Skip to content

Latest commit

 

History

History
95 lines (77 loc) · 2.68 KB

r-u-sad.md

File metadata and controls

95 lines (77 loc) · 2.68 KB

Writeup "R u SAd?" from PlaidCTF 2019

Description:

Tears dripped from my face as I stood over the bathroom sink. Exposed again! The tears melted into thoughts, and an idea formed in my head. This will surely keep my secrets safe, once and for all. I crept back to my computer and began to type.

We are given a relatively long python script implementing RSA encryption, together with a public key and an encrypted file. They use a custom key format which is saved using the pickle module:

class Key:
    PRIVATE_INFO = ['P', 'Q', 'D', 'DmP1', 'DmQ1']

    def __init__(self, **kwargs):
        for k, v in kwargs.items():
            setattr(self, k, v)
        assert self.bits % 8 == 0

    def ispub(self):
        return all(not hasattr(self, key) for key in self.PRIVATE_INFO)

    def ispriv(self):
        return all(hasattr(self, key) for key in self.PRIVATE_INFO)

    def pub(self):
        p = deepcopy(self)
        for key in self.PRIVATE_INFO:
            if hasattr(p, key):
                delattr(p, key)
        return p

    def priv(self):
        raise NotImplementedError()

def genkey(bits):
    assert bits % 2 == 0
    while True:
        p = genprime(bits // 2)
        q = genprime(bits // 2)
        e = 65537
        d, _, g = egcd(e, (p - 1) * (q - 1))
        if g != 1: continue
        iQmP, iPmQ, _ = egcd(q, p)
        return Key(
            N=p * q, P=p, Q=q, E=e, D=d % ((p - 1) * (q - 1)), DmP1=d % (p - 1), DmQ1=d % (q - 1),
            iQmP=iQmP % p, iPmQ=iPmQ % q, bits=bits,
        )

Notice that the values iPmQ and iQmP are not removed when constructing the public key. Let us call these values $a$ and $b$ in the following. If $a', b'=egcd(p, q)$, then $a'p+b'q=gcd(p,q)$ by Bézout's identity. Hence, $$ \begin{aligned} \quad (a+iq)p + (b+jp)q &= 1\ \Rightarrow ap+bq+(i+j)pq &= 1\
\Rightarrow ap+bq=1+zn&=:c \end{aligned} $$ for small values $i,j,z\in \mathbb Z$.

Let $x, y = egcd(a, b)$. Since $gcd(a, b)=1$ (in our case), we have

$$ \begin{aligned} \quad ap+bq&=1+zn=c\\ \quad ax+by&=1\\ \Rightarrow a(p-xc)+b(q-yc) &= 0\qquad \text{(subtract the second equation $c$ times from the first)}\\ \Rightarrow a(p-xc) &= b(yc-q)\\ \Rightarrow (q-yc) &\equiv 0 \mod a\\ \Rightarrow q-yc&=ka \end{aligned} $$

We can expect $q/a$ to be small. Hence, $k\approx -yc/a$. Then, $q=ka+yc$.

Code

a = k.iPmQ
b = k.iQmP
n = k.N

x, y, _ = egcd(a, b)

for z in range(-10, 10):
    c = 1 + z*n
    for k in range(-y*c//a-10, -y*c//a+10):
        q = k*a + y*c
        if n % q == 0:
            print(q, n//q)