Skip to content

Latest commit

 

History

History
21 lines (17 loc) · 1.46 KB

README.md

File metadata and controls

21 lines (17 loc) · 1.46 KB

Noise contrastive estimation with soft targets for conditional models

This repository contains a reference implementation of the loss function and the classification benchmark in noise contrastive estimation with soft targets.

Image classification experiments

Download the dataset(s) and place them in a folder (e.g. datasets/imagenet). Download pre-trained vision transformer: MAE-ViT-B\16.

Baselines can be reproduced with

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python main_finetune.py --batch_size 128 --finetune {path_to_ViT_checkpoint} --epochs 100 --blr {base_lr_rate} --mixup 0.8 --cutmix 1.0 --mixup_prob 0.8 --smoothing 0.1 --dist_eval --data_path {path_to_data} --output_dir {exp_log_dir} --dataset {dataset_name} --nb_classes {number_of_classes} --world_size {#GPUs} --num_workers {#workers} --loss {loss_name} --mlp_head
  • dataset_name can take the values {tiny-imagenet, imagenet, cifar100}
  • for running InfoNCE/soft distribution InfoNCE baselines specify InfoNCE as loss_name for the targets to be one-hot encoded.
  • for running hard target baselines (InfoNCE, NLL) set mixup, cutmix, smoothing to 0

In order to reproduce soft target InfoNCE baselines, set:

  • blr to 2.5e-4 for Tiny ImageNet
  • blr to 5.5e-4 for ImageNet
  • blr to 5.5e-4 for CIFAR-100