Skip to content

Official repository for "GaitGraph: Graph Convolutional Network for Skeleton-Based Gait Recognition" (ICIP'21)

License

Notifications You must be signed in to change notification settings

tteepe/GaitGraph

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

36 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

GaitGraph

Check out our new version GaitGraph2!

With support for OUMVLP-Pose Dataset, In-Memory Datasets & PyTorch Lightning

Towards a Deeper Understanding of Skeleton-based Gait Recognition

arxiv

This repository contains the PyTorch code for:

GaitGraph: Graph Convolutional Network for Skeleton-Based Gait Recognition

Torben Teepe, Ali Khan, Johannes Gilg, Fabian Herzog, Stefan Hörmann

DOI:10.1109/ICIP42928.2021.9506717 arxiv BibTeX PWC

Pipeline

Quick Start

Prerequisites

  • Python >= 3.6
  • CUDA >= 10

First, create a virtual environment or install dependencies directly with:

pip3 install -r requirements.txt

Data preparation

The extraction of the pose data from CASIA-B can either run the commands bellow or download the preprocessed data using:

cd data
sh ./download_data.sh

Optional: If you choose to run the preprocessing, download the dataset and run the following commands.

# Download required weights
cd models
sh ./download_weights.sh

# Copy extraction script
# <PATH_TO_CASIA-B> should be something like: /home/ ... /datasets/CASIA_Gait_Dataset/DatasetB
cd ../data
cp extract_frames.sh <PATH_TO_CASIA-B>

cd <PATH_TO_CASIA-B>
mkdir frames
sh extract_frames.sh
cd frames
find . -type f -regex ".*\.jpg" -print | sort | grep -v bkgrd > ../casia-b_all_frames.csv
cp ../casia-b_all_frames.csv <PATH_TO_REPO>/data

cd <PATH_TO_REPO>/src
export PYTHONPATH=${PWD}:$PYTHONPATH

cd preparation
python3 prepare_detection.py <PATH_TO_CASIA-B> ../../data/casia-b_all_frames.csv ../../data/casia-b_detections.csv
python3 prepare_pose_estimation.py  <PATH_TO_CASIA-B> ../../data/casia-b_detections.csv ../../data/casia-b_pose_coco.csv
python3 split_casia-b.py ../../data/casia-b_pose_coco.csv --output_dir ../../data

Train

To train the model you can run the train.py script. To see all options run:

cd src
export PYTHONPATH=${PWD}:$PYTHONPATH

python3 train.py --help

Check experiments/1_train_*.sh to see the configurations used in the paper.

Optionally start the tensorboard with:

tensorboard --logdir=save/casia-b_tensorboard 

Evaluation

Evaluate the models using evaluate.py script. To see all options run:

python3 evaluate.py --help

Main Results

Top-1 Accuracy per probe angle excluding identical-view cases for the provided models on CASIA-B dataset.

0 18 36 54 72 90 108 126 144 162 180 mean
NM#5-6 85.3 88.5 91 92.5 87.2 86.5 88.4 89.2 87.9 85.9 81.9 87.7
BG#1-2 75.8 76.7 75.9 76.1 71.4 73.9 78 74.7 75.4 75.4 69.2 74.8
CL#1-2 69.6 66.1 68.8 67.2 64.5 62 69.5 65.6 65.7 66.1 64.3 66.3

The pre-trained model is available here.

Licence & Acknowledgement

GaitPose itself is released under the MIT License (see LICENSE).

The following parts of the code are borrowed from other projects. Thanks for their wonderful work!

Citing GaitGraph

If you use GaitGraph, please use the following BibTeX entry.

@inproceedings{teepe2021gaitgraph,
  author={Teepe, Torben and Khan, Ali and Gilg, Johannes and Herzog, Fabian and H\"ormann, Stefan and Rigoll, Gerhard},
  booktitle={2021 IEEE International Conference on Image Processing (ICIP)}, 
  title={Gait{G}raph: Graph Convolutional Network for Skeleton-Based Gait Recognition}, 
  year={2021},
  pages={2314-2318},
  doi={10.1109/ICIP42928.2021.9506717}
}