-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathrotate-fb15k-sequential-mm.yaml
80 lines (79 loc) · 1.42 KB
/
rotate-fb15k-sequential-mm.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
dataset:
name: fb15k
distributed_model:
base_model:
type: rotate
entity_ranking:
chunk_size: 5000
eval:
batch_size: 512
num_workers: 4
import:
- distributed_model
- rotate
job:
device_pool:
- cuda:0
distributed:
num_partitions: 1
num_workers: 1
parameter_server: shared
lookup_embedder:
dim: 128
initialize: xavier_uniform_
initialize_args:
normal_:
mean: 0.0
std: 0.7247714657764338
uniform_:
a: -0.7264893817037996
xavier_normal_:
gain: 1.0
xavier_uniform_:
gain: 1.0
regularize_args:
weighted: true
sparse: true
model: distributed_model
modules:
- kge.model
- kge.model.embedder
- kge.job
negative_sampling:
implementation: batch
num_samples:
o: 400
s: 191
shared: true
shared_type: naive
rotate:
entity_embedder:
dropout: -0.4202541569247842
regularize_weight: 0.0016039710378808378
relation_embedder:
dropout: -0.4545119274407625
regularize_weight: 9.709504921691681e-20
train:
auto_correct: true
batch_size: 1024
loss_arg: .nan
lr_scheduler: ReduceLROnPlateau
lr_scheduler_args:
factor: 0.95
mode: max
patience: 9
threshold: 0.0001
max_epochs: 3
num_workers: 4
optimizer:
default:
args:
lr: 0.16755594652229405
type: dist_adagrad
type: distributed_negative_sampling
valid:
early_stopping:
patience: 10
threshold:
epochs: 50
metric_value: 0.1