diff --git a/_posts/2024-12-10-c-shenron.md b/_posts/2024-12-10-c-shenron.md index efe0b29572f..e1cebda5f98 100644 --- a/_posts/2024-12-10-c-shenron.md +++ b/_posts/2024-12-10-c-shenron.md @@ -1,10 +1,10 @@ --- layout: publication -title : "A Realistic Radar Simulation Framework for CARLA" +title : "C-Shenron: A Realistic Radar Simulation Framework for CARLA" short_title: "C-Shenron" tags: Vehicle cover: /assets/images/c-shenron/c-shenron.png -cover_caption: "Comparison of views from Camera, Semantic LiDAR, and Shenron Radar in CARLA. The orange lines outline the road, red and magenta highlights vehicles, and blue indicates a static object." +cover_caption: "Comparison of views from Camera, Semantic LiDAR, and Shenron Radar in CARLA simulator." conference: "Submitted to CVPR 2025" authors: "Satyam Srivastava, Jerry Li, Pushkal Mishra, Kshitiz Bansal, Dinesh Bharadia" author_list: @@ -24,16 +24,13 @@ conference_site: https://cvpr.thecvf.com/Conferences/2025 paper: -- //proofread the paper and put inside /files. github: https://github.com/ucsdwcsng/carla-radarimaging/ conference: "Submitted to CVPR 2025" -# slides: -- -# miscs: # whatever you need to add Extra -# - content_type: Project Website -# content_url: https://edgeric.github.io -# - content_type: Poster -# content_url: /files/edgeric_poster.pdf # hat tip: do not use tabs for idnentation, yaml doesnt support it - +miscs: + - content_type: Supplementary Material + content_url: /files/c-shenron-supplementary-materials.pdf + - content_type: Driving Videos + content_url: https://www.youtube.com/playlist?list=PLMklUDp_gXNE2W83f0UNoK7Vrs9QZROIv description: # all combinations are possible: (title+text+image, title+image, text+image etc), things will be populated in orders - title: Enhancing Autonomous Driving with Radar Integration in Simulation text: "The advancement of self-driving technology has become a focal point in outdoor robotics, driven by the need for robust and efficient perception systems. This paper addresses the critical role of sensor integration in autonomous vehicles, particularly emphasizing the underutilization of radar compared to cameras and LiDARs. While extensive research has been conducted on the latter two due to the availability of large-scale datasets, radar technology offers unique advantages such as all-weather sensing and occlusion penetration, which are essential for safe autonomous driving. This study presents a novel integration of a realistic radar sensor model within the CARLA simulator, enabling researchers to develop and test navigation algorithms using radar data. Utilizing this radar sensor and showcasing its capabilities in simulation, we demonstrate improved performance in end-to-end driving scenarios. Our findings aim to rekindle interest in radar-based self-driving research and promote the development of algorithms that leverage radar's strengths." --- -The advancement of self-driving technology has become a focal point in outdoor robotics, driven by the need for robust and efficient perception systems. This paper addresses the critical role of sensor integration in autonomous vehicles, particularly emphasizing the underutilization of radar compared to cameras and LiDARs. While extensive research has been conducted on the latter two due to the availability of large-scale datasets, radar technology offers unique advantages such as all-weather sensing and occlusion penetration, which are essential for safe autonomous driving. This study presents a novel integration of a realistic radar sensor model within the CARLA simulator, enabling researchers to develop and test navigation algorithms using radar data. Utilizing this radar sensor and showcasing its capabilities in simulation, we demonstrate improved performance in end-to-end driving scenarios. Our findings aim to rekindle interest in radar-based self-driving research and promote the development of algorithms that leverage radar's strengths.