-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_engine.py
139 lines (109 loc) · 5.34 KB
/
train_engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import sys
import math
import torch
import wandb
from typing import Iterable, Optional
from torch.nn import CrossEntropyLoss
from timm.data import Mixup
from timm.utils import accuracy
import mae.util.misc as misc
import mae.util.lr_sched as lr_sched
from loss import InfoNCE, SoftTargetInfoNCE, SoftTargetCrossEntropy
def train_one_epoch(model: torch.nn.Module, criterion: torch.nn.Module,
data_loader: Iterable, optimizer: torch.optim.Optimizer,
device: torch.device, epoch: int, loss_scaler, max_norm: float = 0,
mixup_fn: Optional[Mixup] = None, smoothing_fn=None,
args=None, **kwargs):
model.train(True)
metric_logger = misc.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', misc.SmoothedValue(window_size=1, fmt='{value:.6f}'))
header = 'Epoch: [{}]'.format(epoch)
print_freq = 20
accum_iter = args.accum_iter
train_labels = kwargs['train_labels']
noise_probs = torch.bincount(train_labels) / len(train_labels)
noise_probs = noise_probs.to(device)
optimizer.zero_grad()
for data_iter_step, (samples, targets) in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
# we use a per iteration (instead of per epoch) lr scheduler
if data_iter_step % accum_iter == 0:
lr_sched.adjust_learning_rate(optimizer, data_iter_step / len(data_loader) + epoch, args)
samples = samples.to(device, non_blocking=True)
targets = targets.to(device, non_blocking=True)
labels = targets.clone()
if mixup_fn is not None:
samples, targets = mixup_fn(samples, targets)
elif smoothing_fn is not None:
assert mixup_fn is None
targets = smoothing_fn(targets)
else:
targets = torch.nn.functional.one_hot(targets, args.nb_classes).float()
with torch.cuda.amp.autocast():
logits = model(samples)
if isinstance(criterion, CrossEntropyLoss) or isinstance(criterion, InfoNCE):
loss = criterion(logits, labels)
else:
loss = criterion(logits, targets)
loss_value = loss.item()
if not math.isfinite(loss_value):
print("Loss is {}, stopping training".format(loss_value))
sys.exit(1)
loss /= accum_iter
loss_scaler(loss, optimizer, clip_grad=max_norm,
parameters=model.parameters(), create_graph=False,
update_grad=(data_iter_step + 1) % accum_iter == 0)
if (data_iter_step + 1) % accum_iter == 0:
optimizer.zero_grad()
torch.cuda.synchronize()
metric_logger.update(loss=loss_value)
min_lr = 10.
max_lr = 0.
for group in optimizer.param_groups:
min_lr = min(min_lr, group["lr"])
max_lr = max(max_lr, group["lr"])
metric_logger.update(lr=max_lr)
loss_value_reduce = misc.all_reduce_mean(loss_value)
if (data_iter_step + 1) % accum_iter == 0 and misc.is_main_process():
""" We use epoch_1000x as the x-axis in tensorboard.
This calibrates different curves when batch size changes.
"""
epoch_1000x = int((data_iter_step / len(data_loader) + epoch) * 1000)
wandb.log({'loss': loss_value_reduce, 'lr': max_lr}, step=epoch_1000x)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
@torch.no_grad()
def evaluate(data_loader, model, device, epoch, criterion, args, **kwargs):
metric_logger = misc.MetricLogger(delimiter=" ")
header = 'Test:'
# switch to evaluation mode
model.eval()
for batch in metric_logger.log_every(data_loader, 10, header):
images = batch[0]
labels = batch[-1]
images = images.to(device, non_blocking=True)
labels = labels.to(device, non_blocking=True)
targets = torch.nn.functional.one_hot(labels, args.nb_classes).float()
with torch.cuda.amp.autocast():
logits = model(images)
if isinstance(criterion, CrossEntropyLoss) or isinstance(criterion, InfoNCE):
loss = criterion(logits, labels)
else:
loss = criterion(logits, targets)
# class_scores = torch.exp(logits / args.t) if 'NCE' in args.loss else logits / args.t
class_scores = logits / args.t
acc1, acc5 = accuracy(class_scores, labels, topk=(1, 5))
batch_size = images.shape[0]
metric_logger.update(loss=loss.item())
metric_logger.meters['acc1'].update(acc1.item(), n=batch_size)
metric_logger.meters['acc5'].update(acc5.item(), n=batch_size)
loss_value_reduce = misc.all_reduce_mean(loss.item())
if misc.is_main_process():
epoch_1000x = int(epoch) * 1000
wandb.log({'test/loss': loss_value_reduce}, step=epoch_1000x)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print('* Acc@1 {top1.global_avg:.3f} Acc@5 {top5.global_avg:.3f} loss {losses.global_avg:.3f}'
.format(top1=metric_logger.acc1, top5=metric_logger.acc5, losses=metric_logger.loss))
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}