Skip to content

Commit

Permalink
Add tag-consensus harassment/abuse tag note scoring + reputation filt…
Browse files Browse the repository at this point in the history
…ering

- After the 1st phase matrix factorization, compute a new matrix factorization with the harassment/abuse tag as the label, instead of the overall helpful rating like normal.
-Add a large rater reputation penalty on raters who have rated any notes with extremely high harassment/abuse scores as helpful
-Support BCEWithLogits loss and pos_weight in order to train the imbalanced binary matrix factorization well
  • Loading branch information
jbaxter committed Nov 14, 2023
1 parent eedb9c7 commit d42c4ad
Show file tree
Hide file tree
Showing 8 changed files with 273 additions and 20 deletions.
9 changes: 9 additions & 0 deletions sourcecode/scoring/constants.py
Original file line number Diff line number Diff line change
Expand Up @@ -60,6 +60,7 @@
# Timestamps
deletedNoteTombstonesLaunchTime = 1652918400000 # May 19, 2022 UTC
notMisleadingUILaunchTime = 1664755200000 # October 3, 2022 UTC
lastRatingTagsChangeTimeMillis = 1639699200000 # 2021/12/15 UTC
publicTSVTimeDelay = 172800000 # 48 hours

# Explanation Tags
Expand Down Expand Up @@ -138,6 +139,12 @@ def rater_factor_key(i):
groupNoteInterceptMinKey = "groupNoteInterceptMin"
groupRaterInterceptKey = "groupRaterIntercept"
groupRaterFactor1Key = "groupRaterFactor1"
# Harassment/Abuse Tag
harassmentNoteInterceptKey = "harassmentNoteIntercept"
harassmentNoteFactor1Key = "harassmentNoteFactor1"
harassmentRaterInterceptKey = "harassmentRaterIntercept"
harassmentRaterFactor1Key = "harassmentRaterFactor1"


# Ids and Indexes
noteIdKey = "noteId"
Expand All @@ -162,6 +169,8 @@ def rater_factor_key(i):
raterAgreeRatioKey = "raterAgreeRatio"
ratingAgreesWithNoteStatusKey = "ratingAgreesWithNoteStatus"
aboveHelpfulnessThresholdKey = "aboveHelpfulnessThreshold"
totalHelpfulHarassmentRatingsPenaltyKey = "totalHelpfulHarassmentPenalty"
raterAgreeRatioWithHarassmentAbusePenaltyKey = "raterAgreeRatioKeyWithHarassmentAbusePenalty"

# Note Status Labels
currentlyRatedHelpful = "CURRENTLY_RATED_HELPFUL"
Expand Down
73 changes: 61 additions & 12 deletions sourcecode/scoring/helpfulness_scores.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,5 @@
from typing import Optional

from . import constants as c

import numpy as np
Expand Down Expand Up @@ -70,6 +72,11 @@ def compute_general_helpfulness_scores(
minMeanNoteScore: float,
minCRHVsCRNHRatio: float,
minRaterAgreeRatio: float,
ratings: Optional[pd.DataFrame] = None,
tagConsensusHarassmentAbuseNotes: Optional[pd.DataFrame] = None,
tagConsensusHarassmentHelpfulRatingPenalty=10,
multiplyPenaltyByHarassmentScore: bool = False,
minimumHarassmentScoreToPenalize: float = 2.5,
) -> pd.DataFrame:
"""Given notes scored by matrix factorization, compute helpfulness scores.
Author helpfulness scores are based on the scores of the notes you wrote.
Expand All @@ -84,6 +91,7 @@ def compute_general_helpfulness_scores(
comparing how often an author produces CRH / CRNH notes. See author_helpfulness.
minRaterAgreeRatio: minimum standard for how often a rater must predict the
eventual outcome when rating before a note is assigned status.
ratings: all ratings (to check if tag-consensus harassment/abuse notes were rated helpful)
Returns:
helpfulness_scores pandas.DataFrame: 1 row per user, with helpfulness scores as columns.
"""
Expand All @@ -101,26 +109,67 @@ def compute_general_helpfulness_scores(
c.crhCrnhRatioDifferenceKey,
c.meanNoteScoreKey,
c.raterAgreeRatioKey,
c.ratingAgreesWithNoteStatusKey,
c.ratingCountKey,
]
]
)

helpfulnessScores[c.aboveHelpfulnessThresholdKey] = (
(
(helpfulnessScores[c.crhCrnhRatioDifferenceKey] >= minCRHVsCRNHRatio)
& (helpfulnessScores[c.meanNoteScoreKey] >= minMeanNoteScore)
if (ratings is None) or (tagConsensusHarassmentAbuseNotes is None):
helpfulnessScores[c.totalHelpfulHarassmentRatingsPenaltyKey] = 0
else:
filteredAbuseNotes = tagConsensusHarassmentAbuseNotes[
tagConsensusHarassmentAbuseNotes[c.harassmentNoteInterceptKey]
>= minimumHarassmentScoreToPenalize
]
helpfulRatingsOnBadNotes = ratings[ratings[c.helpfulNumKey] == 1].merge(
filteredAbuseNotes, on=c.noteIdKey
)
| (
pd.isna(helpfulnessScores[c.crhCrnhRatioDifferenceKey])
& pd.isna(helpfulnessScores[c.meanNoteScoreKey])

helpfulRatingsOnBadNotes[
c.totalHelpfulHarassmentRatingsPenaltyKey
] = tagConsensusHarassmentHelpfulRatingPenalty
if multiplyPenaltyByHarassmentScore:
helpfulRatingsOnBadNotes[c.totalHelpfulHarassmentRatingsPenaltyKey] *= (
helpfulRatingsOnBadNotes[c.harassmentNoteInterceptKey] / minimumHarassmentScoreToPenalize
)

helpfulRatingsOnBadNotesCount = (
helpfulRatingsOnBadNotes.groupby(c.raterParticipantIdKey)
.sum()[[c.totalHelpfulHarassmentRatingsPenaltyKey]]
.reset_index()
)
| (
pd.isna(helpfulnessScores[c.crhCrnhRatioDifferenceKey])
& helpfulnessScores[c.meanNoteScoreKey]
>= minMeanNoteScore
helpfulnessScores = helpfulnessScores.merge(
helpfulRatingsOnBadNotesCount, on=c.raterParticipantIdKey, how="left"
)
) & (helpfulnessScores[c.raterAgreeRatioKey] >= minRaterAgreeRatio)
helpfulnessScores[c.totalHelpfulHarassmentRatingsPenaltyKey].fillna(0, inplace=True)

helpfulnessScores[c.raterAgreeRatioWithHarassmentAbusePenaltyKey] = (
helpfulnessScores[c.ratingAgreesWithNoteStatusKey]
- helpfulnessScores[c.totalHelpfulHarassmentRatingsPenaltyKey]
) / helpfulnessScores[c.ratingCountKey]

helpfulnessScores[c.aboveHelpfulnessThresholdKey] = (
(
(
(helpfulnessScores[c.crhCrnhRatioDifferenceKey] >= minCRHVsCRNHRatio)
& (helpfulnessScores[c.meanNoteScoreKey] >= minMeanNoteScore)
)
| (
pd.isna(helpfulnessScores[c.crhCrnhRatioDifferenceKey])
& pd.isna(helpfulnessScores[c.meanNoteScoreKey])
)
| (
pd.isna(helpfulnessScores[c.crhCrnhRatioDifferenceKey])
& helpfulnessScores[c.meanNoteScoreKey]
>= minMeanNoteScore
)
)
& (helpfulnessScores[c.raterAgreeRatioKey] >= minRaterAgreeRatio)
& (helpfulnessScores[c.raterAgreeRatioWithHarassmentAbusePenaltyKey] >= minRaterAgreeRatio)
)

helpfulnessScores.drop(columns=[c.ratingCountKey, c.ratingAgreesWithNoteStatusKey], inplace=True)
return helpfulnessScores


Expand Down
22 changes: 20 additions & 2 deletions sourcecode/scoring/matrix_factorization/matrix_factorization.py
Original file line number Diff line number Diff line change
Expand Up @@ -30,6 +30,8 @@ def __init__(
model: Optional[BiasedMatrixFactorization] = None,
featureCols: List[str] = [c.noteIdKey, c.raterParticipantIdKey],
labelCol: str = c.helpfulNumKey,
useSigmoidCrossEntropy=False,
posWeight=None,
) -> None:
"""Configure matrix factorization note ranking."""
self._l2_lambda = l2_lambda
Expand All @@ -43,8 +45,25 @@ def __init__(
self._flipFactorsForIdentification = flipFactorsForIdentification
self._featureCols = featureCols
self._labelCol = labelCol
self._useSigmoidCrossEntropy = useSigmoidCrossEntropy
self._posWeight = posWeight

if self._useSigmoidCrossEntropy:
if self._posWeight:
if logging:
print(f"Using pos weight: {self._posWeight} with BCEWithLogitsLoss")
self.criterion = torch.nn.BCEWithLogitsLoss(
pos_weight=torch.Tensor(np.array(self._posWeight))
)
else:
if logging:
print("Using BCEWithLogitsLoss")
self.criterion = torch.nn.BCEWithLogitsLoss()
else:
if self._posWeight:
raise ValueError("posWeight is not supported for MSELoss")
self.criterion = torch.nn.MSELoss()

self.criterion = torch.nn.MSELoss()
self.train_errors: List[float] = []
self.test_errors: List[float] = []
self.mf_model = model
Expand Down Expand Up @@ -340,7 +359,6 @@ def _fit_model(
while (abs(loss.item() - prev_loss) > self._convergence) and (
not (epoch > 100 and loss.item() > prev_loss)
):

prev_loss = loss.item()

