Skip to content

tuomaseerola/interval_tension

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

README

These are analysis operations and data for the study titled “Musical expertise better predictor of tension in harmonic intervals than psychoacoustics across North and South Indian listeners” by Imre Lahdelma, Tuomas Eerola, Nashra Ahmad, Martin Clayton, James Armitage, Budhaditya Bhattacharyya, and Niveshan Munsamy.

Load data

rm(list = ls())
library(ggplot2)
library(dplyr)
library(papaja)
options(dplyr.summarise.inform = FALSE)
df <- read.csv('data/indian_tension_ratings.csv')
knitr::kable(head(df),format = 'markdown')
omsi1indian omsi1western gender age participant Expertise Interval tensionrating Group musicianship musicianshipW musicianshipI ExpertiseN
Music-loving nonmusician Music-loving nonmusician Male 29 I1 2 m2 5 Indian - non-musicians Non-Musician Non-Musician Non-Musician 16.666667
Music-loving nonmusician Music-loving nonmusician Female 61 I2 2 m2 2 Indian - non-musicians Non-Musician Non-Musician Non-Musician 16.666667
Nonmusician Nonmusician Male 25 I3 2 m2 4 Indian - non-musicians Non-Musician Non-Musician Non-Musician 16.666667
Music-loving nonmusician Music-loving nonmusician Male 23 I4 2 m2 2 Indian - non-musicians Non-Musician Non-Musician Non-Musician 16.666667
Music-loving nonmusician Music-loving nonmusician Male 18 I5 0 m2 5 Indian - non-musicians Non-Musician Non-Musician Non-Musician 0.000000
Nonmusician Nonmusician Male 22 I6 1 m2 1 Indian - non-musicians Non-Musician Non-Musician Non-Musician 8.333333

Brief explanation of columns

  • omsi1indian refers to participant’s own decision of how they identify themselves as indian musicians according to OMSI 1-item question.
  • omsi1western refers to participant’s own decision of how they identify themselves as western musicians according to OMSI 1-item question.
  • gender = Self-defined gender (Male/Female)
  • age = Age in years
  • participant = unique code for each participant
  • Expertise = Number of questions correct in custom Indian classical music familiary questionnaire. Note that since Carnatic and Hindustani questionnaires have different number of questions, we use the proportion correct (ExpertiseN) as the index for the expertise.
  • tension_rating = Rating of tension from 1 to 7 (7-point scale)
  • Group = Carnatic, Hindustani or Indian non-musicians
  • musicianship = variable inferred from omsi1indian
  • participant = variable inferred from omsi1western
  • ExpertiseN = Proportion of expertise questions correct (0-100)

Describe participants

U<-as.character(unique(df$participant))
background <- NULL
for (k in 1:length(U)) {
  tmp <- dplyr::filter(df,participant==U[k])
  background<-rbind(background,tmp[1,])
}

SS <- summarise(group_by(background,Group),N=n(),ageM=mean(age,na.rm=TRUE),ageSE=sd(age,na.rm=TRUE)/sqrt(n()),expertiseM=mean(ExpertiseN,na.rm=TRUE),expertiseSE=sd(ExpertiseN,na.rm=TRUE)/sqrt(n()),female=sum(gender=='Female')/n()*100)

knitr::kable(SS,digits = 2,format = 'markdown')
Group N ageM ageSE expertiseM expertiseSE female
Carnatic 26 28.23 1.77 85.51 2.88 53.85
Hindustani 19 31.16 2.64 82.71 4.17 36.84
Indian - non-musicians 26 27.12 2.12 12.18 1.15 46.15
m1 <- aov(ExpertiseN ~ Group, data=background)
a<-apa_print(summary(m1))
print(a$statistic)
## $Group
## [1] "$F(2, 65) = 234.50$, $p < .001$"
print(TukeyHSD(m1))
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = ExpertiseN ~ Group, data = background)
## 
## $Group
##                                         diff       lwr        upr     p adj
## Hindustani-Carnatic                -2.800479 -12.72050   7.119538 0.7775883
## Indian - non-musicians-Carnatic   -73.327759 -82.48735 -64.168171 0.0000000
## Indian - non-musicians-Hindustani -70.527280 -80.18493 -60.869634 0.0000000

