-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimage_controller.py
64 lines (51 loc) · 1.87 KB
/
image_controller.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
from io import BytesIO
from PIL import Image
from torchvision import transforms
import numpy as np
import requests
import torch
def generate_product_image(client, prompt):
"""
Generates a product image using OpenAI's DALL·E model.
Args:
- api_key (str): The API key for accessing OpenAI's services.
- prompt (str): The prompt for generating the image.
Returns:
- str: The path to the saved image.
"""
response = client.images.generate(
model="dall-e-3",
prompt=prompt,
size="1024x1024",
quality="standard",
style="vivid",
n=1
)
return response.data[0].url
def transform_image(model, img, isFile):
"""
Preprocesses an image and returns its embedding using the provided CLIP model and preprocessing transforms.
Args:
- model (CLIPModel): The CLIP model.
- preprocess (transforms.Compose): The preprocessing transforms.
- image_path (str): The path to the input image.
Returns:
- np.array: The image embedding as a numpy array.
"""
preprocess = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
headers = {"User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/121.0.0.0 Safari/537.36"}
if not isFile:
image_response = requests.get(img, headers=headers)
image_response.raise_for_status()
image = Image.open(BytesIO(image_response.content))
else:
image = Image.open(img.file)
query_embedding = preprocess(image).unsqueeze(0)
with torch.no_grad():
features = model.get_image_features(pixel_values=query_embedding)
embedding = features.squeeze().cpu().numpy()
return embedding.astype(np.float32)