-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathdatamanager.py
251 lines (223 loc) · 10.9 KB
/
datamanager.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
# -*- coding: utf-8 -*-
"""
@author: truthless
"""
import os
import json
import logging
import torch
import torch.utils.data as data
from copy import deepcopy
from utils import init_session, init_goal, state_vectorize, action_vectorize
def expand_da(meta):
for k, v in meta.items():
domain, intent = k.split('-')
if intent.lower() == "request":
for pair in v:
pair.insert(1, '?')
else:
counter = {}
for pair in v:
if pair[0] == 'none':
pair.insert(1, 'none')
else:
if pair[0] in counter:
counter[pair[0]] += 1
else:
counter[pair[0]] = 1
pair.insert(1, str(counter[pair[0]]))
class DataManager():
"""Offline data manager"""
def __init__(self, data_dir, cfg):
self.data = {}
self.goal = {}
self.data_dir_new = data_dir + '/processed_data'
if os.path.exists(self.data_dir_new):
logging.info('Load processed data file')
for part in ['train','valid','test']:
with open(self.data_dir_new + '/' + part + '.json', 'r') as f:
self.data[part] = json.load(f)
with open(self.data_dir_new + '/' + part + '_goal.json', 'r') as f:
self.goal[part] = json.load(f)
else:
from dbquery import DBQuery
db = DBQuery(data_dir)
logging.info('Start preprocessing the dataset')
self._build_data(data_dir, self.data_dir_new, cfg, db)
def _build_data(self, data_dir, data_dir_new, cfg, db):
data_filename = data_dir + '/' + cfg.data_file
with open(data_filename, 'r') as f:
origin_data = json.load(f)
for part in ['train','valid','test']:
self.data[part] = []
self.goal[part] = {}
valList = []
with open(data_dir + '/' + cfg.val_file) as f:
for line in f:
valList.append(line.split('.')[0])
testList = []
with open(data_dir + '/' + cfg.test_file) as f:
for line in f:
testList.append(line.split('.')[0])
for k_sess in origin_data:
sess = origin_data[k_sess]
if k_sess in valList:
part = 'valid'
elif k_sess in testList:
part = 'test'
else:
part = 'train'
turn_data, session_data = init_session(k_sess, cfg)
init_goal(session_data, sess['goal'], cfg)
self.goal[part][k_sess] = session_data
belief_state = turn_data['belief_state']
for i, turn in enumerate(sess['log']):
turn_data['others']['turn'] = i
turn_data['others']['terminal'] = i + 2 >= len(sess['log'])
da_origin = turn['dialog_act']
expand_da(da_origin)
turn_data['belief_state'] = deepcopy(belief_state) # from previous turn
if i % 2 == 0: # user
if 'last_sys_action' in turn_data:
turn_data['history']['sys'] = dict(turn_data['history']['sys'], **turn_data['last_sys_action'])
del(turn_data['last_sys_action'])
turn_data['last_user_action'] = deepcopy(turn_data['user_action'])
turn_data['user_action'] = dict()
for domint in da_origin:
domain_intent = da_origin[domint]
_domint = domint.lower()
_domain, _intent = _domint.split('-')
if _intent == 'thank':
_intent = 'welcome'
_domint = _domain+'-'+_intent
for slot, p, value in domain_intent:
_slot = slot.lower()
_value = value.strip()
_da = '-'.join((_domint, _slot, p))
if _da in cfg.da_usr:
turn_data['user_action'][_da] = _value
if _intent == 'inform':
inform_da = _domain+'-'+_slot+'-1'
if inform_da in cfg.inform_da:
belief_state['inform'][_domain][_slot] = _value
elif _intent == 'request':
request_da = _domain+'-'+_slot
if request_da in cfg.request_da:
belief_state['request'][_domain].add(_slot)
else: # sys
if 'last_user_action' in turn_data:
turn_data['history']['user'] = dict(turn_data['history']['user'], **turn_data['last_user_action'])
del(turn_data['last_user_action'])
turn_data['last_sys_action'] = deepcopy(turn_data['sys_action'])
turn_data['sys_action'] = dict()
for domint in da_origin:
domain_intent = da_origin[domint]
_domint = domint.lower()
_domain, _intent = _domint.split('-')
for slot, p, value in domain_intent:
_slot = slot.lower()