LMM analysis

Are the Hindustani and Carnatic musicians tension ratings different from each other?

library(lme4)
library(lmerTest)
library(emmeans)
library(effectsize)

# Put the intervals in the correct order in the factor
iv_labels <- c('m2','M2','m3','M3','P4','A4','P5','m6','M6','m7','M7','P8')
df$Interval<-factor(df$Interval,levels = iv_labels)
# Take only Carnatic and Hindustani Musicians
tmp<-dplyr::filter(df,Group=='Carnatic' | Group=='Hindustani')
tmp$Group<-factor(tmp$Group)
m1 <- lmer(tensionrating ~ Interval * Group + (1|participant), data=tmp)
print(anova(m1))
## Type III Analysis of Variance Table with Satterthwaite's method
##                Sum Sq Mean Sq NumDF  DenDF F value Pr(>F)    
## Interval       375.89  34.172    11 471.19 18.4130 <2e-16 ***
## Group            1.49   1.487     1  43.11  0.8011 0.3757    
## Interval:Group  27.96   2.542    11 471.19  1.3695 0.1839    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# No difference between the two expert groups nor interaction

Differences between and within musicians and non-musicians?

# Combine two musician groups and relabel everybody to musician/non-musician
df$Group2<-as.character(df$Group)
df$Group2[df$Group=='Carnatic']<-'Musicians'
df$Group2[df$Group=='Hindustani']<-'Musicians'
df$Group2[df$Group=='Indian - non-musicians']<-'Non-musicians'
df$Group2<-factor(df$Group2)

m1 <- lmer(tensionrating ~ Group2 * Interval + (1|participant),data = df)
print(anova(m1))
## Type III Analysis of Variance Table with Satterthwaite's method
##                  Sum Sq Mean Sq NumDF  DenDF F value    Pr(>F)    
## Group2            2.636  2.6361     1  69.03  1.5836    0.2125    
## Interval        160.651 14.6046    11 757.09  8.7738 8.973e-15 ***
## Group2:Interval 190.640 17.3309    11 757.09 10.4117 < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
F_to_eta2(8.7738, 11, 757.09)  # effect size
## Eta2 (partial) |       95% CI
## -----------------------------
## 0.11           | [0.07, 1.00]
## 
## - One-sided CIs: upper bound fixed at [1.00].
F_to_eta2(10.4117, 11, 757.09) # effect size
## Eta2 (partial) |       95% CI
## -----------------------------
## 0.13           | [0.09, 1.00]
## 
## - One-sided CIs: upper bound fixed at [1.00].
print(pairs(emmeans(m1,~ Group2|Interval))) # this for each interval
## Interval = m2:
##  contrast                    estimate    SE  df t.ratio p.value
##  Musicians - (Non-musicians)    1.567 0.381 408   4.108  <.0001
## 
## Interval = M2:
##  contrast                    estimate    SE  df t.ratio p.value
##  Musicians - (Non-musicians)    0.507 0.381 408   1.329  0.1846
## 
## Interval = m3:
##  contrast                    estimate    SE  df t.ratio p.value
##  Musicians - (Non-musicians)   -0.190 0.381 408  -0.497  0.6191
## 
## Interval = M3:
##  contrast                    estimate    SE  df t.ratio p.value
##  Musicians - (Non-musicians)   -0.950 0.381 408  -2.492  0.0131
## 
## Interval = P4:
##  contrast                    estimate    SE  df t.ratio p.value
##  Musicians - (Non-musicians)   -1.572 0.381 408  -4.121  <.0001
## 
## Interval = A4:
##  contrast                    estimate    SE  df t.ratio p.value
##  Musicians - (Non-musicians)    0.489 0.381 408   1.282  0.2006
## 
## Interval = P5:
##  contrast                    estimate    SE  df t.ratio p.value
##  Musicians - (Non-musicians)   -1.202 0.383 411  -3.141  0.0018
## 
## Interval = m6:
##  contrast                    estimate    SE  df t.ratio p.value
##  Musicians - (Non-musicians)   -0.897 0.383 411  -2.346  0.0195
## 
## Interval = M6:
##  contrast                    estimate    SE  df t.ratio p.value
##  Musicians - (Non-musicians)   -1.279 0.381 408  -3.353  0.0009
## 
## Interval = m7:
##  contrast                    estimate    SE  df t.ratio p.value
##  Musicians - (Non-musicians)    0.219 0.381 408   0.574  0.5665
## 
## Interval = M7:
##  contrast                    estimate    SE  df t.ratio p.value
##  Musicians - (Non-musicians)    0.985 0.381 408   2.584  0.0101
## 
## Interval = P8:
##  contrast                    estimate    SE  df t.ratio p.value
##  Musicians - (Non-musicians)   -1.150 0.381 408  -3.014  0.0027
## 
## Degrees-of-freedom method: kenward-roger

