Skip to content

Tensorflow implementation of Generative Adversarial Imitation Learning(GAIL) with discrete action

License

Notifications You must be signed in to change notification settings

uidilr/gail_ppo_tf

Repository files navigation

Generative Adversarial Imitation Learning

Implementation of Generative Adversarial Imitation Learning(GAIL) using tensorflow

Dependencies

python>=3.5
tensorflow>=1.4
gym>=0.9.3

Gym environment

Env==CartPole-v0
State==Continuous
Action==Discrete

Usage

Train experts

python3 run_ppo.py     

Sample trajectory using expert

python3 sample_trajectory.py

Run GAIL

python3 run_gail.py  

Run supervised learning

python3 run_behavior_clone.py 

Test trained policy

python3 test_policy.py  

Default policy is trained with gail
--alg=bc or ppo allows you to change test policy

If you want to test bc policy, specify the number of model.ckpt-number in the directory trained_models/bc
Example

python3 test_policy.py --alg=bc --model=1000

Tensorboard

tensorboard --logdir=log

Results

Fig.1 Training results legend

LICENSE

MIT LICENSE

About

Tensorflow implementation of Generative Adversarial Imitation Learning(GAIL) with discrete action

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages