-
Notifications
You must be signed in to change notification settings - Fork 57
/
H3_0-4760.py
executable file
·181 lines (141 loc) · 6.85 KB
/
H3_0-4760.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
#!/usr/bin/env python
import sys
import os
import pickle as pkl
import time
import random
import numpy as np
import theano.tensor as T
import theano
import pylearn2.train
import pylearn2.models.mlp as p2_md_mlp
import pylearn2.datasets.dense_design_matrix as p2_dt_dd
import pylearn2.training_algorithms.sgd as p2_alg_sgd
import pylearn2.training_algorithms.learning_rule as p2_alg_lr
import pylearn2.costs.mlp.dropout as p2_ct_mlp_dropout
import pylearn2.termination_criteria as p2_termcri
from numpy import dtype
def main():
base_name = sys.argv[1]
n_epoch = int(sys.argv[2])
n_hidden = int(sys.argv[3])
include_rate = float(sys.argv[4])
in_size = 943
out_size = 4760
b_size = 200
l_rate = 3e-4
l_rate_min = 1e-5
decay_factor = 0.9
lr_scale = 3.0
momentum = 0.5
init_vals = np.sqrt(6.0/(np.array([in_size, n_hidden, n_hidden, n_hidden])+np.array([n_hidden, n_hidden, n_hidden, out_size])))
print 'loading data...'
X_tr = np.load('bgedv2_X_tr_float64.npy')
Y_tr = np.load('bgedv2_Y_tr_0-4760_float64.npy')
Y_tr_target = np.array(Y_tr)
X_va = np.load('bgedv2_X_va_float64.npy')
Y_va = np.load('bgedv2_Y_va_0-4760_float64.npy')
Y_va_target = np.array(Y_va)
X_te = np.load('bgedv2_X_te_float64.npy')
Y_te = np.load('bgedv2_Y_te_0-4760_float64.npy')
Y_te_target = np.array(Y_te)
X_1000G = np.load('1000G_X_float64.npy')
Y_1000G = np.load('1000G_Y_0-4760_float64.npy')
Y_1000G_target = np.array(Y_1000G)
X_GTEx = np.load('GTEx_X_float64.npy')
Y_GTEx = np.load('GTEx_Y_0-4760_float64.npy')
Y_GTEx_target = np.array(Y_GTEx)
random.seed(0)
monitor_idx_tr = random.sample(range(88807), 5000)
data_tr = p2_dt_dd.DenseDesignMatrix(X=X_tr.astype('float32'), y=Y_tr.astype('float32'))
X_tr_monitor, Y_tr_monitor_target = X_tr[monitor_idx_tr, :], Y_tr_target[monitor_idx_tr, :]
h1_layer = p2_md_mlp.Tanh(layer_name='h1', dim=n_hidden, irange=init_vals[0], W_lr_scale=1.0, b_lr_scale=1.0)
h2_layer = p2_md_mlp.Tanh(layer_name='h2', dim=n_hidden, irange=init_vals[1], W_lr_scale=lr_scale, b_lr_scale=1.0)
h3_layer = p2_md_mlp.Tanh(layer_name='h3', dim=n_hidden, irange=init_vals[2], W_lr_scale=lr_scale, b_lr_scale=1.0)
o_layer = p2_md_mlp.Linear(layer_name='y', dim=out_size, irange=0.0001, W_lr_scale=lr_scale, b_lr_scale=1.0)
model = p2_md_mlp.MLP(nvis=in_size, layers=[h1_layer, h2_layer, h3_layer, o_layer], seed=1)
dropout_cost = p2_ct_mlp_dropout.Dropout(input_include_probs={'h1':1.0, 'h2':include_rate, 'h3':include_rate,
'y':include_rate},
input_scales={'h1':1.0, 'h2':np.float32(1.0/include_rate),
'h3':np.float32(1.0/include_rate),
'y':np.float32(1.0/include_rate)})
algorithm = p2_alg_sgd.SGD(batch_size=b_size, learning_rate=l_rate,
learning_rule = p2_alg_lr.Momentum(momentum),
termination_criterion=p2_termcri.EpochCounter(max_epochs=1000),
cost=dropout_cost)
