inputs" \
    --env MINIO_ENDPOINT="http://localhost:9000" \
    --env MINIO_INPUT_FILENAME="income-biased-inputs.csv" \
    --env MINIO_OUTPUT_FILENAME="income-biased-outputs.csv" \
    --env MINIO_SECRET_KEY="minioadmin" \
    --env MINIO_ACCESS_KEY="minioadmin" \
    --env SERVICE_METRICS_SCHEDULE="5s" \
    trustyai/trustyai-service:1.0.0-SNAPSHOT -d 

S3 (MinIO)

In order to set up MinIO for local development, first install the MinIO client mc. Run the MinIO server with

docker run \
   -p 9000:9000 \
   -p 9090:9090 \
   --name minio \
   -v ~/minio/trustyai-service/data:/data \
   -e "MINIO_ROOT_USER=minioadmin" \
   -e "MINIO_ROOT_PASSWORD=minioadmin" \
   quay.io/minio/minio server /data --console-address ":9090"

Connect to MinIO using:

mc alias set local http://127.0.0.1:9000 minioadmin minioadmin

Now create a bucket, for instance, inputs:

mc mb local/inputs

Copy a file into the bucket:

mc cp data/income-biased-inputs.csv local/inputs

Optionally, check the file was successfully copies:

mc ls local/inputs

Which should produce:

[2023-02-09 23:01:49 GMT]  68KiB income-biased-inputs.csv

Endpoints

The OpenAPI schema can be displayed using

curl -X GET --location "http://localhost:8080/q/openapi"

Metrics

Each of the metrics default bounds can be overridden with the corresponding environment variable, e.g.

  • METRICS_SPD_THRESHOLD_LOWER
  • METRICS_SPD_THRESHOLD_UPPER
  • METRICS_DIR_THRESHOLD_LOWER
  • etc

Statistical Parity Difference

Get statistical parity difference at /metrics/spd

curl -X POST --location "http://localhost:8080/metrics/spd" \
    -H "Content-Type: application/json" \
    -d "{
          \"protectedAttribute\": \"gender\",
          \"favorableOutcome\": 1,
          \"outcomeName\": \"income\",
          \"privilegedAttribute\": 1,
          \"unprivilegedAttribute\": 0
        }"

Returns:

HTTP/1.1 200 OK
content-length: 199
Content-Type: application/json;charset=UTF-8

{
  "type": "metric",
  "name": "SPD",
  "value": -0.2531969309462916,
  "timestamp": 1675850601910,
  "thresholds": {
    "lowerBound": -0.1,
    "upperBound": 0.1,
    "outsideBounds": true
  },
  "id": "ec435fc6-d037-493b-9efc-4931138d7656"
}

Disparate Impact Ratio

curl -X POST --location "http://localhost:8080/metrics/dir" \
    -H "Content-Type: application/json" \
    -d "{
          \"protectedAttribute\": \"gender\",
          \"favorableOutcome\": 1,
          \"outcomeName\": \"income\",
          \"privilegedAttribute\": 1,
          \"unprivilegedAttribute\": 0
        }"
HTTP/1.1 200 OK
content-length: 197
Content-Type: application/json;charset=UTF-8

{
  "type": "metric",
  "name": "DIR",
  "value": 0.3333333333333333,
  "id": "15f87802-30ae-424b-9937-1589489d6b4b",
  "timestamp": 1675850775317,
  "thresholds": {
    "lowerBound": 0.8,
    "upperBound": 1.2,
    "outsideBounds": true
  }
}

Scheduled metrics

In order to generate period measurements for a certain metric, you can send a request to the /metrics/$METRIC/schedule. Looking at the SPD example abov,e if we wanted the metric to be calculated periodically we would request:

curl -X POST --location "http://localhost:8080/metrics/spd/request" \
    -H "Content-Type: application/json" \
    -d "{
          \"protectedAttribute\": \"gender\",
          \"favorableOutcome\": 1,
          \"outcomeName\": \"income\",
          \"privilegedAttribute\": 1,
          \"unprivilegedAttribute\": 0
        }"

We would get a response with the schedule id for this specific query:

HTTP/1.1 200 OK
content-length: 78
Content-Type: application/json;charset=UTF-8

{
  "requestId": "3281c891-e2a5-4eb3-b05d-7f3831acbb56",
  "timestamp": 1676031994868
}

The metrics will now be pushed to Prometheus with the runtime provided SERVICE_METRICS_SCHEDULE configuration ( e.g. SERVICE_METRICS_SCHEDULE=10s) which follows the Quarkus syntax.

To stop the periodic calculation you can issue an HTTP DELETE request to the /metrics/$METRIC/request endpoint, with the id of periodic task we want to cancel in the payload. For instance:

curl -X DELETE --location "http://{{host}}:8080/metrics/spd/request" \
    -H "Content-Type: application/json" \
    -d "{
          \"requestId\": \"3281c891-e2a5-4eb3-b05d-7f3831acbb56\"
        }"

Prometheus

Whenever a metric endpoint is called with a HTTP request, the service also updates the corresponding Prometheus metric.

The metrics are published at /q/metrics and can be consumed directly with Prometheus. The examples also include a Grafana dashboard to visualize them.

Each Prometheus metric is scoped to a specific model and attributes using tags. For instance, for the SPD metric request above we would have a metric:

trustyai_spd{
    favorable_value="1", 
    instance="trustyai:8080", 
    job="trustyai-service", 
    model="example", 
    outcome="income", 
    privileged="1", 
    protected="gender", 
    request="e4bf1430-cc33-48a0-97ce-4d0c8b2c91f0", 
    unprivileged="0"
}

Data sources

Metrics

Storage backend adapters implement the Storage interface which has the responsibility of reading the data from a specific storage type (flat file on PVC, S3, database, etc) and return the inputs and outputs as ByteBuffer. From there, the service converts the ByteBuffer into a TrustyAI Dataframe to be used in the metrics calculations.

The type of datasource is passed with the environment variable SERVICE_STORAGE_FORMAT.

The supported data sources are:

  • MinIO

The data can be batched into the latest n observations by using the configuration key SERVICE_BATCH_SIZE=n. This behaves like a n-size tail and its optional. If not specified, the entire dataset is used.

Explainers

An explainer can be linked to the service using the environment variables SERVICE_KSERVE_TARGET and SERVICE_MODEL_NAME. These will be used by the service's gRPC client which can natively query KServe and ModelMesh using that endpoint.

Deployment

To deploy in Kubernetes or OpenShift, the connection information can be passed in the manifest as environment variables:

apiVersion: apps/v1
kind: Deployment
spec:
  template:
    spec:
      containers:
        - env:
            - name: KUBERNETES_NAMESPACE
              valueFrom:
                fieldRef:
                  fieldPath: metadata.namespace
            - name: KSERVE_TARGET
              value: localhost
            - name: STORAGE_FORMAT
              value: RANDOM_TEST
            - name: MODEL_NAME
              value: example
          image: trustyai/trustyai-service:1.0.0-SNAPSHOT
          name: trustyai-service
          ports:
            - containerPort: 8080
              name: http
              protocol: TCP

About

TrustyAI service providing cloud-native fairness metrics and explainability

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •