forked from torch/torch7
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinit.lua
206 lines (184 loc) · 5.55 KB
/
init.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
-- We are using paths.require to appease mkl
-- Make this work with LuaJIT in Lua 5.2 compatibility mode, which
-- renames string.gfind (already deprecated in 5.1)
if not string.gfind then
string.gfind = string.gmatch
end
if not table.unpack then
table.unpack = unpack
end
require "paths"
paths.require "libtorch"
-- Keep track of all thread local variables torch.
-- if a Lua VM is passed to another thread thread local
-- variables need to be updated.
function torch.updatethreadlocals()
torch.updateerrorhandlers()
local tracking = torch._heaptracking
if tracking == nil then tracking = false end
torch.setheaptracking(tracking)
end
--- package stuff
function torch.packageLuaPath(name)
if not name then
local ret = string.match(torch.packageLuaPath('torch'), '(.*)/')
if not ret then --windows?
ret = string.match(torch.packageLuaPath('torch'), '(.*)\\')
end
return ret
end
for path in string.gmatch(package.path, "[^;]+") do
path = string.gsub(path, "%?", name)
local f = io.open(path)
if f then
f:close()
local ret = string.match(path, "(.*)/")
if not ret then --windows?
ret = string.match(path, "(.*)\\")
end
return ret
end
end
end
local function include(file, depth)
paths.dofile(file, 3 + (depth or 0))
end
rawset(_G, 'include', include)
function torch.include(package, file)
dofile(torch.packageLuaPath(package) .. '/' .. file)
end
function torch.class(...)
local tname, parenttname, module
if select('#', ...) == 3
and type(select(1, ...)) == 'string'
and type(select(2, ...)) == 'string'
and type(select(3, ...)) == 'table'
then
tname = select(1, ...)
parenttname = select(2, ...)
module = select(3, ...)
elseif select('#', ...) == 2
and type(select(1, ...)) == 'string'
and type(select(2, ...)) == 'string'
then
tname = select(1, ...)
parenttname = select(2, ...)
elseif select('#', ...) == 2
and type(select(1, ...)) == 'string'
and type(select(2, ...)) == 'table'
then
tname = select(1, ...)
module = select(2, ...)
elseif select('#', ...) == 1
and type(select(1, ...)) == 'string'
then
tname = select(1, ...)
else
error('<class name> [<parent class name>] [<module table>] expected')
end
local function constructor(...)
local self = {}
torch.setmetatable(self, tname)
if self.__init then
self:__init(...)
end
return self
end
local function factory()
local self = {}
torch.setmetatable(self, tname)
return self
end
local mt = torch.newmetatable(tname, parenttname, constructor, nil, factory, module)
local mpt
if parenttname then
mpt = torch.getmetatable(parenttname)
end
return mt, mpt
end
function torch.setdefaulttensortype(typename)
assert(type(typename) == 'string', 'string expected')
if torch.getconstructortable(typename) then
torch.Tensor = torch.getconstructortable(typename)
torch.Storage = torch.getconstructortable(torch.typename(torch.Tensor(1):storage()))
else
error(string.format("<%s> is not a string describing a torch object", typename))
end
end
function torch.type(obj)
local class = torch.typename(obj)
if not class then
class = type(obj)
end
return class
end
--[[ See if a given object is an instance of the provided torch class. ]]
function torch.isTypeOf(obj, typeSpec)
-- typeSpec can be provided as either a string, pattern, or the constructor.
-- If the constructor is used, we look in the __typename field of the
-- metatable to find a string to compare to.
if type(typeSpec) ~= 'string' then
typeSpec = getmetatable(typeSpec).__typename
assert(type(typeSpec) == 'string',
"type must be provided as [regexp] string, or factory")
end
local mt = getmetatable(obj)
while mt do
if type(mt) == 'table' and mt.__typename then
local match = mt.__typename:match(typeSpec)
-- Require full match for non-pattern specs
if match and (match ~= typeSpec or match == mt.__typename) then
return true
end
end
mt = getmetatable(mt)
end
return false
end
torch.setdefaulttensortype('torch.DoubleTensor')
require('torch.Tensor')
require('torch.File')
require('torch.CmdLine')
require('torch.FFInterface')
require('torch.Tester')
require('torch.TestSuite')
require('torch.test')
function torch.totable(obj)
if torch.isTensor(obj) or torch.isStorage(obj) then
return obj:totable()
else
error("obj must be a Storage or a Tensor")
end
end
function torch.isTensor(obj)
local typename = torch.typename(obj)
if typename and typename:find('torch.*Tensor') then
return true
end
return false
end
function torch.isStorage(obj)
local typename = torch.typename(obj)
if typename and typename:find('torch.*Storage') then
return true
end
return false
end
-- alias for convenience
torch.Tensor.isTensor = torch.isTensor
-- remove this line to disable automatic heap-tracking for garbage collection
torch.setheaptracking(true)
function torch.multinomialAliasSetup(probs, state)
if torch.type(state) == 'table' then
state[1], state[2] = torch.multinomialAliasSetup_(probs, state[1], state[2])
else
state = {}
state[1], state[2] = torch.multinomialAliasSetup_(probs)
end
return state
end
function torch.multinomialAlias(output, state)
torch.DoubleTensor.multinomialAlias_(output, state[1], state[2])
return output
end
return torch