The comparison of intervals across musicians/non-musicians is also documented in the Figure 1.

Check discrimination of intervals within non-musicians

m1 <- lmer(tensionrating ~ Interval + (1|participant),data = dplyr::filter(df,Group2=='Non-musicians'))
anova(m1)
## Type III Analysis of Variance Table with Satterthwaite's method
##          Sum Sq Mean Sq NumDF DenDF F value    Pr(>F)    
## Interval 64.574  5.8703    11   275  4.5092 2.821e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
F_to_epsilon2(4.5092, 11, 275) # effect size
## Epsilon2 (partial) |       95% CI
## ---------------------------------
## 0.12               | [0.04, 1.00]
## 
## - One-sided CIs: upper bound fixed at [1.00].
# posthocs with multiple corrections
emm <- emmeans(m1,specs = pairwise ~ Interval,pbkrtest.limit = 4345, type = "response")
print(emm$contrasts)
##  contrast estimate    SE  df t.ratio p.value
##  m2 - M2   -0.6154 0.316 275  -1.945  0.7300
##  m2 - m3   -0.4231 0.316 275  -1.337  0.9735
##  m2 - M3   -0.9615 0.316 275  -3.038  0.1033
##  m2 - P4   -1.5385 0.316 275  -4.862  0.0001
##  m2 - A4   -1.5000 0.316 275  -4.740  0.0002
##  m2 - P5   -1.1154 0.316 275  -3.525  0.0245
##  m2 - m6   -1.0385 0.316 275  -3.282  0.0523
##  m2 - M6   -1.4231 0.316 275  -4.497  0.0006
##  m2 - m7   -1.1923 0.316 275  -3.768  0.0107
##  m2 - M7   -0.6923 0.316 275  -2.188  0.5600
##  m2 - P8   -0.5385 0.316 275  -1.702  0.8663
##  M2 - m3    0.1923 0.316 275   0.608  1.0000
##  M2 - M3   -0.3462 0.316 275  -1.094  0.9948
##  M2 - P4   -0.9231 0.316 275  -2.917  0.1408
##  M2 - A4   -0.8846 0.316 275  -2.795  0.1878
##  M2 - P5   -0.5000 0.316 275  -1.580  0.9150
##  M2 - m6   -0.4231 0.316 275  -1.337  0.9735
##  M2 - M6   -0.8077 0.316 275  -2.552  0.3125
##  M2 - m7   -0.5769 0.316 275  -1.823  0.8040
##  M2 - M7   -0.0769 0.316 275  -0.243  1.0000
##  M2 - P8    0.0769 0.316 275   0.243  1.0000
##  m3 - M3   -0.5385 0.316 275  -1.702  0.8663
##  m3 - P4   -1.1154 0.316 275  -3.525  0.0245
##  m3 - A4   -1.0769 0.316 275  -3.403  0.0361
##  m3 - P5   -0.6923 0.316 275  -2.188  0.5600
##  m3 - m6   -0.6154 0.316 275  -1.945  0.7300
##  m3 - M6   -1.0000 0.316 275  -3.160  0.0742
##  m3 - m7   -0.7692 0.316 275  -2.431  0.3890
##  m3 - M7   -0.2692 0.316 275  -0.851  0.9995
##  m3 - P8   -0.1154 0.316 275  -0.365  1.0000
##  M3 - P4   -0.5769 0.316 275  -1.823  0.8040
##  M3 - A4   -0.5385 0.316 275  -1.702  0.8663
##  M3 - P5   -0.1538 0.316 275  -0.486  1.0000
##  M3 - m6   -0.0769 0.316 275  -0.243  1.0000
##  M3 - M6   -0.4615 0.316 275  -1.458  0.9502
##  M3 - m7   -0.2308 0.316 275  -0.729  0.9999
##  M3 - M7    0.2692 0.316 275   0.851  0.9995
##  M3 - P8    0.4231 0.316 275   1.337  0.9735
##  P4 - A4    0.0385 0.316 275   0.122  1.0000
##  P4 - P5    0.4231 0.316 275   1.337  0.9735
##  P4 - m6    0.5000 0.316 275   1.580  0.9150
##  P4 - M6    0.1154 0.316 275   0.365  1.0000
##  P4 - m7    0.3462 0.316 275   1.094  0.9948
##  P4 - M7    0.8462 0.316 275   2.674  0.2451
##  P4 - P8    1.0000 0.316 275   3.160  0.0742
##  A4 - P5    0.3846 0.316 275   1.215  0.9874
##  A4 - m6    0.4615 0.316 275   1.458  0.9502
##  A4 - M6    0.0769 0.316 275   0.243  1.0000
##  A4 - m7    0.3077 0.316 275   0.972  0.9981
##  A4 - M7    0.8077 0.316 275   2.552  0.3125
##  A4 - P8    0.9615 0.316 275   3.038  0.1033
##  P5 - m6    0.0769 0.316 275   0.243  1.0000
##  P5 - M6   -0.3077 0.316 275  -0.972  0.9981
##  P5 - m7   -0.0769 0.316 275  -0.243  1.0000
##  P5 - M7    0.4231 0.316 275   1.337  0.9735
##  P5 - P8    0.5769 0.316 275   1.823  0.8040
##  m6 - M6   -0.3846 0.316 275  -1.215  0.9874
##  m6 - m7   -0.1538 0.316 275  -0.486  1.0000
##  m6 - M7    0.3462 0.316 275   1.094  0.9948
##  m6 - P8    0.5000 0.316 275   1.580  0.9150
##  M6 - m7    0.2308 0.316 275   0.729  0.9999
##  M6 - M7    0.7308 0.316 275   2.309  0.4726
##  M6 - P8    0.8846 0.316 275   2.795  0.1878
##  m7 - M7    0.5000 0.316 275   1.580  0.9150
##  m7 - P8    0.6538 0.316 275   2.066  0.6473
##  M7 - P8    0.1538 0.316 275   0.486  1.0000
## 
## Degrees-of-freedom method: kenward-roger 
## P value adjustment: tukey method for comparing a family of 12 estimates
# 7/66 comparison significant at p<.05 level