# Backpropagate
Expand Down
71 changes: 69 additions & 2 deletions sourcecode/scoring/mf_base_scorer.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
from typing import List, Optional, Tuple

from . import constants as c, helpfulness_scores, note_ratings, process_data
from . import constants as c, helpfulness_scores, note_ratings, process_data, tag_consensus
from .matrix_factorization.matrix_factorization import MatrixFactorization
from .matrix_factorization.pseudo_raters import PseudoRatersRunner
from .scorer import Scorer
Expand Down Expand Up @@ -36,6 +36,7 @@ def __init__(
crhSuperThreshold: float = 0.5,
inertiaDelta: float = 0.01,
useStableInitialization: bool = True,
saveIntermediateState: bool = False,
):
"""Configure MatrixFactorizationScorer object.
Expand Down Expand Up @@ -88,6 +89,7 @@ def __init__(
self._crhSuperThreshold = crhSuperThreshold
self._inertiaDelta = inertiaDelta
self._modelingGroupToInitializeForStability = 13 if useStableInitialization else None
self._saveIntermediateState = saveIntermediateState
self._mfRanker = MatrixFactorization()

def get_crh_threshold(self) -> float:
Expand Down Expand Up @@ -121,7 +123,10 @@ def get_helpfulness_scores_cols(self) -> List[str]:

def get_auxiliary_note_info_cols(self) -> List[str]:
"""Returns a list of columns which should be present in the auxiliaryNoteInfo output."""
return [c.noteIdKey, c.ratingWeightKey,] + (
return [
c.noteIdKey,
c.ratingWeightKey,
] + (
c.notHelpfulTagsAdjustedColumns
+ c.notHelpfulTagsAdjustedRatioColumns
+ c.incorrectFilterColumns
Expand Down Expand Up @@ -281,11 +286,17 @@ def _score_notes_and_users(
# Removes ratings where either (1) the note did not receive enough ratings, or
# (2) the rater did not rate enough notes.
ratingsForTraining = self._prepare_data_for_scoring(ratings)
if self._saveIntermediateState:
self.ratingsForTraining = ratingsForTraining

# TODO: Save parameters from this first run in note_model_output next time we add extra fields to model output TSV.
noteParamsUnfiltered, raterParamsUnfiltered, globalBias = self._run_stable_matrix_factorization(
ratingsForTraining, userEnrollmentRaw
)
if self._saveIntermediateState:
self.noteParamsUnfiltered = noteParamsUnfiltered
self.raterParamsUnfiltered = raterParamsUnfiltered
self.globalBias = globalBias

# Get a dataframe of scored notes based on the algorithm results above
scoredNotes = note_ratings.compute_scored_notes(
Expand All @@ -303,6 +314,8 @@ def _score_notes_and_users(
crhSuperThreshold=self._crhSuperThreshold,
inertiaDelta=self._inertiaDelta,
)
if self._saveIntermediateState:
self.firstRoundScoredNotes = scoredNotes

# Determine "valid" ratings
validRatings = note_ratings.get_valid_ratings(
Expand All @@ -317,9 +330,48 @@ def _score_notes_and_users(
]
],
)
if self._saveIntermediateState:
self.validRatings = validRatings

# Assigns contributor (author & rater) helpfulness bit based on (1) performance
# authoring and reviewing previous and current notes.
helpfulnessScoresPreHarassmentFilter = helpfulness_scores.compute_general_helpfulness_scores(
scoredNotes[
[
c.noteAuthorParticipantIdKey,
c.currentlyRatedHelpfulBoolKey,
c.currentlyRatedNotHelpfulBoolKey,
c.internalNoteInterceptKey,
]
],
validRatings,
self._minMeanNoteScore,
self._minCRHVsCRNHRatio,
self._minRaterAgreeRatio,
ratingsForTraining,
)
if self._saveIntermediateState:
self.firstRoundHelpfulnessScores = helpfulnessScoresPreHarassmentFilter

