diff --git a/_posts/2024-12-10-c-shenron.md b/_posts/2024-12-10-c-shenron.md index e21e8780677..ba73062e63a 100644 --- a/_posts/2024-12-10-c-shenron.md +++ b/_posts/2024-12-10-c-shenron.md @@ -24,13 +24,13 @@ conference_site: https://cvpr.thecvf.com/Conferences/2025 paper: /files/c-shenron_paper.pdf # github: https://github.com/ucsdwcsng/carla-radarimaging/ conference: "Submitted to CVPR 2025" -banner: "📢 Code and Dataset will be released after the acceptance." miscs: - content_type: Supplementary Material content_url: /files/c-shenron-supplementary-materials.pdf - content_type: Driving Videos content_url: https://www.youtube.com/playlist?list=PLMklUDp_gXNE2W83f0UNoK7Vrs9QZROIv - + +banner: "📢 Code and Dataset will be released after the acceptance." description: # all combinations are possible: (title+text+image, title+image, text+image etc), things will be populated in orders - title: Enhancing Autonomous Driving with Radar Integration in Simulation text: "The advancement of self-driving technology has become a focal point in outdoor robotics, driven by the need for robust and efficient perception systems. This paper addresses the critical role of sensor integration in autonomous vehicles, particularly emphasizing the underutilization of radar compared to cameras and LiDARs. While extensive research has been conducted on the latter two due to the availability of large-scale datasets, radar technology offers unique advantages such as all-weather sensing and occlusion penetration, which are essential for safe autonomous driving. This study presents a novel integration of a realistic radar sensor model within the CARLA simulator, enabling researchers to develop and test navigation algorithms using radar data. Utilizing this radar sensor and showcasing its capabilities in simulation, we demonstrate improved performance in end-to-end driving scenarios. Our findings aim to rekindle interest in radar-based self-driving research and promote the development of algorithms that leverage radar's strengths."