Check discrimination of intervals within musicians

m1 <- lmer(tensionrating ~ Interval + (1|participant),data = dplyr::filter(df,Group2=='Musicians'))
print(anova(m1))
## Type III Analysis of Variance Table with Satterthwaite's method
##          Sum Sq Mean Sq NumDF  DenDF F value    Pr(>F)    
## Interval 367.42  33.402    11 482.16  17.848 < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
F_to_epsilon2(17.848, 11, 482.16) # effect size
## Epsilon2 (partial) |       95% CI
## ---------------------------------
## 0.27               | [0.21, 1.00]
## 
## - One-sided CIs: upper bound fixed at [1.00].
# posthocs with multiple corrections
emm <- emmeans(m1,specs = pairwise ~ Interval,pbkrtest.limit = 4345, type = "response")
emm$contrasts
##  contrast estimate    SE  df t.ratio p.value
##  m2 - M2   0.44444 0.288 482   1.541  0.9283
##  m2 - m3   1.33333 0.288 482   4.623  0.0003
##  m2 - M3   1.55556 0.288 482   5.394  <.0001
##  m2 - P4   1.60000 0.288 482   5.548  <.0001
##  m2 - A4  -0.42222 0.288 482  -1.464  0.9494
##  m2 - P5   1.65341 0.290 482   5.698  <.0001
##  m2 - m6   1.42614 0.290 482   4.915  0.0001
##  m2 - M6   1.42222 0.288 482   4.931  0.0001
##  m2 - m7   0.15556 0.288 482   0.539  1.0000
##  m2 - M7  -0.11111 0.288 482  -0.385  1.0000
##  m2 - P8   2.17778 0.288 482   7.551  <.0001
##  M2 - m3   0.88889 0.288 482   3.082  0.0896
##  M2 - M3   1.11111 0.288 482   3.853  0.0073
##  M2 - P4   1.15556 0.288 482   4.007  0.0041
##  M2 - A4  -0.86667 0.288 482  -3.005  0.1102
##  M2 - P5   1.20897 0.290 482   4.167  0.0021
##  M2 - m6   0.98169 0.290 482   3.383  0.0368
##  M2 - M6   0.97778 0.288 482   3.390  0.0360
##  M2 - m7  -0.28889 0.288 482  -1.002  0.9976
##  M2 - M7  -0.55556 0.288 482  -1.926  0.7422
##  M2 - P8   1.73333 0.288 482   6.010  <.0001
##  m3 - M3   0.22222 0.288 482   0.771  0.9998
##  m3 - P4   0.26667 0.288 482   0.925  0.9989
##  m3 - A4  -1.75556 0.288 482  -6.087  <.0001
##  m3 - P5   0.32008 0.290 482   1.103  0.9945
##  m3 - m6   0.09281 0.290 482   0.320  1.0000
##  m3 - M6   0.08889 0.288 482   0.308  1.0000
##  m3 - m7  -1.17778 0.288 482  -4.084  0.0030
##  m3 - M7  -1.44444 0.288 482  -5.008  <.0001
##  m3 - P8   0.84444 0.288 482   2.928  0.1344
##  M3 - P4   0.04444 0.288 482   0.154  1.0000
##  M3 - A4  -1.97778 0.288 482  -6.858  <.0001
##  M3 - P5   0.09786 0.290 482   0.337  1.0000
##  M3 - m6  -0.12942 0.290 482  -0.446  1.0000
##  M3 - M6  -0.13333 0.288 482  -0.462  1.0000
##  M3 - m7  -1.40000 0.288 482  -4.854  0.0001
##  M3 - M7  -1.66667 0.288 482  -5.779  <.0001
##  M3 - P8   0.62222 0.288 482   2.157  0.5814
##  P4 - A4  -2.02222 0.288 482  -7.012  <.0001
##  P4 - P5   0.05341 0.290 482   0.184  1.0000
##  P4 - m6  -0.17386 0.290 482  -0.599  1.0000
##  P4 - M6  -0.17778 0.288 482  -0.616  1.0000
##  P4 - m7  -1.44444 0.288 482  -5.008  <.0001
##  P4 - M7  -1.71111 0.288 482  -5.933  <.0001
##  P4 - P8   0.57778 0.288 482   2.003  0.6910
##  A4 - P5   2.07563 0.290 482   7.153  <.0001
##  A4 - m6   1.84836 0.290 482   6.370  <.0001
##  A4 - M6   1.84444 0.288 482   6.395  <.0001
##  A4 - m7   0.57778 0.288 482   2.003  0.6910
##  A4 - M7   0.31111 0.288 482   1.079  0.9954
##  A4 - P8   2.60000 0.288 482   9.015  <.0001
##  P5 - m6  -0.22727 0.292 482  -0.779  0.9998
##  P5 - M6  -0.23119 0.290 482  -0.797  0.9997
##  P5 - m7  -1.49786 0.290 482  -5.162  <.0001
##  P5 - M7  -1.76452 0.290 482  -6.081  <.0001
##  P5 - P8   0.52437 0.290 482   1.807  0.8136
##  m6 - M6  -0.00392 0.290 482  -0.013  1.0000
##  m6 - m7  -1.27058 0.290 482  -4.379  0.0009
##  m6 - M7  -1.53725 0.290 482  -5.298  <.0001
##  m6 - P8   0.75164 0.290 482   2.590  0.2880
##  M6 - m7  -1.26667 0.288 482  -4.392  0.0008
##  M6 - M7  -1.53333 0.288 482  -5.317  <.0001
##  M6 - P8   0.75556 0.288 482   2.620  0.2715
##  m7 - M7  -0.26667 0.288 482  -0.925  0.9989
##  m7 - P8   2.02222 0.288 482   7.012  <.0001
##  M7 - P8   2.28889 0.288 482   7.936  <.0001
## 
## Degrees-of-freedom method: kenward-roger 
## P value adjustment: tukey method for comparing a family of 12 estimates
# 34/66 comparison significant at p<.05 level

