-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcreate_semi_inductive_dataset.py
354 lines (298 loc) · 15.3 KB
/
create_semi_inductive_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
import os
import yaml
import torch
import argparse
import numpy as np
import pandas as pd
"""
This script creates a dataset to evaluate KGC models in the semi-inductive setting.
"""
class Dataset:
def __init__(self, folder_name: str):
self.folder_name = folder_name
self.split = dict()
self.split["train"] = torch.from_numpy(pd.read_csv(
os.path.join("data", folder_name, "train.del"), header=None, sep="\t"
).to_numpy())
self.split["valid"] = torch.from_numpy(pd.read_csv(
os.path.join("data", folder_name, "valid.del"), header=None, sep="\t"
).to_numpy())
self.split["test"] = torch.from_numpy(pd.read_csv(
os.path.join("data", folder_name, "test.del"), header=None, sep="\t"
).to_numpy())
self.entity_ids = self._load_ids("entity_ids.del")
self.relation_ids = self._load_ids("relation_ids.del")
def _load_ids(self, file_name):
return_list = []
with open(os.path.join("data", self.folder_name, file_name), 'r') as fp:
for line in fp.readlines():
idx, value = line.strip().split("\t")
return_list.append(value)
return return_list
def num_entities(self):
return len(self.entity_ids)
def num_relations(self):
return len(self.relation_ids)
def sample_unseen_entities_stratified(dataset: Dataset, lower_limit: int, upper_limit: int, num_ents_per_split: int, remove_test_val_ents=True):
ent_counts = torch.from_numpy(
np.bincount(
dataset.split["train"][:, [0, 2]].view(-1), minlength=dataset.num_entities()
)
)
# remove entities occurring in test or valid set
if remove_test_val_ents:
val_ents = np.unique(dataset.split["valid"][:, [0, 2]].view(-1))
test_ents = np.unique(dataset.split["test"][:, [0, 2]].view(-1))
# get counts per possible occurrence group
group_counts = list()
group_masks = list()
stratified_counts = list()
for i in range(lower_limit, upper_limit+1):
group_mask = (ent_counts == i)
group_count = group_mask.sum().item()
if remove_test_val_ents:
group_mask[val_ents] = False
group_mask[test_ents] = False
group_counts.append(group_count)
group_masks.append(group_mask)
total_group_count = sum(group_counts)
selected_unseen_entities = list()
all_entities = np.arange(dataset.num_entities())
for group_count, group_mask in zip(group_counts, group_masks):
stratified_count = int(round((group_count/total_group_count)*num_ents_per_split*2))
stratified_counts.append(stratified_count)
group_entities = all_entities[group_mask]
shuffler = torch.randperm(len(group_entities))
selected_group_entities = group_entities[shuffler][:stratified_count]
selected_unseen_entities.append(selected_group_entities)
selected_unseen_entities = np.concatenate(selected_unseen_entities)
# shuffle again so that valid and test have same distribution of groups
selected_unseen_entities = selected_unseen_entities[torch.randperm(len(selected_unseen_entities))]
# let's get the set of seen entities
seen_mask = torch.ones(dataset.num_entities(), dtype=torch.bool)
seen_mask[selected_unseen_entities] = False
entities_seen = torch.arange(dataset.num_entities())[seen_mask]
entities_unseen_valid, entities_unseen_test = torch.from_numpy(selected_unseen_entities).chunk(2)
return entities_seen, entities_unseen_valid, entities_unseen_test
def select_triple_by_relation_frequency(split_data, split_entities, train_data, num_relations, num_triples_to_select):
relation_frequency = np.bincount(train_data[:, 1], minlength=num_relations)
sorted_split_pool = []
for eu in split_entities:
relevant_triples = split_data[np.logical_or(split_data[:, 0] == eu, split_data[:, 2] == eu)]
relevant_relation_frequency = relation_frequency[relevant_triples[:, 1]]
relation_frequ_sorter = np.argsort(-relevant_relation_frequency)
relevant_triples = relevant_triples[relation_frequ_sorter]
relevant_triples = relevant_triples[:num_triples_to_select]
# add id of unseen entity in first column
prepended_triples = np.full((len(relevant_triples), 5), eu)
prepended_triples[:, 2:] = relevant_triples
direction_mask = relevant_triples[:, 0] == eu
# indicator for unseen entity slot in second colum
prepended_triples[direction_mask, 1] = 0
prepended_triples[~direction_mask, 1] = 2
sorted_split_pool.append(prepended_triples)
sorted_split_pool = np.concatenate(sorted_split_pool, axis=0)
return sorted_split_pool
def set_seeds(seed):
np.random.seed(seed)
torch.manual_seed(seed)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("dataset", type=str)
parser.add_argument('-mm', '--map_mentions', action='store_true')
parser.set_defaults(map_mentions=True)
args = parser.parse_args()
map_mentions = args.map_mentions
dataset_name = args.dataset
lower_limit = 11
upper_limit = 20
num_ents_per_split = 500
num_triples_per_entity = lower_limit
dataset = Dataset(folder_name=dataset_name)
set_seeds(444)
entities_seen, entities_unseen_valid, entities_unseen_test = sample_unseen_entities_stratified(dataset, lower_limit, upper_limit, num_ents_per_split)
# let's assign the triples to their corresponding sets
s_in_valid_unseen_mask = torch.from_numpy(np.isin(dataset.split["train"][:, 0], entities_unseen_valid))
o_in_valid_unseen_mask = torch.from_numpy(np.isin(dataset.split["train"][:, 2], entities_unseen_valid))
s_in_test_unseen_mask = torch.from_numpy(np.isin(dataset.split["train"][:, 0], entities_unseen_test))
o_in_test_unseen_mask = torch.from_numpy(np.isin(dataset.split["train"][:, 2], entities_unseen_test))
# first find the triples to remove from train set
# remove when either subject and object are unseen
train_split_new = dataset.split["train"][~(s_in_valid_unseen_mask | o_in_valid_unseen_mask | s_in_test_unseen_mask | o_in_test_unseen_mask)]
possible_valid_data = dataset.split["train"][torch.logical_and(
torch.logical_xor(s_in_valid_unseen_mask, o_in_valid_unseen_mask),
~torch.logical_or(s_in_test_unseen_mask, o_in_test_unseen_mask)
)]
possible_test_data = dataset.split["train"][torch.logical_and(
torch.logical_xor(s_in_test_unseen_mask, o_in_test_unseen_mask),
~torch.logical_or(s_in_valid_unseen_mask, o_in_valid_unseen_mask)
)]
# filter original valid and test
s_in_valid_unseen_mask_valid = np.isin(dataset.split["valid"][:, 0], entities_unseen_valid)
o_in_valid_unseen_mask_valid = np.isin(dataset.split["valid"][:, 2], entities_unseen_valid)
s_in_test_unseen_mask_valid = np.isin(dataset.split["valid"][:, 0], entities_unseen_test)
o_in_test_unseen_mask_valid = np.isin(dataset.split["valid"][:, 2], entities_unseen_test)
valid_split_seen = dataset.split["valid"][~(
s_in_valid_unseen_mask_valid |
o_in_valid_unseen_mask_valid |
s_in_test_unseen_mask_valid |
o_in_test_unseen_mask_valid
)]
s_in_valid_unseen_mask_test = np.isin(dataset.split["test"][:, 0], entities_unseen_valid)
o_in_valid_unseen_mask_test = np.isin(dataset.split["test"][:, 2], entities_unseen_valid)
s_in_test_unseen_mask_test = np.isin(dataset.split["test"][:, 0], entities_unseen_test)
