-
Notifications
You must be signed in to change notification settings - Fork 0
/
app.py
53 lines (40 loc) · 1.29 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import streamlit as st
import pandas as pd
import numpy as np
from sklearn import datasets
from sklearn.ensemble import RandomForestClassifier
st.set_page_config(page_title="Iris FLower classification")
st.write("""
# IRIS FLOWER PREDICTION APP
This app predicts the **iris flower** type!
""")
st.sidebar.header('user input Parameters')
def user_input():
sepal_length = st.sidebar.slider('sepal_length', 4.3, 7.9, 5.4)
sepal_width = st.sidebar.slider('sepal_width', 2.0, 4.4, 3.4)
petal_length = st.sidebar.slider('petal_length', 1.0, 6.9, 1.3)
petal_width = st.sidebar.slider('petal_width', 0.1, 2.5, 0.2)
data = {
"sepal_length": sepal_length,
"sepal_width": sepal_width,
"petal_length": petal_length,
"petal_width": petal_width
}
features = pd.DataFrame(data, index=[0])
return features
df = user_input()
st.subheader('user_input_parameters')
st.write(df)
iris = datasets.load_iris()
x = iris.data
y = iris.target
clf = RandomForestClassifier()
clf.fit(x, y)
pred = clf.predict(df)
predprob = clf.predict_proba(df)
st.subheader('Class labels and their corresponding index number')
st.write(iris.target_names)
st.subheader('Prediction')
st.write(iris.target_names[pred])
st.subheader('Prediction Probablity')
st.write(predprob)