Visualise tension ratings of both groups

# take the means and 95% CIs
S <- df %>%
  group_by(Interval,Group2) %>%
  summarize(n=n(),M=mean(tensionrating,na.rm = TRUE),sd=sd(tensionrating,na.rm = TRUE)) %>%
  mutate(se=sd/sqrt(n),LCI=M+qnorm(0.025)*se,UCI=M+qnorm(0.975)*se)

dval<-0.33
colnames(S)[2] <- 'Expertise'

fig_india <- ggplot(S,aes(Interval,M,color=Expertise,group=Expertise,linestyle=Expertise,shape=Expertise))+
  geom_point(position=position_dodge(dval),size=4)+
  geom_line(position=position_dodge(dval))+
  geom_errorbar(aes(min=LCI, max=UCI),width=.2,position=position_dodge(dval)) +
  scale_y_continuous(breaks = seq(1,7,by=1),limits = c(1,7),expand = c(0.005,0.005))+
  scale_color_brewer(type = "div",palette = 'Set2')+
  scale_shape_manual(values=c(19,17))+  
  ylab('Tension Rating (M ± 95% CI)')+
  theme_bw()+
  theme(legend.position="bottom")+
  # Annotations take the statistics from analyses above
  annotate("text",x = 1,y=5.87,label='italic(p)<.001',parse = TRUE,size=3)+
  annotate("text",x = 4,y=5.87,label='italic(p)<.05',parse = TRUE,size=3)+
  annotate("text",x = 5,y=5.87,label='italic(p)<.001',parse = TRUE,size=3)+
  annotate("text",x = 7,y=5.87,label='italic(p)<0.01',parse = TRUE,size=3)+
  annotate("text",x = 8,y=5.87,label='italic(p)<.05',parse = TRUE,size=3)+
  annotate("text",x = 9,y=5.87,label='italic(p)<.001',parse = TRUE,size=3)+
  annotate("text",x = 11,y=5.87,label='italic(p)<.05',parse = TRUE,size=3)+
  annotate("text",x = 12,y=5.87,label='italic(p)<.01',parse = TRUE,size=3)+
  annotate("text",x = 1,y=6.5,label='Between group comparisons',size=4,hjust=0)+
  annotate("text",x = 1,y=2.5,label='Within group comparisons',size=4,hjust=0)+
  annotate("text",x = 1.5,y=2.0,label='Musicians:~34/66~intervals~differ~at~italic(p)<.05',color=RColorBrewer::brewer.pal(3, 'Set2')[1],size=3,hjust=0,parse=TRUE)+
  annotate("text",x = 1.5,y=1.5,label='Non-musicians:~7/66~intervals~differ~at~italic(p)<.05',color=RColorBrewer::brewer.pal(3, 'Set2')[2],size=3,hjust=0,parse=TRUE)+
  ggtitle('Indian samples (N=71)')
print(fig_india)