_value = value.strip()
_da = '-'.join((_domint, _slot, p))
if _da in cfg.da:
turn_data['sys_action'][_da] = _value
if _intent == 'inform' and _domain in belief_state['request']:
belief_state['request'][_domain].discard(_slot)
elif _intent == 'book' and _slot == 'ref':
for domain in belief_state['request']:
if _slot in belief_state['request'][domain]:
belief_state['request'][domain].remove(_slot)
break
book_status = turn['metadata']
for domain in cfg.belief_domains:
if book_status[domain]['book']['booked']:
entity = book_status[domain]['book']['booked'][0]
if domain == 'taxi':
belief_state['booked'][domain] = 'booked'
elif domain == 'train':
found = db.query(domain, [('trainID', entity['trainID'])])
belief_state['booked'][domain] = found[0]['ref']
else:
found = db.query(domain, [('name', entity['name'])])
belief_state['booked'][domain] = found[0]['ref']
if i + 1 == len(sess['log']):
turn_data['next_belief_state'] = belief_state
self.data[part].append(deepcopy(turn_data))
def _set_default(obj):
if isinstance(obj, set):
return list(obj)
raise TypeError
os.makedirs(data_dir_new)
for part in ['train','valid','test']:
with open(data_dir_new + '/' + part + '.json', 'w') as f:
self.data[part] = json.dumps(self.data[part], default=_set_default)
f.write(self.data[part])
self.data[part] = json.loads(self.data[part])
with open(data_dir_new + '/' + part + '_goal.json', 'w') as f:
self.goal[part] = json.dumps(self.goal[part], default=_set_default)
f.write(self.goal[part])
self.goal[part] = json.loads(self.goal[part])
def create_dataset(self, part, file_dir, cfg, db):
datas = self.data[part]
goals = self.goal[part]
s, a, next_s = [], [], []
for idx, turn_data in enumerate(datas):
if turn_data['others']['turn'] % 2 == 0:
continue
turn_data['user_goal'] = goals[turn_data['others']['session_id']]
s.append(torch.Tensor(state_vectorize(turn_data, cfg, db, True)))
a.append(torch.Tensor(action_vectorize(turn_data, cfg)))
if not int(turn_data['others']['terminal']):
next_s.append(torch.Tensor(state_vectorize(datas[idx+2], cfg, db, True)))
else:
next_turn_data = deepcopy(turn_data)
next_turn_data['others']['turn'] = -1
next_turn_data['user_action'] = {}
next_turn_data['last_sys_action'] = next_turn_data['sys_action']
next_turn_data['sys_action'] = {}
next_turn_data['belief_state'] = next_turn_data['next_belief_state']
next_s.append(torch.Tensor(state_vectorize(next_turn_data, cfg, db, True)))
torch.save((s, a, next_s), file_dir)
def create_dataset_rl(self, part, batchsz, cfg, db):
logging.debug('start loading rl {}'.format(part))
file_dir = self.data_dir_new + '/' + part + '.pt'
if not os.path.exists(file_dir):
self.create_dataset(part, file_dir, cfg, db)
s, a, _ = torch.load(file_dir)
dataset = DatasetRL(s, a)
dataloader = data.DataLoader(dataset, batchsz, True)
logging.debug('finish loading rl {}'.format(part))
return dataloader
def create_dataset_irl(self, part, batchsz, cfg, db):
logging.debug('start loading irl {}'.format(part))
file_dir = self.data_dir_new + '/' + part + '.pt'
if not os.path.exists(file_dir):
self.create_dataset(part, file_dir, cfg, db)
s, a, next_s = torch.load(file_dir)
dataset = DatasetIrl(s, a, next_s)
dataloader = data.DataLoader(dataset, batchsz, True)
logging.debug('finish loading irl {}'.format(part))
return dataloader
class DatasetRL(data.Dataset):
def __init__(self, s_s, a_s):
self.s_s = s_s
self.a_s = a_s
self.num_total = len(s_s)
def __getitem__(self, index):
s = self.s_s[index]
a = self.a_s[index]
return s, a
def __len__(self):
return self.num_total
class DatasetIrl(data.Dataset):
def __init__(self, s_s, a_s, next_s_s):
self.s_s = s_s
self.a_s = a_s
self.next_s_s = next_s_s
self.num_total = len(s_s)
def __getitem__(self, index):
s = self.s_s[index]
a = self.a_s[index]
next_s = self.next_s_s[index]
return s, a, next_s
def __len__(self):
return self.num_total