-
'PriorMetaLearning' to analyze the influence of different PAC-Bayes bounds with permuted labels and pixels
- 'NewBoundMcAllaster'
- 'NewBoundSeeger'
- 'PAC_Bayes_lambda'
- 'PAC_Bayes_quad'
- 'PAC_Bayes_variational_role'
-
'Meta_DataDependentPrior' to analyze the influence of data dependent prior
-
'requirements.txt' version of libraries
.
|----Data_Path.py
|----MAML/
| |----main_MAML.py
| |----MAML_meta_step.py
| |----meta_test_MAML.py
| |----meta_train_MAML_finite_tasks.py
| |----meta_train_MAML_infinite_tasks.py
| |----run_MAML_PermuteLabels.py
| |----run_MAML_ShuffledPixels.py
|----Meta_DataDependentPrior/
| |----DP_Analyze_Prior.py
| |----DP_AvargeTransfer.py
| |----DP_Get_Objective_MPB.py
| |----DP_main_Meta_Bayes.py
| |----DP_meta_test_Bayes.py
| |----DP_meta_train_Bayes_finite_tasks.py
| |----DP_meta_train_Bayes_infinite_tasks.py
| |----DP_run_MPB_PermutedLabels_TasksN.py
| |----DP_run_MPB_ShuffledPixels_TasksN.py
| |----DP_show_TasksN_Plots.py
| |----DP_test_data_prior_learning.py
| |----DP_train_data_prior_learning.py
| |----saved/
|----ML_data_sets/
|----Models/
| |----deterministic_models.py
| |----layer_inits.py
| |----stochastic_inits.py
| |----stochastic_layers.py
| |----stochastic_models.py
|----PriorMetaLearning/
| |----Analyze_Prior.py
| |----AvargeTransfer.py
| |----Get_Objective_MPB.py
| |----main_Meta_Bayes.py
| |----meta_test_Bayes.py
| |----meta_train_Bayes_finite_tasks.py
| |----meta_train_Bayes_infinite_tasks.py
| |----run_MPB_PermutedLabels_TasksN.py
| |----run_MPB_PermuteLabels.py
| |----run_MPB_ShuffledPixels.py
| |----run_MPB_ShuffledPixels_TasksN.py
| |----saved/
| |----show_TasksN_Plots.py
|----README.md
|----requirements.txt
|----tree.py
|----Utils/
| |----Bayes_utils.py
| |----common.py
| |----data_gen.py
| |----DP_data_gen.py
| |----imagenet_data.py
| |----omniglot.py
| |----Resize_ImageNet.py
certifi==2020.6.20
cycler==0.10.0
future==0.18.2
joblib==0.17.0
kiwisolver==1.2.0
matplotlib==3.3.1
numpy==1.19.1
Pillow==7.2.0
pyparsing==2.4.7
python-dateutil==2.8.1
scikit-learn==0.23.2
scipy==1.5.2
six==1.15.0
sklearn==0.0
threadpoolctl==2.1.0
torch==1.5.1
torchvision==0.6.1