Mean tension ratings for all intervals across expertise. Statistical significance testing based on LMM analysis and multiple comparison adjusted posthoc comparisons for between groups (upper part of the plot) and within groups (lower part of the plot), see text for statistical details.

Session information

R version and libraries.

print(sessionInfo())
## R version 4.3.1 (2023-06-16)
## Platform: x86_64-apple-darwin20 (64-bit)
## Running under: macOS Ventura 13.6.1
## 
## Matrix products: default
## BLAS:   /Library/Frameworks/R.framework/Versions/4.3-x86_64/Resources/lib/libRblas.0.dylib 
## LAPACK: /Library/Frameworks/R.framework/Versions/4.3-x86_64/Resources/lib/libRlapack.dylib;  LAPACK version 3.11.0
## 
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
## 
## time zone: Europe/London
## tzcode source: internal
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
## [1] effectsize_0.8.6  emmeans_1.8.9     lmerTest_3.1-3    lme4_1.1-34      
## [5] Matrix_1.6-1.1    papaja_0.1.1.9001 tinylabels_0.2.4  dplyr_1.1.4      
## [9] ggplot2_3.4.4    
## 
## loaded via a namespace (and not attached):
##  [1] tidyr_1.3.0         utf8_1.2.4          generics_0.1.3     
##  [4] lattice_0.22-5      digest_0.6.33       magrittr_2.0.3     
##  [7] RColorBrewer_1.1-3  evaluate_0.22       grid_4.3.1         
## [10] estimability_1.4.1  mvtnorm_1.2-3       fastmap_1.1.1      
## [13] backports_1.4.1     purrr_1.0.2         fansi_1.0.5        
## [16] scales_1.2.1        numDeriv_2016.8-1.1 cli_3.6.1          
## [19] rlang_1.1.2         munsell_0.5.0       splines_4.3.1      
## [22] withr_2.5.2         yaml_2.3.7          parallel_4.3.1     
## [25] pbkrtest_0.5.2      tools_4.3.1         datawizard_0.9.0   
## [28] nloptr_2.0.3        coda_0.19-4         minqa_1.2.6        
## [31] colorspace_2.1-0    bayestestR_0.13.1   boot_1.3-28.1      
## [34] broom_1.0.5         vctrs_0.6.5         R6_2.5.1           
## [37] lifecycle_1.0.4     MASS_7.3-60         insight_0.19.6     
## [40] pkgconfig_2.0.3     pillar_1.9.0        gtable_0.3.4       
## [43] glue_1.6.2          Rcpp_1.0.11         xfun_0.40          
## [46] tibble_3.2.1        tidyselect_1.2.0    rstudioapi_0.15.0  
## [49] parameters_0.21.2   knitr_1.44          farver_2.1.1       
## [52] xtable_1.8-4        htmltools_0.5.7     nlme_3.1-163       
## [55] rmarkdown_2.25      compiler_4.3.1

About

Tension ratings in intervals by Indian participants

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published