train = pylearn2.train.Train(dataset=data_tr, model=model, algorithm=algorithm)
train.setup()
x = T.matrix()
y = model.fprop(x)
f = theano.function([x], y)
MAE_va_old = 10.0
MAE_va_best = 10.0
MAE_tr_old = 10.0
MAE_te_old = 10.0
MAE_1000G_old = 10.0
MAE_1000G_best = 10.0
MAE_GTEx_old = 10.0
outlog = open(base_name + '.log', 'w')
log_str = '\t'.join(map(str, ['epoch', 'MAE_va', 'MAE_va_change', 'MAE_te', 'MAE_te_change',
'MAE_1000G', 'MAE_1000G_change', 'MAE_GTEx', 'MAE_GTEx_change',
'MAE_tr', 'MAE_tr_change', 'learing_rate', 'time(sec)']))
print log_str
outlog.write(log_str + '\n')
sys.stdout.flush()
for epoch in range(0, n_epoch):
t_old = time.time()
train.algorithm.train(train.dataset)
Y_va_hat = f(X_va.astype('float32')).astype('float64')
Y_te_hat = f(X_te.astype('float32')).astype('float64')
Y_tr_hat_monitor = f(X_tr_monitor.astype('float32')).astype('float64')
Y_1000G_hat = f(X_1000G.astype('float32')).astype('float64')
Y_GTEx_hat = f(X_GTEx.astype('float32')).astype('float64')
MAE_va = np.abs(Y_va_target - Y_va_hat).mean()
MAE_te = np.abs(Y_te_target - Y_te_hat).mean()
MAE_tr = np.abs(Y_tr_monitor_target - Y_tr_hat_monitor).mean()
MAE_1000G = np.abs(Y_1000G_target - Y_1000G_hat).mean()
MAE_GTEx = np.abs(Y_GTEx_target - Y_GTEx_hat).mean()
MAE_va_change = (MAE_va - MAE_va_old)/MAE_va_old
MAE_te_change = (MAE_te - MAE_te_old)/MAE_te_old
MAE_tr_change = (MAE_tr - MAE_tr_old)/MAE_tr_old
MAE_1000G_change = (MAE_1000G - MAE_1000G_old)/MAE_1000G_old
MAE_GTEx_change = (MAE_GTEx - MAE_GTEx_old)/MAE_GTEx_old
MAE_va_old = MAE_va
MAE_te_old = MAE_te
MAE_tr_old = MAE_tr
MAE_1000G_old = MAE_1000G
MAE_GTEx_old = MAE_GTEx
t_new = time.time()
l_rate = train.algorithm.learning_rate.get_value()
log_str = '\t'.join(map(str, [epoch+1, '%.6f'%MAE_va, '%.6f'%MAE_va_change, '%.6f'%MAE_te, '%.6f'%MAE_te_change,
'%.6f'%MAE_1000G, '%.6f'%MAE_1000G_change, '%.6f'%MAE_GTEx, '%.6f'%MAE_GTEx_change,
'%.6f'%MAE_tr, '%.6f'%MAE_tr_change, '%.5f'%l_rate, int(t_new-t_old)]))
print log_str
outlog.write(log_str + '\n')
sys.stdout.flush()
if MAE_tr_change > 0:
l_rate = l_rate*decay_factor
if l_rate < l_rate_min:
l_rate = l_rate_min
train.algorithm.learning_rate.set_value(np.float32(l_rate))
if MAE_va < MAE_va_best:
MAE_va_best = MAE_va
outmodel = open(base_name + '_bestva_model.pkl', 'wb')
pkl.dump(model, outmodel)
outmodel.close()
np.save(base_name + '_bestva_Y_te_hat.npy', Y_te_hat)
np.save(base_name + '_bestva_Y_va_hat.npy', Y_va_hat)
if MAE_1000G < MAE_1000G_best:
MAE_1000G_best = MAE_1000G
outmodel = open(base_name + '_best1000G_model.pkl', 'wb')
pkl.dump(model, outmodel)
outmodel.close()
np.save(base_name + '_best1000G_Y_1000G_hat.npy', Y_1000G_hat)
np.save(base_name + '_best1000G_Y_GTEx_hat.npy', Y_GTEx_hat)
print 'MAE_va_best : %.6f' % (MAE_va_best)
print 'MAE_1000G_best : %.6f' % (MAE_1000G_best)
outlog.write('MAE_va_best : %.6f' % (MAE_va_best) + '\n')
outlog.write('MAE_1000G_best : %.6f' % (MAE_1000G_best) + '\n')
outlog.close()
if __name__ == '__main__':
main()