A command line tool that creates a super timeline from SentinelOne's Deep Visibility data
The script accepts a S1QL query and returns a XLSX document with all the data. The script has mulithreading capabilities and allows the user to break up queries by minute increments. This method automates downloading datasets that are over 20K records (Deep Visibility's limit). For example, a hosts entire deep visbility history could be downloaded using this script. Assuming you do not go over 1,048,576 records (xlsx limit).
pip install -r requirements.txt
# Hour Increments (60 min)
python3 s1_supertimeline.py -t my_api_token -url sentinelone.com -from 2020-01-01T00:00 -to 2020-01-01T12:30 -min 60
python3 s1_supertimeline.py -h
usage: s1_supertimeline.py [-h] -t S1_API_TOKEN -url S1_URL -from FROM_DATE -to TO_DATE -min MIN_INCREMENTS [-u]
SentinelOne SuperTimeline :: By Juan Ortega <falseflag00@protonmail.com>
options:
-h, --help show this help message and exit
Required Arguments:
-t S1_API_TOKEN, --s1_api_token S1_API_TOKEN
SentinelOne API Token
-url S1_URL, --s1_url S1_URL
SentinelOne Console Url
-from FROM_DATE, --from_date FROM_DATE
From Date. Format YYYY-MM-DDTHH:MM or YYYY-MM-DD
-to TO_DATE, --to_date TO_DATE
To Date. Format YYYY-MM-DDTHH:MM or YYYY-MM-DD
-min MIN_INCREMENTS, --min_increments MIN_INCREMENTS
Minute increments to split time date range by
-u, --utc Accepts --date_from/--date_to as UTC, Default is local time
If you have issues running the script. Try installing tablib like this:
pip install "tablib['xlsx']"