-
Notifications
You must be signed in to change notification settings - Fork 2
/
GCN.py
140 lines (115 loc) · 5.96 KB
/
GCN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
from torch import nn
import torch
class GCN(nn.Module):
def __init__(self, K:int, input_dim:int, hidden_dim:int, bias=True, activation=nn.ReLU):
super().__init__()
self.K = K
self.input_dim = input_dim
self.hidden_dim = hidden_dim
self.bias = bias
self.activation = activation() if activation is not None else None
self.init_params(n_supports=K)
def init_params(self, n_supports:int, b_init=0):
self.W = nn.Parameter(torch.empty(n_supports*self.input_dim, self.hidden_dim), requires_grad=True)
nn.init.xavier_normal_(self.W) # sampled from a normal distribution N(0, std^2), also known as Glorot initialization
if self.bias:
self.b = nn.Parameter(torch.empty(self.hidden_dim), requires_grad=True)
nn.init.constant_(self.b, val=b_init)
def forward(self, G:torch.Tensor, x:torch.Tensor):
'''
Batch-wise graph convolution operation on given n support adj matrices
:param G: support adj matrices - torch.Tensor (K, n_nodes, n_nodes)
:param x: graph feature/signal - torch.Tensor (batch_size, n_nodes, input_dim)
:return: hidden representation - torch.Tensor (batch_size, n_nodes, hidden_dim)
'''
assert self.K == G.shape[0]
support_list = list()
for k in range(self.K):
support = torch.einsum('ij,bjp->bip', [G[k,:,:], x])
support_list.append(support)
support_cat = torch.cat(support_list, dim=-1)
output = torch.einsum('bip,pq->biq', [support_cat, self.W])
if self.bias:
output += self.b
output = self.activation(output) if self.activation is not None else output
return output
def __repr__(self):
return self.__class__.__name__ + f'({self.K} * input {self.input_dim} -> hidden {self.hidden_dim})'
class Adj_Processor():
def __init__(self, kernel_type:str, K:int):
self.kernel_type = kernel_type
# chebyshev (Defferard NIPS'16)/localpool (Kipf ICLR'17)/random_walk_diffusion (Li ICLR'18)
self.K = K if self.kernel_type != 'localpool' else 1
# max_chebyshev_polynomial_order (Defferard NIPS'16)/max_diffusion_step (Li ICLR'18)
def process(self, flow:torch.Tensor):
'''
Generate adjacency matrices
:param flow: batch flow stat - (batch_size, Origin, Destination) torch.Tensor
:return: processed adj matrices - (batch_size, K_supports, O, D) torch.Tensor
'''
batch_list = list()
for b in range(flow.shape[0]):
adj = flow[b, :, :]
kernel_list = list()
if self.kernel_type in ['localpool', 'chebyshev']: # spectral
adj_norm = self.symmetric_normalize(adj)
if self.kernel_type == 'localpool':
localpool = torch.eye(adj_norm.shape[0]) + adj_norm # same as add self-loop first
kernel_list.append(localpool)
else: # chebyshev
laplacian_norm = torch.eye(adj_norm.shape[0]) - adj_norm
laplacian_rescaled = self.rescale_laplacian(laplacian_norm)
kernel_list = self.compute_chebyshev_polynomials(laplacian_rescaled, kernel_list)
elif self.kernel_type == 'random_walk_diffusion': # spatial
# diffuse k steps on transition matrix P
P_forward = self.random_walk_normalize(adj)
kernel_list = self.compute_chebyshev_polynomials(P_forward.T, kernel_list)
elif self.kernel_type == 'dual_random_walk_diffusion':
# diffuse k steps bidirectionally on transition matrix P
P_forward = self.random_walk_normalize(adj)
P_backward = self.random_walk_normalize(adj.T)
forward_series, backward_series = [], []
forward_series = self.compute_chebyshev_polynomials(P_forward.T, forward_series)
backward_series = self.compute_chebyshev_polynomials(P_backward.T, backward_series)
kernel_list += forward_series + backward_series[1:] # 0-order Chebyshev polynomial is same: I
else:
raise ValueError('Invalid kernel_type. Must be one of [chebyshev, localpool, random_walk_diffusion, dual_random_walk_diffusion].')
# print(f"Minibatch {b}: {self.kernel_type} kernel has {len(kernel_list)} support kernels.")
kernels = torch.stack(kernel_list, dim=0)
batch_list.append(kernels)
batch_adj = torch.stack(batch_list, dim=0)
return batch_adj
@staticmethod
def random_walk_normalize(A): # asymmetric
d_inv = torch.pow(A.sum(dim=1), -1) # OD matrix Ai,j sum on j (axis=1)
d_inv[torch.isinf(d_inv)] = 0.
D = torch.diag(d_inv)
P = torch.mm(D, A)
return P
@staticmethod
def symmetric_normalize(A):
D = torch.diag(torch.pow(A.sum(dim=1), -0.5))
A_norm = torch.mm(torch.mm(D, A), D)
return A_norm
@staticmethod
def rescale_laplacian(L):
# rescale laplacian to arccos range [-1,1] for input to Chebyshev polynomials of the first kind
try:
lambda_ = torch.eig(L)[0][:,0] # get the real parts of eigenvalues
lambda_max = lambda_.max() # get the largest eigenvalue
except:
print("Eigen_value calculation didn't converge, using max_eigen_val=2 instead.")
lambda_max = 2
L_rescaled = (2 / lambda_max) * L - torch.eye(L.shape[0])
return L_rescaled
def compute_chebyshev_polynomials(self, x, T_k):
# compute Chebyshev polynomials up to order k. Return a list of matrices.
# print(f"Computing Chebyshev polynomials up to order {self.K}.")
for k in range(self.K + 1):
if k == 0:
T_k.append(torch.eye(x.shape[0]))
elif k == 1:
T_k.append(x)
else:
T_k.append(2 * torch.mm(x, T_k[k-1]) - T_k[k-2])
return T_k