# Filters ratings matrix to include only rows (ratings) where the rater was
# considered helpful.
ratingsHelpfulnessScoreFilteredPreHarassmentFilter = (
helpfulness_scores.filter_ratings_by_helpfulness_scores(
ratingsForTraining, helpfulnessScoresPreHarassmentFilter
)
)
if self._saveIntermediateState:
self.ratingsHelpfulnessScoreFilteredPreHarassmentFilter = (
ratingsHelpfulnessScoreFilteredPreHarassmentFilter
)

harassmentAbuseNoteParams, _, _ = tag_consensus.train_tag_model(
ratingsHelpfulnessScoreFilteredPreHarassmentFilter, c.notHelpfulSpamHarassmentOrAbuseTagKey
)

# Assigns contributor (author & rater) helpfulness bit based on (1) performance
# authoring and reviewing previous and current notes, and (2) including an extra
# penalty for rating a harassment/abuse note as helpful.
helpfulnessScores = helpfulness_scores.compute_general_helpfulness_scores(
scoredNotes[
[
Expand All @@ -333,13 +385,19 @@ def _score_notes_and_users(
self._minMeanNoteScore,
self._minCRHVsCRNHRatio,
self._minRaterAgreeRatio,
ratings=ratingsForTraining,
tagConsensusHarassmentAbuseNotes=harassmentAbuseNoteParams,
)
if self._saveIntermediateState:
self.firstRoundHelpfulnessScores = helpfulnessScores

# Filters ratings matrix to include only rows (ratings) where the rater was
# considered helpful.
ratingsHelpfulnessScoreFiltered = helpfulness_scores.filter_ratings_by_helpfulness_scores(
ratingsForTraining, helpfulnessScores
)
if self._saveIntermediateState:
self.ratingsHelpfulnessScoreFiltered = ratingsHelpfulnessScoreFiltered

# Re-runs matrix factorization using only ratings given by helpful raters.
noteParams, raterParams, globalBias = self._mfRanker.run_mf(
Expand All @@ -357,6 +415,10 @@ def _score_notes_and_users(
else:
for col in c.noteParameterUncertaintyTSVColumns:
noteParams[col] = np.nan
if self._saveIntermediateState:
self.noteParams = noteParams
self.raterParams = raterParams
self.globalBias = globalBias

# Assigns updated CRH / CRNH bits to notes based on volume of prior ratings
# and ML output.
Expand All @@ -376,6 +438,7 @@ def _score_notes_and_users(
inertiaDelta=self._inertiaDelta,
finalRound=True,
)

# Takes raterParams from most recent MF run, but use the pre-computed
# helpfulness scores.
helpfulnessScores = raterParams.merge(
Expand All @@ -392,4 +455,8 @@ def _score_notes_and_users(
how="outer",
)

if self._saveIntermediateState:
self.scoredNotes = scoredNotes
self.helpfulnessScores = helpfulnessScores

return scoredNotes, helpfulnessScores
8 changes: 7 additions & 1 deletion sourcecode/scoring/mf_core_scorer.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,7 @@ def __init__(
pseudoraters: Optional[bool] = False,
core_threshold: float = 0.5,
useStableInitialization: bool = True,
saveIntermediateState: bool = False,
) -> None:
"""Configure MFCoreScorer object.
Expand All @@ -28,7 +29,12 @@ def __init__(
core_threshold: float specifying the fraction of reviews which must be from CORE users
for a note to be in scope for the CORE model.
"""
super().__init__(seed, pseudoraters, useStableInitialization=useStableInitialization)
super().__init__(
seed,
pseudoraters,
useStableInitialization=useStableInitialization,
saveIntermediateState=saveIntermediateState,
)
self._core_threshold = core_threshold

def _get_note_col_mapping(self) -> Dict[str, str]:
Expand Down
14 changes: 12 additions & 2 deletions sourcecode/scoring/mf_expansion_scorer.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,13 +5,23 @@


class MFExpansionScorer(MFBaseScorer):
def __init__(self, seed: Optional[int] = None, useStableInitialization: bool = True) -> None:
def __init__(
self,
seed: Optional[int] = None,
useStableInitialization: bool = True,
saveIntermediateState: bool = False,
) -> None:
"""Configure MFExpansionScorer object.
Args:
seed: if not None, seed value to ensure deterministic execution
"""
super().__init__(seed, pseudoraters=False, useStableInitialization=useStableInitialization)
super().__init__(
seed,
pseudoraters=False,
useStableInitialization=useStableInitialization,
saveIntermediateState=saveIntermediateState,
)

def _get_note_col_mapping(self) -> Dict[str, str]:
"""Returns a dict mapping default note column names to custom names for a specific model."""
Expand Down
Loading

0 comments on commit d42c4ad

Please sign in to comment.