o_in_test_unseen_mask_test = np.isin(dataset.split["test"][:, 2], entities_unseen_test)
test_split_seen = dataset.split["test"][~(
s_in_valid_unseen_mask_test |
o_in_valid_unseen_mask_test |
s_in_test_unseen_mask_test |
o_in_test_unseen_mask_test
)]
# finally, after removing the entities we need to remap the ids,
# so that 1-n in train n-m in valid and m-o in test
all_entities = np.concatenate([entities_seen, entities_unseen_valid, entities_unseen_test])
id_mapper = np.full(dataset.num_entities(), 100000000, dtype=np.int64)
id_mapper[all_entities] = np.arange(len(all_entities))
train_split_new = train_split_new.numpy()
train_split_new[:, 0] = id_mapper[train_split_new[:, 0]]
train_split_new[:, 2] = id_mapper[train_split_new[:, 2]]
# map original valid data
valid_split_seen = valid_split_seen.numpy()
valid_split_seen[:, 0] = id_mapper[valid_split_seen[:, 0]]
valid_split_seen[:, 2] = id_mapper[valid_split_seen[:, 2]]
# map valid data few shot pool
possible_valid_data = possible_valid_data.numpy()
possible_valid_data[:, 0] = id_mapper[possible_valid_data[:, 0]]
possible_valid_data[:, 2] = id_mapper[possible_valid_data[:, 2]]
# map original test data
test_split_seen = test_split_seen.numpy()
test_split_seen[:, 0] = id_mapper[test_split_seen[:, 0]]
test_split_seen[:, 2] = id_mapper[test_split_seen[:, 2]]
# map test data few shot pool
possible_test_data = possible_test_data.numpy()
possible_test_data[:, 0] = id_mapper[possible_test_data[:, 0]]
possible_test_data[:, 2] = id_mapper[possible_test_data[:, 2]]
entities_seen = id_mapper[entities_seen]
entities_unseen_valid = id_mapper[entities_unseen_valid]
entities_unseen_test = id_mapper[entities_unseen_test]
sorted_valid_pool = select_triple_by_relation_frequency(
split_data=possible_valid_data,
split_entities=entities_unseen_valid,
train_data=train_split_new,
num_relations=dataset.num_relations(),
num_triples_to_select=num_triples_per_entity
)
sorted_test_pool = select_triple_by_relation_frequency(
split_data=possible_test_data,
split_entities=entities_unseen_test,
train_data=train_split_new,
num_relations=dataset.num_relations(),
num_triples_to_select=num_triples_per_entity
)
# print some statistics
print("entities seen", len(entities_seen))
print("entities unseen valid", len(entities_unseen_valid))
print("entities unseen test", len(entities_unseen_test))
print("relations", dataset.num_relations())
print("relations in valid", len(np.unique(sorted_valid_pool[:, 3])))
print("relations in test", len(np.unique(sorted_test_pool[:, 3])))
print("train", len(train_split_new))
print("valid pool", len(sorted_valid_pool))
print("test pool", len(sorted_test_pool))
# in the next step we map back all ids to their text-ids and write out train.txt, valid.txt, test.txt
# make new directory
new_dataset_name = f"{dataset_name}_semi_inductive_test"
output_folder = os.path.join("data", new_dataset_name)
os.mkdir(output_folder)
reverse_mapper = np.argsort(id_mapper)[:len(all_entities)]
with open(os.path.join(output_folder, "all_entity_ids.del"), "w") as entity_ids_file:
for new_id, old_id in enumerate(reverse_mapper):
entity_ids_file.write(f"{new_id}\t{dataset.entity_ids[old_id]}\n")
with open(os.path.join(output_folder, "entity_ids.del"), "w") as entity_ids_file:
for new_id, old_id in enumerate(reverse_mapper[:len(entities_seen)]):
entity_ids_file.write(f"{new_id}\t{dataset.entity_ids[old_id]}\n")
with open(os.path.join(output_folder, "valid_entity_ids.del"), "w") as entity_ids_file:
for new_id, old_id in enumerate(reverse_mapper[len(entities_seen):len(entities_seen)+len(entities_unseen_valid)], len(entities_seen)):
entity_ids_file.write(f"{new_id}\t{dataset.entity_ids[old_id]}\n")
with open(os.path.join(output_folder, "test_entity_ids.del"), "w") as entity_ids_file:
for new_id, old_id in enumerate(reverse_mapper[len(entities_seen)+len(entities_unseen_valid):], len(entities_seen)+len(entities_unseen_valid)):
entity_ids_file.write(f"{new_id}\t{dataset.entity_ids[old_id]}\n")
# now map entity mentions
if map_mentions:
entity_mentions = []
with open(os.path.join("data", dataset_name, "entity_mentions.del")) as f:
for line in f:
entity_mentions.append(line.strip().split("\t", 1)[1])
with open(os.path.join(output_folder, "all_entity_mentions.del"), "w") as entity_ids_file:
for new_id, old_id in enumerate(reverse_mapper):
entity_ids_file.write(f"{new_id}\t{entity_mentions[old_id]}\n")
with open(os.path.join(output_folder, "entity_mentions.del"), "w") as entity_ids_file:
for new_id, old_id in enumerate(reverse_mapper[:len(entities_seen)]):
entity_ids_file.write(f"{new_id}\t{entity_mentions[old_id]}\n")
with open(os.path.join(output_folder, "valid_entity_mentions.del"), "w") as entity_ids_file:
for new_id, old_id in enumerate(reverse_mapper[len(entities_seen):len(entities_seen)+len(entities_unseen_valid)], len(entities_seen)):
entity_ids_file.write(f"{new_id}\t{entity_mentions[old_id]}\n")
with open(os.path.join(output_folder, "test_entity_mentions.del"), "w") as entity_ids_file:
for new_id, old_id in enumerate(reverse_mapper[len(entities_seen)+len(entities_unseen_valid):], len(entities_seen)+len(entities_unseen_valid)):
entity_ids_file.write(f"{new_id}\t{entity_mentions[old_id]}\n")
# now map relation ids
with open(os.path.join(output_folder, "relation_ids.del"), "w") as relation_ids_file:
for new_id, relation in enumerate(dataset.relation_ids):
relation_ids_file.write(f"{new_id}\t{relation}\n")
# now map relation mentions
if map_mentions:
relation_mentions = []
with open(os.path.join("data", dataset_name, "relation_mentions.del")) as f:
for line in f:
relation_mentions.append(line.strip().split("\t", 1)[1])
with open(os.path.join(output_folder, "relation_mentions.del"), "w") as relation_ids_file:
for new_id, relation in enumerate(relation_mentions):
relation_ids_file.write(f"{new_id}\t{relation}\n")
np.savetxt(
os.path.join(output_folder, "train.del"),
train_split_new,
delimiter="\t",
fmt="%d",
)
np.savetxt(
os.path.join(output_folder, "valid.del"),
valid_split_seen,
delimiter="\t",
fmt="%d",
)
np.savetxt(
os.path.join(output_folder, "test.del"),
test_split_seen,
delimiter="\t",
fmt="%d",
)
np.savetxt(
os.path.join(output_folder, "valid_pool.del"),
sorted_valid_pool,
delimiter="\t",
fmt="%d",
)
np.savetxt(
os.path.join(output_folder, "test_pool.del"),
sorted_test_pool,
delimiter="\t",
fmt="%d",
)
yaml_config = {
"dataset": {
"files.entity_ids.filename": "all_entity_ids.del",
"files.entity_ids.type": "map",
"files.seen_entity_ids.filename": "seen_entity_ids.del",
"files.seen_entity_ids.type": "map",
"files.test.filename": "test.del",
"files.test.type": "triples",
"files.valid.filename": "valid.del",
"files.valid.type": "triples",
"files.train.filename": "train.del",
"files.train.type": "triples",
"name": new_dataset_name,
}
}
with open(os.path.join(output_folder, "dataset.yaml"), "w") as yaml_file:
dump = yaml.dump(yaml_config)
yaml_file.write(dump)