diff --git a/bolift/aqfxns.py b/bolift/aqfxns.py index e7e2662..0483c75 100644 --- a/bolift/aqfxns.py +++ b/bolift/aqfxns.py @@ -80,12 +80,16 @@ def greedy_d(probs, values, best): def expected_improvement_g(mean, std, best): """Expected improvement for the given Gaussian distribution""" + if std == 0: + std= +1e-15 z = (mean - best) / std ei = (mean - best) * norm.cdf(z) + std * norm.pdf(z) return ei def log_expected_improvement_g(mean, std, best): """Log Expected improvement for the given Gaussian distribution""" + if std == 0: + std= +1e-15 z = (mean - best) / std # ei = std * h(z) # ei = std * (norm.pdf(z) + z * norm.cdf(z)) @@ -94,6 +98,8 @@ def log_expected_improvement_g(mean, std, best): def probability_of_improvement_g(mean, std, best): """Probability of improvement for the given Gaussian distribution""" + if std == 0: + std= +1e-15 z = (mean - best) / std pi = norm.cdf(z) return pi diff --git a/bolift/asktell.py b/bolift/asktell.py index f6c117b..0a26faa 100644 --- a/bolift/asktell.py +++ b/bolift/asktell.py @@ -145,7 +145,7 @@ def __init__( self._answer_choices = _answer_choices[:k] self.use_quantiles = use_quantiles self.n_quantiles = n_quantiles - self._calibration_factor = None + self._calibration_factor = 1.0 self._verbose = verbose self.tokens_used = 0 self.cos_sim = cos_sim @@ -559,20 +559,22 @@ def __init__(self, **kwargs): def _setup_llm(self, model: str, temperature: Optional[float] = None): return get_llm( model_name=model, - # stop=[self.prompt.suffix.split()[0], self.inv_prompt.suffix.split()[0]], + # put stop with suffix, so it doesn't start babbling + # stop=[self.prompt.suffix.split()[0], self.inv_prompt.suffix.split()[0]], max_tokens=256, - logprobs=self._k, + logprobs=self._k, # temperature=0.05 if temperature is None else temperature, ) def _setup_inv_llm(self, model: str, temperature: Optional[float] = None): return get_llm( model_name=model, - # stop=[ - # self.prompt.suffix.split()[0], - # self.inv_prompt.suffix.split()[0], - # "\n", - # ], + # put stop with suffix, so it doesn't start babbling + #stop=[ + # self.prompt.suffix.split()[0], + # self.inv_prompt.suffix.split()[0], + # "\n", + #], max_tokens=576, temperature=0.05 if temperature is None else temperature, ) @@ -580,7 +582,7 @@ def _setup_inv_llm(self, model: str, temperature: Optional[float] = None): def _setup_inverse_prompt(self, example: Dict): prompt_template = PromptTemplate( input_variables=["x", "y", "y_name", "x_name"], - template="If {y_name} is {y}, then {x_name} is @@@\n{x}###", + template="If {y_name} is {y}, then the {x_name} is @@@\n{x}###", ) if example is not None: prompt_template.format(**example) @@ -592,7 +594,7 @@ def _setup_inverse_prompt(self, example: Dict): if len(examples) == 0: raise ValueError("Cannot do zero-shot with selector") - sim_selector = LabelSimilarityExampleSelector #SemanticSimilarityExampleSelector if self.cos_sim else MaxMarginalRelevanceExampleSelector + sim_selector = SemanticSimilarityExampleSelector if self.cos_sim else MaxMarginalRelevanceExampleSelector #LabelSimilarityExampleSelector #SemanticSimilarityExampleSelector if self.cos_sim else MaxMarginalRelevanceExampleSelector example_selector = sim_selector.from_examples( [example], OpenAIEmbeddings(), @@ -699,12 +701,213 @@ def _tell(self, x: str, y: float, alt_ys: Optional[List[float]] = None) -> Dict: ) return example_dict, inv_example - def _predict(self, queries: List[str], system_message: str = "") -> List[DiscreteDist]: - return openai_choice_predict(queries, self.llm.llm, self._verbose) + def tell(self, x: str, y: float, alt_ys: Optional[List[float]] = None) -> None: + """Tell the optimizer about a new example.""" + example_dict, inv_example = self._tell(x, y, alt_ys) + # we want to have example + # to initialize prompts, so send it + if not self._ready: + self.prompt = self._setup_prompt( + example_dict, self._prompt_template, self._suffix, self._prefix + ) + self.inv_prompt = self._setup_inverse_prompt(inv_example) + self.llm = self._setup_llm(self._model, self._temperature) + self.inv_llm = self._setup_inv_llm(self._model, self._temperature) + self._ready = True + else: + # in else, so we don't add twice + if self._selector_k is not None: + self.prompt.example_selector.add_example(example_dict) + self.inv_prompt.example_selector.add_example(inv_example) + else: + self.prompt.examples.append(example_dict) + self.inv_prompt.examples.append(inv_example) + self._example_count += 1 + + def _predict(self, queries: List[str]) -> List[DiscreteDist]: + return openai_choice_predict(queries, self.llm, self._verbose) - def _inv_predict(self, queries: List[str], system_message: str = "") -> List[DiscreteDist]: - x, tokens = self.inv_llm.predict(queries, inv_pred=True, system_message=system_message) - return x, tokens + def inv_predict(self, y: float, system_message: Optional[str] = "") -> str: + """A rough inverse model""" + if not self._ready: + raise ValueError( + "Must tell at least one example before inverse predicting." + ) + if not system_message: + warnings.warn("No system message provided for inverse prediction. Using default. \nNot clearly specifying the task for the LLM usually decreases its performance considerably.") + + query = self.inv_prompt.format( + y=self.format_y(y), y_name=self._y_name, x_name=self._x_name + ) + x, tokens = self.inv_llm.predict( + query, + inv_pred=True, + system_message=system_message + ) + print(x[0]) + return x[0] + + def set_calibration_factor(self, calibration_factor): + self._calibration_factor = calibration_factor + + def predict(self, x: str, system_message: Optional[str] = "") -> Union[Tuple[float, float], List[Tuple[float, float]]]: + """Predict the probability distribution and values for a given x. + + Args: + x: The x value(s) to predict. + Returns: + The probability distribution and values for the given x. + """ + if not isinstance(x, list): + x = [x] + if not self._ready: + # special zero-shot + self.prompt = self._setup_prompt( + None, self._prompt_template, self._suffix, self._prefix + ) + self.inv_prompt = self._setup_inverse_prompt(None) + self.llm = self._setup_llm(self._model) + self._ready = True + + if self._selector_k is not None: + self.prompt.example_selector.k = min(self._example_count, self._selector_k) + + if not system_message: + warnings.warn("No system message provided for prediction. Using default. \nNot clearly specifying the task for the LLM usually decreases its performance considerably.") + + queries = [ + self.prompt.format( + x=self.format_x(x_i), + y_name=self._y_name, + ) + for x_i in x + ] + results, tokens = self.llm.predict( + queries, + system_message=system_message + ) + self.tokens_used += tokens + + + # need to replace any GaussDist with pop std + for i, result in enumerate(results): + if len(self._ys) > 1: + ystd = np.std(self._ys) + elif len(self._ys) == 1: + ystd = self._ys[0] + else: + ystd = 10 + if isinstance(result, GaussDist): + results[i].set_std(ystd) + + if self._calibration_factor: + for i, result in enumerate(results): + if isinstance(result, GaussDist): + results[i].set_std(result.std() * self._calibration_factor) + elif isinstance(result, DiscreteDist): + results[i] = GaussDist( + results[i].mean(), + results[i].std() * self._calibration_factor, + ) + + # compute mean and standard deviation + if len(x) == 1: + return (results[0], self._calibration_factor) if self._calibration_factor else results[0] + + # Ensure self._calibration_factor is set to 1 if it does not exist + + return (results) + + + def ask( + self, + possible_x: Union[Pool, List[str]], + aq_fxn: str = "upper_confidence_bound", + k: int = 1, + inv_filter: int = 16, + aug_random_filter: int = 0, + lambda_mult: float = 0.5, + _lambda: float = 0.5, + system_message: Optional[str] = "", + inv_system_message: Optional[str] = "", + ) -> Tuple[List[str], List[float], List[float]]: + """Ask the optimizer for the next x to try. + + Args: + possible_x: List of possible x values to choose from. + aq_fxn: Acquisition function to use. + k: Number of x values to return. + inv_filter: Reduce pool size to this number with inverse model. If 0, not used + aug_random_filter: Add this man y random examples to the pool to increase diversity after reducing pool with inverse model + _lambda: Lambda value to use for UCB + lambda_mult: control MMR diversity ,0-1 lower = more diverse + Return: + The selected x values, their acquisition function values, and the predicted y modes. + Sorted by acquisition function value (descending) + """ + if type(possible_x) == type([]): + possible_x = Pool(possible_x, self.format_x) + + # if we have less than 2 examples, just return random + if self._example_count < 2: + init_pnt=possible_x.sample(k) + return ( + init_pnt, + [0] * k, + [0] * k, + [0] * k, + ) + + if aq_fxn == "probability_of_improvement": + aq_fxn = probability_of_improvement + elif aq_fxn == "expected_improvement": + aq_fxn = expected_improvement + elif aq_fxn == "log_expected_improvement": + aq_fxn = log_expected_improvement + elif aq_fxn == "upper_confidence_bound": + aq_fxn = partial(upper_confidence_bound, _lambda=_lambda) + elif aq_fxn == "greedy": + aq_fxn = greedy + elif aq_fxn == "random": + return ( + possible_x.sample(k), + [0] * k, + [0] * k, + [0] * k, + ) + else: + raise ValueError(f"Unknown acquisition function: {aq_fxn}") + + if len(self._ys) == 0: + best = 0 + else: + best = np.max(self._ys) + + if inv_filter+aug_random_filter < len(possible_x): + possible_x_l = [] + if inv_filter: + approx_x = self.inv_predict(best + np.abs(best)*np.random.normal(0.2, 0.05), system_message=inv_system_message) + possible_x_l.extend(possible_x.approx_sample(approx_x, inv_filter, lambda_mult=lambda_mult)) + + if aug_random_filter: + possible_x_l.extend(possible_x.sample(aug_random_filter)) + else: + possible_x_l = list(possible_x) + + print(possible_x_l) + results = self._ask(possible_x_l, best, aq_fxn, k, system_message=system_message) + if len(results[0]) == 0 and len(possible_x_l) != 0: + # if we have nothing, just return random one + return ( + possible_x.sample(k), + [0] * k, + [0] * k, + [0] * k, + [0] * k, + ) + + # print("ask results:",results) + return results def _ask( self, possible_x: List[str], best: float, aq_fxn: Callable, k: int, system_message: str @@ -716,10 +919,123 @@ def _ask( results = [r for r in results if len(r) > 0] aq_vals = [aq_fxn(r, best) for r in results] selected = np.argsort(aq_vals)[::-1][:k] + # compare the output of the predict to aq_vals : -> print taht possible_x means = [r.mean() for r in results] - + stds = [r.std() for r in results] + return ( [possible_x[i] for i in selected], [aq_vals[i] for i in selected], [means[i] for i in selected], + [stds[i] for i in selected], + ) + + +class AskTellFewShotTopk(AskTellFewShotMulti): + def _predict(self, queries: List[str]) -> List[DiscreteDist]: + result, token_usage = openai_topk_predict(queries, self.llm, self._verbose) + if self.use_quantiles and self.qt is None: + raise ValueError( + "Can't use quantiles without building the quantile transformer" + ) + if self.use_quantiles: + for r in result: + if isinstance(r, GaussDist): + r._mean = self.qt.to_values(r._mean) + elif isinstance(r, DiscreteDist): + r.values = self.qt.to_values(r.values) + return result, token_usage + + def _setup_llm(self, model: str, temperature: Optional[float] = None): + # nucleus sampling seems to get more diversity + return get_llm( + n=self._k, + best_of=self._k, + temperature=0.1 if temperature is None else temperature, + model_name=model, + top_p=1.0, + #stop=["\n", "###", "#", "##"], + logit_bias={ + "198": -100, # new line, + "628": -100, # double new line, + "50256": -100, # endoftext + }, + max_tokens=256, + logprobs=1, ) + + def _setup_prompt( + self, + example: Dict, + prompt_template: Optional[PromptTemplate] = None, + suffix: Optional[str] = None, + prefix: Optional[str] = None, + ) -> FewShotPromptTemplate: + if prefix is None: + prefix = ( + "The following are correctly answered questions. " + "Each answer is numeric and ends with ###\n" + ) + if prompt_template is None: + prompt_template = PromptTemplate( + input_variables=["x", "y", "y_name"], + template="Q: Given {x}, what is {y_name}?\nA: {y}###\n\n", + ) + if suffix is not None: + raise ValueError( + "Cannot provide suffix if using default prompt template." + ) + suffix = "Q: Given {x}. What is {y_name}?\nA: " + elif suffix is None: + raise ValueError("Must provide suffix if using custom prompt template.") + # test out prompt + if example is not None: + prompt_template.format(**example) + examples = [example] + # TODO: make fake example text + else: + examples = [] + example_selector = None + if self._selector_k is not None: + if len(examples) == 0: + raise ValueError("Cannot do zero-shot with selector") + sim_selector = SemanticSimilarityExampleSelector if self.cos_sim else MaxMarginalRelevanceExampleSelector + example_selector = sim_selector.from_examples( + [example], + OpenAIEmbeddings(), + FAISS, + k=self._selector_k, + ) + return FewShotPromptTemplate( + examples=examples if example_selector is None else None, + example_prompt=prompt_template, + example_selector=example_selector, + suffix=suffix, + prefix=prefix, + input_variables=["x", "y_name"], + ) + + def _tell(self, x: str, y: float, alt_ys: Optional[List[float]] = None) -> Dict: + """Tell the optimizer about a new example.""" + + if self.use_quantiles: + self.qt = QuantileTransformer( + values=self._ys + [y], n_quantiles=self.n_quantiles + ) + y = self.qt.to_quantiles(y) + + if alt_ys is not None: + raise ValueError("Alt ys not supported for topk.") + example_dict = dict( + x=self.format_x(x), + y=self.format_y(y), + y_name=self._y_name, + ) + self._ys.append(y) + inv_dict = dict( + x=self.format_x(x), + y=self.format_y(y), + y_name=self._y_name, + x_name=self._x_name, + ) + return example_dict, inv_dict diff --git a/bolift/llm_model.py b/bolift/llm_model.py index 5d3d535..bdeb274 100644 --- a/bolift/llm_model.py +++ b/bolift/llm_model.py @@ -103,10 +103,11 @@ def get_llm( best_of : int = 1, max_tokens : int = 128, logit_bias : dict = {}, + logprobs : int= 5, **kwargs ): openai_models = ["davinci-002", "gpt-3.5-turbo-instruct"] - chatopenai_models = ["gpt-4", "gpt-3.5-turbo", "gpt-4-turbo-preview", "gpt-3.5-turbo-0125", "gpt-4-0125-preview", "gpt-4o", "gpt-4o-mini"] + chatopenai_models = ["gpt-4","gpt-4o", "gpt-3.5-turbo", "gpt-4-turbo-preview", "gpt-3.5-turbo-0125", "gpt-4-0125-preview"] anyscale_models = ["meta-llama/Llama-2-7b-chat-hf","meta-llama/Llama-2-13b-chat-hf","meta-llama/Llama-2-70b-chat-hf", "mistralai/Mistral-7B-Instruct-v0.1", "mistralai/Mixtral-8x7B-Instruct-v0.1"] kwargs = { @@ -117,6 +118,7 @@ def get_llm( "best_of": best_of, "max_tokens": max_tokens, "logit_bias": logit_bias, + # "logprobs" : logprobs, **kwargs } @@ -181,7 +183,8 @@ def create_llm(self): best_of=self.best_of, max_tokens=self.max_tokens, logit_bias=self.logit_bias, - model_kwargs=self.kwargs + model_kwargs=self.kwargs, + ) def predict(self, query_list, inv_pred=False, verbose=False, *args, **kwargs): @@ -247,7 +250,9 @@ def create_llm(self): temperature=self.temperature, n=self.n, max_tokens=self.max_tokens, - model_kwargs=self.kwargs, + logprobs=True, + top_logprobs=5 + # model_kwargs=self.kwargs, ) def predict(self, query_list, inv_pred=False, verbose=False, *args, **kwargs): diff --git a/bolift/pool.py b/bolift/pool.py index b82ccfc..3bea4f0 100644 --- a/bolift/pool.py +++ b/bolift/pool.py @@ -27,7 +27,7 @@ def __init__(self, pool: List[Any], formatter: Callable = lambda x: str(x)) -> N self.format = formatter self._db = FAISS.from_texts( [formatter(x) for x in pool], - OpenAIEmbeddings(), # model="text-embedding-3-large" + OpenAIEmbeddings(model="text-embedding-3-large"), # model="text-embedding-3-large" metadatas=[dict(data=p) for p in pool], ) diff --git a/bolift/tool.py b/bolift/tool.py index 06f6203..ddc3d45 100644 --- a/bolift/tool.py +++ b/bolift/tool.py @@ -6,12 +6,16 @@ import pandas as pd -class BOLiftTool(BaseTool): - name = "Experiment Designer" - description = ("Propose or predict experiments using stateful ask-and-tell Bayes Optimizer. " - "Syntax: Tell {{CSV_FILE}}. Adds training examples to model, {{CSV_FILE}}. No header and only two columns: x in column 0, y in column 1. " - "Ask. Returns optimal experiment to run next. Must call Tell first. " - "Best. Returns predicted experiment. Must call Tell first.") +from pydantic import BaseModel + +class BOLiftTool(BaseTool): + name: str = "Experiment Designer" + description: str = ( + "Propose or predict experiments using stateful ask-and-tell Bayes Optimizer. " + "Syntax: Tell {{CSV_FILE}}. Adds training examples to model, {{CSV_FILE}}. No header and only two columns: x in column 0, y in column 1. " + "Ask. Returns optimal experiment to run next. Must call Tell first. " + "Best. Returns predicted experiment. Must call Tell first." + ) asktell: AskTellFewShotTopk = None pool: Pool = None diff --git a/paper/BO_experiments.ipynb b/paper/BO_experiments.ipynb index b2fee10..231e4be 100644 --- a/paper/BO_experiments.ipynb +++ b/paper/BO_experiments.ipynb @@ -18,21 +18,122 @@ "initial_train = 1\n", "initial_transfer_train=0\n", "ask_K = 1\n", - "N=30\n", - "M=5\n", + "N=20\n", + "M=2\n", "lambda_multi = 0.1\n", "# model=\"gpt-3.5-turbo-instruct\"\n", - "# model=\"gpt-4o\"\n", - "model=\"gpt-3.5-turbo\"\n", - "# model=\"gpt-4-turbo\"\n", - "# model=\"gpr\"" + "model=\"gpt-turbo\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "# Initialize Dataset" + "## Initialize Tranfer Learning Dataset" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2910" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "\n", + "random_seed = 10\n", + "np.random.seed(random_seed)\n", + "\n", + "t_data_path=\"top_10_similar_subset.csv\"\n", + "\n", + "t_data_path = \"/Users/shane/repos/BO-LIFT/\" + t_data_path\n", + "transfer_data = pd.read_csv(t_data_path)\n", + "\n", + "t_N = transfer_data.shape[0]\n", + "t_indexes = np.random.choice(transfer_data.shape[0], int(t_N), replace=False)\n", + "t_x_name = \"prompt\"\n", + "t_y_name = \"completion\"\n", + "len(t_indexes)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Build Focused Pool For Transfer Learning" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.metrics.pairwise import cosine_similarity\n", + "from tqdm import tqdm\n", + "from openai import OpenAI\n", + "client = OpenAI()\n", + "\n", + "model = \"text-embedding-3-large\"\n", + "\n", + "def get_embeddings(texts, model=model, batch_size=100):\n", + " all_embeddings = []\n", + " cleaned_texts = [text.replace(\"\\n\", \" \") if isinstance(text, str) else \"\" for text in texts]\n", + " for i in range(0, len(cleaned_texts), batch_size):\n", + " batch = cleaned_texts[i: i + batch_size]\n", + " embeddings_data = client.embeddings.create(input=batch, model=model).data\n", + " all_embeddings.extend([embedding.embedding for embedding in embeddings_data])\n", + " return np.array(all_embeddings)\n", + "\n", + "small_data_path = \"/Users/shane/repos/BO-LIFT/paper/dataset/data/bias_free_ocmdataset_p_comp.csv\" \n", + "large_data_path = \"/Users/shane/repos/BO-LIFT/paper/dataset/data/C2_yield_meth_oxy_short_corrected.csv\"\n", + "\n", + "small_data = pd.read_csv(small_data_path)\n", + "large_data = pd.read_csv(large_data_path)\n", + "\n", + "prompt_col = \"prompt\"\n", + "completion_col = \"completion\"\n", + "\n", + "small_prompts = small_data[prompt_col].fillna(\"\").tolist()\n", + "large_prompts = large_data[prompt_col].fillna(\"\").tolist()\n", + "\n", + "small_embeddings = get_embeddings(small_prompts)\n", + "large_embeddings = get_embeddings(large_prompts)\n", + "\n", + "similarities = cosine_similarity(small_embeddings, large_embeddings)\n", + "\n", + "selected_indices = set()\n", + "new_data_list = []\n", + "\n", + "for i, small_prompt in tqdm(enumerate(small_prompts), total=len(small_prompts)):\n", + "\n", + " sorted_indices = np.argsort(similarities[i])[::-1]\n", + "\n", + " count = 0\n", + " for index in sorted_indices:\n", + " if index not in selected_indices:\n", + " large_prompt = large_data.iloc[index][prompt_col]\n", + " completion_text = large_data.iloc[index][completion_col]\n", + " new_data_list.append({\"prompt\": large_prompt, \"completion\": completion_text})\n", + " selected_indices.add(index)\n", + " count += 1\n", + " if count == 10:\n", + " break\n", + "\n", + "new_data = pd.DataFrame(new_data_list)\n", + "t_data_path = \"top_10_similar_subset.csv\"\n", + "new_data.to_csv(t_data_path, index=False)\n" ] }, { @@ -44,7 +145,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 35, "metadata": {}, "outputs": [], "source": [ @@ -76,7 +177,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 57, "metadata": {}, "outputs": [], "source": [ @@ -101,104 +202,56 @@ "inv_system_message_path = \"./prompts/inv_prompt_1.txt\"\n", "system_message_path = \"./prompts/prompt_1.txt\"\n", "\n", - "path = f\"./out/{dataset}_{model}_{initial_train}_{ask_K}_{lambda_multi}.pkl\"\n", - "pool_path = \"./dataset/data/ocm_dataset.pkl\"" + "# path = f\"./out/{dataset}_{model}_300_{initial_train}_{ask_K}_lambda_mult{lambda_multi}_corrected_tableprompt_transfer_data_{initial_transfer_train}.pkl\"\n", + "\n", + "path = f\"./out/{dataset}_{model}_{initial_train}_{ask_K}_lambda_mult{lambda_multi}_corrected_tableprompt_wlog_probs.pkl\"\n", + "# pool_path = \"./dataset/data/bias_free_ocmdataset_p_comp.pkl\"\n", + "\n", + "# path = f\"./out/inv_system_message_test_{lambda_multi}.pkl\"\n", + "pool_path = \"./dataset/data/C2_yield_meth_oxy_short_corrected_allacqs1.pkl\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "### Load transfer learning dataset" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "import pandas as pd\n", - "import numpy as np\n", - "\n", - "random_seed = 20\n", - "np.random.seed(random_seed)\n", - "\n", - "t_data_path=\"top_10_similar_subset.csv\"\n", - "\n", - "t_data_path = \"/Users/shane/repos/BO-LIFT/\" + t_data_path\n", - "# transfer_data = pd.read_csv(t_data_path)\n", - "transfer_data = pd.read_csv(\"dataset/data/C2_yield_meth_oxy_short_corrected.csv\")\n", - "\n", - "t_N = transfer_data.shape[0]\n", - "t_indexes = np.random.choice(transfer_data.shape[0], int(t_N), replace=False)\n", - "t_x_name = \"prompt\"\n", - "t_y_name = \"completion\"\n", - "len(t_indexes)" + "# Alloy" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ - "from sklearn.metrics.pairwise import cosine_similarity\n", - "from tqdm import tqdm\n", - "from openai import OpenAI\n", - "import pandas as pd\n", - "import numpy as np\n", - "client = OpenAI()\n", - "\n", - "model = \"text-embedding-3-large\"\n", - "\n", - "def get_embeddings(texts, model=model, batch_size=100):\n", - " all_embeddings = []\n", - " cleaned_texts = [text.replace(\"\\n\", \" \") if isinstance(text, str) else \"\" for text in texts]\n", - " for i in range(0, len(cleaned_texts), batch_size):\n", - " batch = cleaned_texts[i: i + batch_size]\n", - " embeddings_data = client.embeddings.create(input=batch, model=model).data\n", - " all_embeddings.extend([embedding.embedding for embedding in embeddings_data])\n", - " return np.array(all_embeddings)\n", - "\n", - "small_data_path = \"./dataset/data/bias_free_ocmdataset_p_comp.csv\" \n", - "large_data_path = \"./dataset/data/C2_yield_meth_oxy_short_corrected.csv\"\n", - "\n", - "small_data = pd.read_csv(small_data_path)\n", - "large_data = pd.read_csv(large_data_path)\n", - "\n", - "prompt_col = \"prompt\"\n", - "completion_col = \"completion\"\n", - "\n", - "small_prompts = small_data[prompt_col].fillna(\"\").tolist()\n", - "large_prompts = large_data[prompt_col].fillna(\"\").tolist()\n", - "\n", - "small_embeddings = get_embeddings(small_prompts)\n", - "large_embeddings = get_embeddings(large_prompts)\n", - "\n", - "similarities = cosine_similarity(small_embeddings, large_embeddings)\n", - "\n", - "selected_indices = set()\n", - "new_data_list = []\n", + "dataset=\"alloy\"\n", + "kwargs = dict(\n", + " # prefix=\"You are a bot who knows chemistry and catalysts. \" \\\n", + " # \"Below, you'll see examples of experimental procedures to synthesize catalysts and the measured C2 yield in a oxidative methane coupling reaction. \" \\\n", + " # \"The following question should be answered with a number and finished with ###\\n\",\n", + " prefix=\"\",\n", + " prompt_template=PromptTemplate(\n", + " input_variables=[\"x\", \"y\", \"y_name\"],\n", + " template=\"Q: What is the {y_name} of {x}?@@@\\nA: {y}###\",\n", + " ),\n", + " suffix=\"What is the {y_name} of {x}?@@@\\nA:\",\n", + " x_formatter=lambda x: f\"the corresponding experimental procedure: {x}\",\n", + " y_name=\"the log(charge transfer) [coulombs/cm²]\", # inverse prompt : If {y_name} is {y}, then {x_name} is @@@\\n{x}###\"\n", + " y_formatter=lambda y: f\"{y:.2f}\",\n", + " selector_k=5,\n", + " temperature=0.7\n", + ")\n", "\n", - "for i, small_prompt in tqdm(enumerate(small_prompts), total=len(small_prompts)):\n", + "inv_system_message_path = \"/Users/shane/repos/BO-LIFT/paper/prompts/gpt4_alloy_dataset_tale.txt\"\n", + "system_message_path = \"./prompts/prompt_1.txt\"\n", "\n", - " sorted_indices = np.argsort(similarities[i])[::-1]\n", + "# path = f\"./out/{dataset}_{model}_300_{initial_train}_{ask_K}_lambda_mult{lambda_multi}_corrected_tableprompt_transfer_data_{initial_transfer_train}.pkl\"\n", "\n", - " count = 0\n", - " for index in sorted_indices:\n", - " if index not in selected_indices:\n", - " large_prompt = large_data.iloc[index][prompt_col]\n", - " completion_text = large_data.iloc[index][completion_col]\n", - " new_data_list.append({\"prompt\": large_prompt, \"completion\": completion_text})\n", - " selected_indices.add(index)\n", - " count += 1\n", - " if count == 10:\n", - " break\n", + "path = f\"./out/{dataset}_{model}_{initial_train}_{ask_K}_lambda_mult{lambda_multi}_wlog_probs.pkl\"\n", + "# pool_path = \"./dataset/data/bias_free_ocmdataset_p_comp.pkl\"\n", "\n", - "new_data = pd.DataFrame(new_data_list)\n", - "t_data_path = \"top_10_similar_subset.csv\"\n", - "new_data.to_csv(t_data_path, index=False)\n" + "# path = f\"./out/inv_system_message_test_{lambda_multi}.pkl\"\n", + "pool_path = \"./dataset/data/alloys_allacqs1.pkl\"" ] }, { @@ -210,7 +263,7 @@ }, { "cell_type": "code", - "execution_count": 44, + "execution_count": 12, "metadata": {}, "outputs": [], "source": [ @@ -229,13 +282,19 @@ " temperature=0.7,\n", ")\n", "\n", - "inv_system_message_path = \"./prompts/inv_prompt_sol.txt\"\n", - "system_message_path = \"./prompts/prompt_sol.txt\"\n", - "\n", - "path = f\"./out/{dataset}_{model}_{initial_train}_{ask_K}.pkl\"\n", + "path = f\"./out/{dataset}_{model}_882_{initial_train}_{ask_K}_16nr.pkl\"\n", "pool_path = \"./out/sol_pool.pkl\"\n" ] }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "import langchain" + ] + }, { "cell_type": "markdown", "metadata": { @@ -249,7 +308,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 4, "metadata": { "notebookRunGroups": { "groupValue": "1" @@ -257,12 +316,21 @@ }, "outputs": [ { - "name": "stderr", + "name": "stdout", "output_type": "stream", "text": [ - "/Users/maykcaldas/miniconda3/envs/bolift/lib/python3.10/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", - " from .autonotebook import tqdm as notebook_tqdm\n" + "GPR Packages not installed. Do `pip install bolift[gpr]` to install them\n" ] + }, + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" } ], "source": [ @@ -285,13 +353,12 @@ "import bolift\n", "\n", "from dotenv import load_dotenv\n", - "load_dotenv()\n", - "transfer_data = \"\"" + "load_dotenv()" ] }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 5, "metadata": { "notebookRunGroups": { "groupValue": "1" @@ -334,7 +401,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 6, "metadata": { "notebookRunGroups": { "groupValue": "1" @@ -373,32 +440,38 @@ "# @retry(wait=wait_random_exponential(min=1, max=60), stop=stop_after_attempt(6))\n", "def run_experiment(\n", " asktell, pool, raw_data, indexes, x_name, y_name, N=1, initial_train=1, ask_K=1, aq=\"random\", start_index=0, calibrate=False,\n", - " lambda_multi=0.1, system_message=\"\", inv_system_message=\"\",transfer_train=1, transfer=False, trans_data=None, t_indexes=None\n", + " lambda_multi=0.1, system_message=\"\", inv_system_message=\"\",transfer_train=1, transfer=False, trans_data=transfer_data, t_indexes=t_indexes\n", "):\n", " if aq=='random_mean':\n", " return [ (i, expected_value_q(i, 100, raw_data[y_name])) for i in range(1,N+initial_train) ]\n", " \n", " point=[]\n", - " # counter = 1\n", + " py = 0 \n", + " mod_std = 0\n", + " counter = 1\n", " for i in indexes[:initial_train]:\n", + " \n", " asktell.tell(raw_data[x_name].iloc[i], float(raw_data[y_name].iloc[i]))\n", - " # if counter == 1:\n", - " # i_best = float(raw_data[y_name].iloc[i])\n", - " # else:\n", - " # i_best = sorted(point, key=lambda i_points: i_points[-1])[-1][-1]\n", - " # point.append((raw_data[x_name].iloc[i],counter,i_best,float(raw_data[y_name].iloc[i])))\n", - " # counter+=1\n", - "\n", - " if all([transfer, trans_data, t_indexes]):\n", + " if counter == 1:\n", + " \n", + " i_best = float(raw_data[y_name].iloc[i])\n", + " else:\n", + " i_best = sorted(point, key=lambda i_points: i_points[-1])[-1][-3]\n", + " \n", + " point.append((raw_data[x_name].iloc[i],counter,i_best,float(raw_data[y_name].iloc[i]),py,mod_std))\n", + " print(\"check\",raw_data[x_name].iloc[i], float(raw_data[y_name].iloc[i]),i_best)\n", + " counter+=1\n", + "\n", + " if transfer:\n", " for j in t_indexes[:transfer_train]:\n", " asktell.tell(trans_data[x_name].iloc[j], float(trans_data[y_name].iloc[j]))\n", " \n", - " if calibrate: \n", + " if calibrate:\n", " # y = [float(raw_data[y_name].iloc[i]) for i in indexes[:initial_train]]\n", " # pred = asktell.predict(y)\n", " # ymeans = np.array([yhi.mean() for yhi in pred])\n", " # ystds = np.array([yhi.std() for yhi in pred])\n", - " # calibration_factor = uct.recalibration.optimize_recalibration_ratio(ymeans, ystds, np.array(y), criterion=\"miscal\")\n", + " # calibration_factor = uct.recalibration.optimize_recalibration_ratio (ymeans, ystds, np.array(y), criterion=\"miscal\")\n", " calibration_factor = 5.0\n", " asktell.set_calibration_factor(calibration_factor)\n", "\n", @@ -410,15 +483,14 @@ " pool.choose(xi)\n", " yi = float(raw_data[raw_data[x_name] == xi][y_name].iloc[0])\n", " asktell.tell(xi, yi)\n", - " best = yi\n", - " point.append((xi, 1+initial_train,best, yi))\n", + " point.append((xi,1+initial_train,i_best, yi,py,mod_std))\n", "\n", - " # best = sorted(point, key=lambda points: points[-1])[-1][-1]\n", + " best = sorted(point, key=lambda points: points[-1])[-1][-3]\n", "\n", " for i in range(1, N):\n", " if i == N - 1 and aq != \"random\":\n", " aq = \"greedy\"\n", - " px, _, py = asktell.ask(pool,\n", + " px, _, py, mod_std = asktell.ask(pool,\n", " k=ask_K,\n", " aq_fxn=aq,\n", " _lambda=1.0,\n", @@ -435,14 +507,15 @@ " y = float(raw_data[raw_data[x_name] == xc][y_name].iloc[0])\n", " asktell.tell(xc, y)\n", " best = max(y, best)\n", - " point.append((xc, 1+initial_train+i*ask_K, best, y))\n", + " print(\"here\",best)\n", + " point.append((xc, 1+initial_train+i*ask_K, best, y,py[0],mod_std[0]))\n", " \n", " return point" ] }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 10, "metadata": { "notebookRunGroups": { "groupValue": "1" @@ -464,8 +537,14 @@ " x_name = \"Prompt\"\n", " y_name = \"dummy_Completion\"\n", " case \"ocm\":\n", - " data_path = \"./dataset/data/12708_ocm_dataset.csv\" #C2_yield_meth_oxy_short_corrected.csv\n", - " raw_data = pd.read_csv(data_path, sep=\";\")\n", + " data_path = \"./dataset/data/C2_yield_meth_oxy_short_corrected.csv\"\n", + " raw_data = pd.read_csv(data_path, sep=\",\")\n", + " raw_data = raw_data.sample(frac=1).reset_index(drop=True)\n", + " x_name = \"prompt\"\n", + " y_name = \"completion\"\n", + " case \"alloy\":\n", + " data_path = \"/Users/shane/repos/BO-LIFT/paper/dataset/processed_with_log_delta_n.csv\"\n", + " raw_data = pd.read_csv(data_path, sep=\",\")\n", " raw_data = raw_data.sample(frac=1).reset_index(drop=True)\n", " x_name = \"prompt\"\n", " y_name = \"completion\"\n", @@ -479,7 +558,6 @@ " data_path = \"./dataset/data/esol_iupac.csv\"\n", " raw_data = pd.read_csv(data_path)\n", " raw_data = raw_data.dropna()\n", - " raw_data = raw_data.sample(frac=1).reset_index(drop=True)\n", " raw_data = raw_data[[\"IUPAC\", \"measured log(solubility:mol/L)\"]]\n", " x_name = \"IUPAC\"\n", " y_name = \"measured log(solubility:mol/L)\"\n", @@ -490,7 +568,7 @@ " indexes = np.random.choice(raw_data.shape[0], int(n_data), replace=False)\n", "\n", " print(f\"Dataset size: \\n\\t{n_data}\")\n", - " starts = raw_data.sort_values(by=y_name, ascending=True).head(10).sample(M+initial_train)# np.random.randint(0, len(indexes), M)\n", + " starts = raw_data.sort_values(by=y_name, ascending=True).head(5).sample(M+initial_train)# np.random.randint(0, len(indexes), M)\n", " print(f\"Start xs: \\n\\t{starts[x_name].to_list()}\")\n", " print(f\"Start ys: \\n\\t{starts[y_name].to_list()}\")\n", " starts = starts.index\n", @@ -501,7 +579,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 11, "metadata": { "notebookRunGroups": { "groupValue": "1" @@ -511,16 +589,13 @@ "source": [ "def get_asktell(model: str, kwargs: dict = {}, pool: bolift.Pool = None, knn: int = 1):\n", " match model:\n", - " case \"gpt-3.5-instruct\":\n", + " case \"instruct\":\n", " kwargs['model']=\"gpt-3.5-turbo-instruct\"\n", " return bolift.AskTellFewShotTopk(**kwargs)\n", - " case \"gpt-3.5-turbo\":\n", + " case \"gpt-turbo\":\n", " kwargs['model']=\"gpt-3.5-turbo-0125\"\n", " return bolift.AskTellFewShotTopk(**kwargs)\n", " case \"gpt-4\":\n", - " kwargs['model']=\"gpt-4\"\n", - " return bolift.AskTellFewShotTopk(**kwargs)\n", - " case \"gpt-4-turbo\":\n", " kwargs['model']=\"gpt-4-0125-preview\"\n", " return bolift.AskTellFewShotTopk(**kwargs)\n", " case \"gpt-4o\":\n", @@ -551,7 +626,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 12, "metadata": { "notebookRunGroups": { "groupValue": "1" @@ -567,13 +642,13 @@ " else:\n", " x = [raw_data[x_name].iloc[i] for i in indexes]\n", " pool = bolift.Pool(list(x), formatter=kwargs['x_formatter'])\n", + "\n", " # cloudpickle.dump(pool, open(pool_path, \"wb\"))\n", "\n", " if os.path.exists(path):\n", " bayesOpts = cloudpickle.load(open(path, \"rb\"))\n", " else:\n", " bayesOpts = {}\n", - " \n", " return bayesOpts, pool" ] }, @@ -594,7 +669,7 @@ }, { "cell_type": "code", - "execution_count": 45, + "execution_count": 13, "metadata": { "notebookRunGroups": { "groupValue": "1" @@ -606,19 +681,20 @@ "output_type": "stream", "text": [ "Dataset size: \n", - "\t882\n", + "\t8783\n", "Start xs: \n", - "\t['benzo[a]pyrene', 'hexacyclo[12.8.0.02,11.03,8.04,21.017,22]docosa-1(14),2(11),3(8),4,6,9,12,15,17(22),18,20-undecaene', 'perylene', '1-ethoxy-4-[2-methyl-1-[(3-phenoxyphenyl)methoxy]propan-2-yl]benzene', 'tetracene', 'benzo[k]fluoranthene']\n", + "\t['An interface between HoCuO2 (Fermi level: 5.67 meV) and ZrSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.77 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between NbS2 (Fermi level: 5.67 meV) and Pb(ClO3)2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.95 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between La2(SiO3)3 (Fermi level: 5.67 meV) and TiSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.1 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.']\n", "Start ys: \n", - "\t[-8.699, -9.018, -8.804, -8.6, -8.6, -8.49]\n", + "\t[-6.5713, -5.8604, -6.3596]\n", "Start indexes: \n", - "\tIndex([61, 743, 490, 710, 403, 863], dtype='int64')\n", + "\tIndex([2176, 8086, 6714], dtype='int64')\n", "\n" ] } ], "source": [ - "np.random.seed(10)\n", + "\n", + "np.random.seed(28)\n", "\n", "import warnings\n", "warnings.filterwarnings('ignore', message='Changing the sparsity structure of a csr_matrix is expensive.*')\n", @@ -637,49 +713,1209 @@ " with open(inv_system_message_path, \"r\") as f:\n", " inv_system_message = f.read()\n", "\n", - "asktell = get_asktell(model, kwargs=kwargs)# , pool=bolift.Pool(list(pool.sample(5000)))) #, knn=5)" + "asktell = get_asktell(model, kwargs=kwargs)#, pool=bolift.Pool(list(pool.sample(5000))), knn=5)" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 15, "metadata": {}, - "outputs": [], - "source": [ - "import warnings\n", - "warnings.filterwarnings('ignore', message='Changing the sparsity structure of a csr_matrix is expensive.*')\n", - "warnings.filterwarnings('ignore', message='Input data is not contained to the unit cube.*')\n", - "warnings.filterwarnings('ignore', message='Input data is not standardized.*')\n", - "warnings.filterwarnings('ignore', message=\"Keyword arguments .* will be ignored because they are not allowed parameters for function .*\", category=UserWarning)\n", - "\n", - "for aq in [\"random_mean\", \"upper_confidence_bound\", \"random\"]: #['expected_improvement','log_expected_improvement','probability_of_improvement', 'upper_confidence_bound', 'greedy',\"random\",\"random_mean\"]:\n", - " print(aq, \"start:\", end=\" \")\n", - " points = []\n", - " for i in range(M):\n", - " print(i, end=\", \")\n", - " \n", - " point = run_experiment(\n", - " copy.deepcopy(asktell),\n", - " pool, # copy.deepcopy(pool)\n", - " raw_data,\n", - " indexes=indexes,\n", - " x_name=x_name,\n", - " y_name=y_name,\n", - " N=N,\n", - " aq=aq,\n", - " start_index=starts[i+initial_train],\n", - " calibrate=True,\n", - " initial_train=initial_train,\n", - " ask_K=ask_K,\n", - " lambda_multi=lambda_multi,\n", - " system_message=system_message,\n", - " inv_system_message=inv_system_message,\n", - " transfer_train=initial_transfer_train,\n", - " transfer=False,\n", - " trans_data=None,\n", - " t_indexes=None)\n", - " \n", - " points.append(point)\n", + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "expected_improvement start: 0, check An interface between La4Re6O19 (Fermi level: 5.67 meV) and NbS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.72 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials. 0.5188 0.5188\n", + "Given the log(charge transfer) values and the template for generating experimental procedures, here are the complete responses for the remaining scenarios:\n", + "\n", + "1. If the log(charge transfer) [coulombs/cm²] is 0.83, then the input is @@@\n", + "the corresponding experimental procedure: An interface between NbS2 (Fermi level: 5.67 meV) and NbS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.72 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.###\n", + "\n", + "These responses ensure that the generated experimental procedures are consistent with the given charge transfer values and maintain the format specified in the template.\n", + "['An interface between Li2CO3 (Fermi level: 5.67 meV) and NbS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.02 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between In(PO3)3 (Fermi level: 5.67 meV) and NbSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and Sc11Nb3O24 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.25 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between H7ClO3 (Fermi level: 5.67 meV) and NbS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.95 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between NbS2 (Fermi level: 5.67 meV) and AgPtO2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.92 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between ScIO (Fermi level: 5.67 meV) and NbS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.31 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Ge7H18O23 (Fermi level: 5.67 meV) and NbS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.31 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Cu3(AsO4)2 (Fermi level: 5.67 meV) and NbS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.05 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between NbS2 (Fermi level: 5.67 meV) and Mo2Cl4O (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.3 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between AlPO4 (Fermi level: 5.67 meV) and NbS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.04 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Sn3SO7 (Fermi level: 5.67 meV) and NbS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Ca3(ClO3)2 (Fermi level: 5.67 meV) and NbSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.51 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between TcO3F (Fermi level: 5.67 meV) and NbS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.72 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Mn(SbO3)2 (Fermi level: 5.67 meV) and NbS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.25 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between V3(H3O5)2 (Fermi level: 5.67 meV) and NbS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.25 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Cr(ClO2)2 (Fermi level: 5.67 meV) and NbS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.25 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.']\n", + "here 1.9242\n", + "If the log(charge transfer) [coulombs/cm²] is 2.29, then the input is @@@\n", + "\n", + "the corresponding experimental procedure: An interface between HfO2 (Fermi level: 5.67 meV) and Ag2Te (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.18 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.###\n", + "['An interface between AgClO2 (Fermi level: 5.67 meV) and HfS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.55 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Ge7H18O23 (Fermi level: 5.67 meV) and Te2Mo (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.21 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between AgHO2 (Fermi level: 5.67 meV) and TaSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.62 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Pt2Rh2O5 (Fermi level: 5.67 meV) and Hf3Te2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 1.52 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between AgClO2 (Fermi level: 5.67 meV) and Te2W (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 1.75 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between AlAgO2 (Fermi level: 5.67 meV) and Te2Pd (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.47 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Ag2H16O9 (Fermi level: 5.67 meV) and TiTe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.72 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Y(HO)3 (Fermi level: 5.67 meV) and HfS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.1 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between AlHO2 (Fermi level: 5.67 meV) and Zr3Te2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.09 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Sb16Cl4O21 (Fermi level: 5.67 meV) and Hf3Te2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 1.75 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Te2W (Fermi level: 5.67 meV) and TlHgO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 1.52 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Te2Mo (Fermi level: 5.67 meV) and Ag3RuO4 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.82 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Hf2P2O9 (Fermi level: 5.67 meV) and Te2Mo (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.9 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Hf3Te2 (Fermi level: 5.67 meV) and Mg(SbO2)2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 1.73 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between HoBO3 (Fermi level: 5.67 meV) and Hf3Te2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 1.92 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Cd2SnO4 (Fermi level: 5.67 meV) and Hf3Te2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 1.52 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.']\n", + "here 1.9242\n", + "\"An interface between Hf3Te2 (Fermi level: 5.67 meV) and Ti7O14 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.67 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.\"\n", + "['An interface between Fe4O5F3 (Fermi level: 5.67 meV) and Hf3Te2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 2 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Te2W (Fermi level: 5.67 meV) and Ti(BiO3)2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 2 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between HfPbO3 (Fermi level: 5.67 meV) and TiS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.52 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between TiAl2O5 (Fermi level: 5.67 meV) and VTe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.05 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between H5IO6 (Fermi level: 5.67 meV) and Ti3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.52 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Ag2H16O9 (Fermi level: 5.67 meV) and TiTe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.72 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Ho2TeO6 (Fermi level: 5.67 meV) and TaTe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 1.52 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Hf2P2O9 (Fermi level: 5.67 meV) and ZrTe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.05 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Y2Zr2O7 (Fermi level: 5.67 meV) and TiTe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.3 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between BaTiO3 (Fermi level: 5.67 meV) and Hf3Te2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 2 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Te2W (Fermi level: 5.67 meV) and Hf3N2O3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 1.55 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between H4OF2 (Fermi level: 5.67 meV) and TiS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.52 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Tm(HO)3 (Fermi level: 5.67 meV) and Hf3Te2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 1.52 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Ti5Mn3O16 (Fermi level: 5.67 meV) and HfSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.95 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Co3OF5 (Fermi level: 5.67 meV) and TiTe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between H5IO6 (Fermi level: 5.67 meV) and Zr3Te2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.77 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.']\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/shane/repos/BO-LIFT/paper/../bolift/llm_model.py:314: RuntimeWarning: invalid value encountered in divide\n", + " probs = probs / np.sum(probs)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "here 2.6603\n", + "An interface between CuLaO3 (Fermi level: 5.67 meV) and Ce2S3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.73 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.###\n", + "['An interface between Zr3Se2 (Fermi level: 5.67 meV) and La2CuO4 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.77 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between LuGaO3 (Fermi level: 5.67 meV) and NbS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.07 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between CeU5O12 (Fermi level: 5.67 meV) and PdS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.32 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between CsLaO3 (Fermi level: 5.67 meV) and MoS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.62 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between TaCuO3 (Fermi level: 5.67 meV) and TaS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.32 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and LaAlO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.89 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between SrCuO3 (Fermi level: 5.67 meV) and VS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.54 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between CeZr6O14 (Fermi level: 5.67 meV) and NbS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.45 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between CeU5O12 (Fermi level: 5.67 meV) and TaSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.42 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between CdCu2O3 (Fermi level: 5.67 meV) and NbS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.72 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between LuNiO3 (Fermi level: 5.67 meV) and Zr3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.22 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between CsLaO3 (Fermi level: 5.67 meV) and Ti9Se2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.52 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Eu2CuO4 (Fermi level: 5.67 meV) and Ti3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.52 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between LiCuO2 (Fermi level: 5.67 meV) and Pd7Se2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.72 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Te2Mo (Fermi level: 5.67 meV) and La2CuO4 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.62 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between LaTi2O6 (Fermi level: 5.67 meV) and NbS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.2 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.']\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/shane/repos/BO-LIFT/paper/../bolift/llm_model.py:314: RuntimeWarning: invalid value encountered in divide\n", + " probs = probs / np.sum(probs)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "here 2.6603\n", + "If the log(charge transfer) [coulombs/cm²] is 3.13, then the input is @@@\n", + "\n", + "the corresponding experimental procedure: An interface between Si6Cl8 (Fermi level: 5.67 meV) and Zn3O2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.46 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.### \n", + "\n", + "If you have any more queries or need further assistance, feel free to ask!\n", + "['An interface between H7ClO3 (Fermi level: 5.67 meV) and ZrS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and LiGa5O8 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.92 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Zn3CdO4 (Fermi level: 5.67 meV) and TiS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.52 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Si3(Cl4O)2 (Fermi level: 5.67 meV) and NbS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.3 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Mg2Mn3O8 (Fermi level: 5.67 meV) and Zr3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.3 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between C2N2O5 (Fermi level: 5.67 meV) and Zr3Se2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.95 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between ZnSeO3 (Fermi level: 5.67 meV) and VS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.95 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between LiCuO2 (Fermi level: 5.67 meV) and ZrS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.07 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Zr3S2 (Fermi level: 5.67 meV) and Ca2Sn9O13 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.56 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between NaIO4 (Fermi level: 5.67 meV) and Zr9S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.52 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and CaSiO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.36 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Al10Ge2O19 (Fermi level: 5.67 meV) and Zr3Se2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.36 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between ZrS2 (Fermi level: 5.67 meV) and ZnWO2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.77 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Mn3Si3O10 (Fermi level: 5.67 meV) and Ti3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.1 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Mo2Cl4O (Fermi level: 5.67 meV) and Zr9S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.35 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li3V2O6 (Fermi level: 5.67 meV) and ZrSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.3 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.']\n", + "here 2.6603\n", + "Based on the log(charge transfer) values provided, the corresponding experimental procedures are as follows:\n", + "\n", + "1. If the log(charge transfer) [coulombs/cm²] is 2.66, then the input is:\n", + " - The corresponding experimental procedure: An interface between H5IO6 (Fermi level: 5.67 meV) and Zr3Te2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.77 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.\n", + "\n", + "2. If the log(charge transfer) [coulombs/cm²] is 1.86, then the input is:\n", + " - The corresponding experimental procedure: An interface between Te2Mo (Fermi level: 5.67 meV) and La2CuO4 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.62 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.\n", + "\n", + "3. If the log(charge transfer) [coulombs/cm²] is 0.70, then the input is:\n", + " - The corresponding experimental procedure: An interface between NbS2 (Fermi level: 5.67 meV) and Pb(ClO3)2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.95 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.\n", + "\n", + "4. If the log(charge transfer) [coulombs/cm²] is -0.64, then the input is:\n", + " - The corresponding experimental procedure: An interface between Zr3S2 (Fermi level: 5.67 meV) and Ca2Sn9O13 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.56 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.\n", + "\n", + "5. If the log(charge transfer) [coulombs/cm²] is 0.52, then the input is:\n", + " - The corresponding experimental procedure: An interface between La4Re6O19 (Fermi level: 5.67 meV) and NbS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.72 Å, calculated as\n", + "['An interface between Li2(NiO2)3 (Fermi level: 5.67 meV) and Te2Pd3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.6 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Bi14MoO24 (Fermi level: 5.67 meV) and Zr3Se2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.35 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Te2Mo (Fermi level: 5.67 meV) and InCuO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.62 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between La2(SiO3)3 (Fermi level: 5.67 meV) and Ti3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.1 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Sb16Cl4O21 (Fermi level: 5.67 meV) and Hf3Te2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 1.75 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between LiCuO2 (Fermi level: 5.67 meV) and Zr9S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.07 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Co6O5F7 (Fermi level: 5.67 meV) and HfSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.9 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Pb2CO6 (Fermi level: 5.67 meV) and Te2W (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 1.7 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li4MoO5 (Fermi level: 5.67 meV) and Hf3Te2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 2.1 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between ZrS2 (Fermi level: 5.67 meV) and Mn2Te3O8 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.3 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Na8NiO6 (Fermi level: 5.67 meV) and Zr3Te2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.52 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between ZrS2 (Fermi level: 5.67 meV) and Co(IO3)2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.25 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between V2CuO6 (Fermi level: 5.67 meV) and Hf3Te2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 2.05 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Sb3(AsO4)4 (Fermi level: 5.67 meV) and Zr3Te2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.1 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li(FeO2)2 (Fermi level: 5.67 meV) and Zr3Te2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.25 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Fe6O5F7 (Fermi level: 5.67 meV) and Te2Pt (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 2 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.']\n", + "here 2.6603\n", + "To determine the input corresponding to a log(charge transfer) of 3.07, we need to calculate the corresponding experimental procedure based on the provided template. Let's calculate the experimental parameters for this scenario:\n", + "\n", + "Given log(charge transfer) = 3.07, we can form a chemically valid compound using elements from the pre-defined list.\n", + "\n", + "Let's proceed with the calculation.\n", + "['An interface between VS2 (Fermi level: 5.67 meV) and LiClO2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.87 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between In(PO3)3 (Fermi level: 5.67 meV) and TaSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.7 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between RbH3O2 (Fermi level: 5.67 meV) and Ti3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 5.03 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between H3ClO5 (Fermi level: 5.67 meV) and Te2W (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 1.75 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between PtS2 (Fermi level: 5.67 meV) and Mg(IO3)2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.53 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between BaCr2O7 (Fermi level: 5.67 meV) and Zr3Se2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.3 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between LiTi3O4 (Fermi level: 5.67 meV) and Te2Pd3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.63 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Pb(ClO3)2 (Fermi level: 5.67 meV) and Pd7Se2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.65 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between H7ClO3 (Fermi level: 5.67 meV) and MoS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.85 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Ni(ClO3)2 (Fermi level: 5.67 meV) and Ti13S24 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.97 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and InCuO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.57 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Te2Mo (Fermi level: 5.67 meV) and ScClO (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.21 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li3Mn4O8 (Fermi level: 5.67 meV) and TaS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.85 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between H7ClO3 (Fermi level: 5.67 meV) and ReSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.65 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between H3ClO5 (Fermi level: 5.67 meV) and PdS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.55 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li7(NiO2)12 (Fermi level: 5.67 meV) and PtS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.77 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.']\n", + "here 2.6603\n", + "### System Response:\n", + "\n", + "If the log(charge transfer) [coulombs/cm²] is 3.26, then the input is @@@ \n", + "the corresponding experimental procedure: An interface between Mo3Br6 (Fermi level: 5.67 meV) and UO2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.23 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.###\n", + "\n", + "Your response must strictly adhere to the specified format, ensuring the validity of the compounds and consistency with the template provided.\n", + "['An interface between Mo3(PO4)4 (Fermi level: 5.67 meV) and Ti3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.1 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and NaUO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.32 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between MoSe2 (Fermi level: 5.67 meV) and UCrO4 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.15 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li7BiO6 (Fermi level: 5.67 meV) and MoS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.92 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Te2Mo (Fermi level: 5.67 meV) and Pu2SO2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.9 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Zr3S2 (Fermi level: 5.67 meV) and Ce8U2O21 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.77 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between CuMoO4 (Fermi level: 5.67 meV) and NbS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.3 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li4MoO5 (Fermi level: 5.67 meV) and Zr3Se2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.35 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Te2Mo (Fermi level: 5.67 meV) and InCuO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.62 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and Y2(MoO4)3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.35 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Y3U2O10 (Fermi level: 5.67 meV) and NbS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.5 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Ca3(CoO3)2 (Fermi level: 5.67 meV) and MoS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.41 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Mo2Cl4O (Fermi level: 5.67 meV) and Zr9S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.35 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Mn6O7F5 (Fermi level: 5.67 meV) and MoSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.15 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between U(PO3)4 (Fermi level: 5.67 meV) and MoS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.9 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between La2MoO6 (Fermi level: 5.67 meV) and Te2Mo (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.2 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.']\n", + "here 2.6603\n", + "To determine the experimental procedure for a log(charge transfer) of 3.29, we need to follow the guidelines for selecting valid elements and composing chemically valid compounds. Let's generate the experimental procedure based on these constraints:\n", + "\n", + "### Input:\n", + "- Log(charge transfer) [coulombs/cm²]: 3.29\n", + "\n", + "### Corresponding Experimental Procedure:\n", + "\"An interface between Na3F (Fermi level: 5.67 meV) and Ca2S (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.78 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.\"\n", + "\n", + "This response ensures that the elements selected are valid based on the provided list and that the compounds formed are chemically valid.\n", + "['An interface between VS2 (Fermi level: 5.67 meV) and Na5SbO5 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.32 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Ca3(CoO3)2 (Fermi level: 5.67 meV) and Te2Pd3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.94 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li2CO3 (Fermi level: 5.67 meV) and Zr3Se2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.07 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Al(IO3)3 (Fermi level: 5.67 meV) and Ta3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.64 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between H3ClO5 (Fermi level: 5.67 meV) and NbS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.95 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Ca3(ClO3)2 (Fermi level: 5.67 meV) and MoS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.41 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Na3NiO2 (Fermi level: 5.67 meV) and Ti13S24 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.27 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and LiClO2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.87 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Fe2OF3 (Fermi level: 5.67 meV) and NbS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.2 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between NaIO4 (Fermi level: 5.67 meV) and Zr9S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.52 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Ca(H8O5)2 (Fermi level: 5.67 meV) and PtS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.11 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Te2Mo (Fermi level: 5.67 meV) and Na2GeO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.37 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Zr3Se2 (Fermi level: 5.67 meV) and NaUO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.52 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and CsCr3O8 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.1 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Na6MgO4 (Fermi level: 5.67 meV) and TaS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.07 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between CaCr2O4 (Fermi level: 5.67 meV) and Ti3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.31 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.']\n", + "here 2.6603\n", + "To determine the experimental procedure for a log(charge transfer) of 3.12, I will now generate a chemically valid interface between two materials based on the given Fermi levels and separation distance criteria. Let's calculate the corresponding materials and complete the experimental procedure. Just a moment.\n", + "['An interface between Al(IO3)3 (Fermi level: 5.67 meV) and Ta3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.64 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between H3ClO5 (Fermi level: 5.67 meV) and Zr3Se2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between LiTi3O4 (Fermi level: 5.67 meV) and Pd7Se2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.9 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and Li6CrO4 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.1 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between ScClO (Fermi level: 5.67 meV) and Te2Pt (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 2.11 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Co(IO3)2 (Fermi level: 5.67 meV) and Zr3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.25 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Te2Mo (Fermi level: 5.67 meV) and Li2CO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.92 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Cu(HO)2 (Fermi level: 5.67 meV) and Ti13S24 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.52 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between In(PO3)3 (Fermi level: 5.67 meV) and Te2W (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 1.8 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and InCuO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.57 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and AlAgO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.89 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Ge7H18O23 (Fermi level: 5.67 meV) and TaSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.01 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Fe2OF3 (Fermi level: 5.67 meV) and TiSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and Bi3ClO4 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.8 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Te2Mo (Fermi level: 5.67 meV) and CrCuO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.15 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Na5CrO4 (Fermi level: 5.67 meV) and Te2Pd3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.9 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.']\n", + "here 2.6603\n", + "If the log(charge transfer) [coulombs/cm²] is 2.96, then the input is missing from your message. Could you please provide the necessary information for generating the corresponding experimental procedure for this specific charge transfer value?\n", + "['An interface between VS2 (Fermi level: 5.67 meV) and Li6CrO4 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.1 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between H3ClO5 (Fermi level: 5.67 meV) and Te2W (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 1.75 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between MgCoO2 (Fermi level: 5.67 meV) and Ta3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.8 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Pb(ClO3)2 (Fermi level: 5.67 meV) and TiS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.75 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between MoSe2 (Fermi level: 5.67 meV) and Li2CO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.92 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Te2W (Fermi level: 5.67 meV) and Li(NiO2)2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 1.97 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Co(IO3)2 (Fermi level: 5.67 meV) and Zr3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.25 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Te2Mo (Fermi level: 5.67 meV) and CuPO4 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.9 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between H5ClO6 (Fermi level: 5.67 meV) and ReSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.65 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between KMn2O4 (Fermi level: 5.67 meV) and Ti3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.75 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Cr(ClO2)2 (Fermi level: 5.67 meV) and TaSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.95 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between H7ClO3 (Fermi level: 5.67 meV) and NbS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.95 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between LiClO2 (Fermi level: 5.67 meV) and PtS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.62 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between H5IO6 (Fermi level: 5.67 meV) and Ti3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.52 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and CaB4O7 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.36 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and LiMnO2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.1 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.']\n", + "here 2.6603\n", + "If the log(charge transfer) [coulombs/cm²] is 2.99, then the input is missing for me to provide the corresponding experimental procedure. Could you please provide the necessary input so I can generate the experimental procedure for an interface with that specific charge transfer value?\n", + "['An interface between VS2 (Fermi level: 5.67 meV) and LiClO2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.87 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Te2Mo (Fermi level: 5.67 meV) and CuPO4 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.9 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between H3ClO5 (Fermi level: 5.67 meV) and TaS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.55 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between ZrS2 (Fermi level: 5.67 meV) and Co(IO3)2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.25 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li6CrO4 (Fermi level: 5.67 meV) and MoSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.15 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between In(PO3)3 (Fermi level: 5.67 meV) and TiS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.8 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and Mg2Mo3O8 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.15 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and CrCuO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.1 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between LiTi3O4 (Fermi level: 5.67 meV) and Zr9S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.25 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li3CoO3 (Fermi level: 5.67 meV) and TaSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.9 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li2CO3 (Fermi level: 5.67 meV) and HfS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.62 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Te2Mo (Fermi level: 5.67 meV) and ScClO (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.21 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and LaGaO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.92 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Cu(HO)2 (Fermi level: 5.67 meV) and Ti13S24 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.52 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between H7ClO3 (Fermi level: 5.67 meV) and NbS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.95 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Al(IO3)3 (Fermi level: 5.67 meV) and VS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.89 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.']\n", + "here 2.6603\n", + "If the log(charge transfer) [coulombs/cm²] is 3.14, then the input is missing in your prompt. Could you please provide the necessary information so I can generate the corresponding experimental procedure for that specific charge transfer value?\n", + "['An interface between VS2 (Fermi level: 5.67 meV) and LiClO2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.87 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between KMn2O4 (Fermi level: 5.67 meV) and Te2Pt (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 2.75 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between H3ClO5 (Fermi level: 5.67 meV) and PdS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.55 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Al(IO3)3 (Fermi level: 5.67 meV) and Ta3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.64 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li3Mn4O8 (Fermi level: 5.67 meV) and MoSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.15 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between H7ClO3 (Fermi level: 5.67 meV) and NbSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.95 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between CoHO2 (Fermi level: 5.67 meV) and Ti3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and CrCuO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.1 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between LiTi3O4 (Fermi level: 5.67 meV) and Zr9S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.25 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between CsClO4 (Fermi level: 5.67 meV) and Ti13S24 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.75 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between H2CO3 (Fermi level: 5.67 meV) and Te2Pt (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 1.7 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li2CO3 (Fermi level: 5.67 meV) and Te2Mo (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.92 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between WS2 (Fermi level: 5.67 meV) and H7ClO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.55 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Pb(ClO3)2 (Fermi level: 5.67 meV) and Pd7Se2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.65 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and MnPbO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.1 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Cr3HO8 (Fermi level: 5.67 meV) and Te2W (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 2.05 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.']\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/shane/repos/BO-LIFT/paper/../bolift/llm_model.py:314: RuntimeWarning: invalid value encountered in divide\n", + " probs = probs / np.sum(probs)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "here 2.6603\n", + "If the log(charge transfer) [coulombs/cm²] is 3.16, then the input is missing from the provided message. Could you please provide the necessary information to generate the corresponding experimental procedure?\n", + "['An interface between VS2 (Fermi level: 5.67 meV) and Li6CrO4 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.1 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between H3ClO5 (Fermi level: 5.67 meV) and PdS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.55 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Te2Mo (Fermi level: 5.67 meV) and InCuO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.62 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li3Mn4O8 (Fermi level: 5.67 meV) and MoSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.15 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between H7ClO3 (Fermi level: 5.67 meV) and NbSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.95 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between ZrS2 (Fermi level: 5.67 meV) and Co(IO3)2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.25 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li2CO3 (Fermi level: 5.67 meV) and TaS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.62 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between H5IO6 (Fermi level: 5.67 meV) and Ti3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.52 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li7(NiO2)12 (Fermi level: 5.67 meV) and Te2Pd (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.6 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between H5ClO6 (Fermi level: 5.67 meV) and Te2Pt (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 1.75 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between WS2 (Fermi level: 5.67 meV) and H7ClO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.55 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between LiTi3O4 (Fermi level: 5.67 meV) and Zr9S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.25 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and Mn3Si3O10 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.15 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Mo3(PO4)4 (Fermi level: 5.67 meV) and Ti3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.1 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Ge7H18O23 (Fermi level: 5.67 meV) and Te2Mo (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.21 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and LaGaO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.92 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.']\n", + "here 2.6603\n", + "To determine the experimental procedure for a log(charge transfer) of 3.23, we need to follow the template format provided earlier:\n", + "\n", + "\"An interface between {formula} (Fermi level: {efermi} meV) and {formula2} (Fermi level: {efermi-2} meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is {distance_d} Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.\"\n", + "\n", + "Given the log(charge transfer) is 3.23, the corresponding experimental procedure is:\n", + "\n", + "### If the log(charge transfer) [coulombs/cm²] is 3.23, then the input is @@@\n", + "the corresponding experimental procedure: An interface between CsClO4 (Fermi level: 5.67 meV) and Ag2O (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.76 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.### \n", + "\n", + "This response ensures that the elements selected are valid based on the constraints provided and that the resulting compounds are chemically valid.\n", + "['An interface between VS2 (Fermi level: 5.67 meV) and LiClO2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.87 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between CsCr3O8 (Fermi level: 5.67 meV) and TaSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.95 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Mg(IO3)2 (Fermi level: 5.67 meV) and Te2Pd3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.36 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between H3ClO5 (Fermi level: 5.67 meV) and NbS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.95 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between K4CO4 (Fermi level: 5.67 meV) and Zr3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 5 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between PtS2 (Fermi level: 5.67 meV) and Al(IO3)3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.64 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between AgClO2 (Fermi level: 5.67 meV) and MoSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.85 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Te2Mo (Fermi level: 5.67 meV) and ScClO (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.21 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Cs2SO4 (Fermi level: 5.67 meV) and Pd7Se2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.7 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between H5ClO6 (Fermi level: 5.67 meV) and Te2Pt (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 1.75 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Te2W (Fermi level: 5.67 meV) and AgCO2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 1.72 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between TaS2 (Fermi level: 5.67 meV) and Pb(ClO3)2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.55 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and Mg(AgO2)2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.78 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between RbClO4 (Fermi level: 5.67 meV) and Zr3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 5.28 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li2CoO3 (Fermi level: 5.67 meV) and Ta3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.8 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between NaAgO (Fermi level: 5.67 meV) and Zr3Se2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.52 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.']\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/shane/repos/BO-LIFT/paper/../bolift/llm_model.py:314: RuntimeWarning: invalid value encountered in divide\n", + " probs = probs / np.sum(probs)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "here 2.6603\n", + "If the log(charge transfer) [coulombs/cm²] is 2.84, then the input is @@@ \n", + "the corresponding experimental procedure: An interface between Ba2C (Fermi level: 5.67 meV) and Yb2UO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.73 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.###\n", + "['An interface between VS2 (Fermi level: 5.67 meV) and YbI2O (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.57 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between BaTiO3 (Fermi level: 5.67 meV) and Zr9S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.25 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Ce(BO2)3 (Fermi level: 5.67 meV) and NbS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.12 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Y3U2O10 (Fermi level: 5.67 meV) and Te2W (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 2.3 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between YbCrO3 (Fermi level: 5.67 meV) and TaS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.85 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between BaAuO3 (Fermi level: 5.67 meV) and VS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.57 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Ba3In2O6 (Fermi level: 5.67 meV) and Te2Pd (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.15 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Y2(MoO4)3 (Fermi level: 5.67 meV) and ZrS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.55 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Yb4Br6O (Fermi level: 5.67 meV) and NbSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.05 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between YMnO3 (Fermi level: 5.67 meV) and NbS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.5 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and CsCr3O8 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.1 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between YbRe3O16 (Fermi level: 5.67 meV) and Ti3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.52 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between LiCuO2 (Fermi level: 5.67 meV) and Zr3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.07 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and GaBO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.97 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and TbCoO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.05 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between La3B5O12 (Fermi level: 5.67 meV) and Zr3Se2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.17 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.']\n", + "here 2.6603\n", + "If the log(charge transfer) [coulombs/cm²] is 3.30, then the input is not explicitly provided in the conversation. To determine the corresponding experimental procedure for this specific charge transfer value, I will generate a chemically valid compound pairing based on the allowed elements and Fermi levels given in the system message. Let me provide you with the experimental procedure for this scenario shortly. Thank you for your patience.\n", + "['An interface between VS2 (Fermi level: 5.67 meV) and Li3CoO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.05 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between H3ClO5 (Fermi level: 5.67 meV) and NbS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.95 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between In(PO3)3 (Fermi level: 5.67 meV) and Te2Pt (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 1.8 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Pb(ClO3)2 (Fermi level: 5.67 meV) and TiS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.75 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Mn3(OF2)2 (Fermi level: 5.67 meV) and Ta3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.85 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Cu(BiO2)2 (Fermi level: 5.67 meV) and Zr3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.77 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li6CrO4 (Fermi level: 5.67 meV) and TaSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.95 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between LiTi3O4 (Fermi level: 5.67 meV) and Pd7Se2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.9 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Te2Mo (Fermi level: 5.67 meV) and Mg(IO3)2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.83 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between PtS2 (Fermi level: 5.67 meV) and Al(IO3)3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.64 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between CoHO2 (Fermi level: 5.67 meV) and Ti3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li3Mn4O8 (Fermi level: 5.67 meV) and NbS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.25 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Na3CoO3 (Fermi level: 5.67 meV) and Te2W (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 2.27 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between H7ClO3 (Fermi level: 5.67 meV) and VS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.8 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li(NiO2)2 (Fermi level: 5.67 meV) and Zr3Te2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.22 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Zr3S2 (Fermi level: 5.67 meV) and LaGaO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.12 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.']\n", + "here 2.6603\n", + "Great! Here is the completed experimental procedure for the last scenario where the log(charge transfer) is 3.28:\n", + "\n", + "If the log(charge transfer) [coulombs/cm²] is 3.28, then the input is @@@ \n", + "the corresponding experimental procedure: An interface between Ca3N2 (Fermi level: 5.67 meV) and F2Pt (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 2.57 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.### \n", + "\n", + "This procedure ensures that the response is in line with the defined constraints and provides a structured approach to mapping charge transfer values for the interface model.\n", + "['An interface between VS2 (Fermi level: 5.67 meV) and Ca(Co2O3)2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.36 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Mo3(PO4)4 (Fermi level: 5.67 meV) and Te2Pt (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 2.1 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li2(NiO2)3 (Fermi level: 5.67 meV) and PtS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.77 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Al(IO3)3 (Fermi level: 5.67 meV) and Ta3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.64 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Fe4O5F3 (Fermi level: 5.67 meV) and PdSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.9 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Te2W (Fermi level: 5.67 meV) and Hf3N2O3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 1.55 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Ba(NiO2)4 (Fermi level: 5.67 meV) and Ti3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.97 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Zr3S2 (Fermi level: 5.67 meV) and LaGaO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.12 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Te2Mo (Fermi level: 5.67 meV) and ScClO (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.21 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Ca3(ClO3)2 (Fermi level: 5.67 meV) and NbSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.51 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and FePtO2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.05 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between C2N2O5 (Fermi level: 5.67 meV) and Te2Pd (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.33 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li(NiO2)2 (Fermi level: 5.67 meV) and Zr3Te2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.22 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Te2Mo (Fermi level: 5.67 meV) and CaZnO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.41 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and Sc11Nb3O24 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.25 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and TaCuO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.57 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.']\n", + "here 2.6603\n", + "If the log(charge transfer) [coulombs/cm²] is 3.32, then the input is missing from your message. Could you please provide the necessary information so I can generate the corresponding experimental procedure for this specific case?\n", + "['An interface between VS2 (Fermi level: 5.67 meV) and Li6CrO4 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.1 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between H3ClO5 (Fermi level: 5.67 meV) and PdS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.55 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Na3CoO3 (Fermi level: 5.67 meV) and Te2W (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 2.27 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li3Mn4O8 (Fermi level: 5.67 meV) and MoSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.15 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Pb(ClO3)2 (Fermi level: 5.67 meV) and TiS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.75 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between WS2 (Fermi level: 5.67 meV) and H7ClO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.55 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Zr3S2 (Fermi level: 5.67 meV) and AlRhO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.09 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between H5ClO6 (Fermi level: 5.67 meV) and TaSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.65 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and TaCuO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.57 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between KMn2O4 (Fermi level: 5.67 meV) and Ti3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.75 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li2CO3 (Fermi level: 5.67 meV) and HfS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.62 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Te2Mo (Fermi level: 5.67 meV) and Mg(IO3)2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.83 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between LiTi3O4 (Fermi level: 5.67 meV) and Zr9S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.25 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and Mn3Si3O10 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.15 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between CoHO2 (Fermi level: 5.67 meV) and Ti3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between LuVO3 (Fermi level: 5.67 meV) and Zr3Se2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.3 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.']\n", + "here 2.6603\n", + "1, check An interface between La4Re6O19 (Fermi level: 5.67 meV) and NbS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.72 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials. 0.5188 0.5188\n", + "If the log(charge transfer) [coulombs/cm²] is 0.67, the input is @@@\n", + "\n", + "the corresponding experimental procedure: An interface between NaAgO (Fermi level: 5.67 meV) and Ag2Te (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.07 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.###\n", + "\n", + "This response ensures that the selected elements form valid compounds and follows the experimental procedure template provided. If you have any more queries or need further assistance, feel free to ask!\n", + "['An interface between AgClO2 (Fermi level: 5.67 meV) and Te2Mo (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.85 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between NaAgO (Fermi level: 5.67 meV) and NbS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.47 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Te2W (Fermi level: 5.67 meV) and NaCO2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 2.27 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between TaS2 (Fermi level: 5.67 meV) and AlAgO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.64 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between AgHO2 (Fermi level: 5.67 meV) and Zr3Te2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.97 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Ge7H18O23 (Fermi level: 5.67 meV) and Te2Mo (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.21 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Ag2SO4 (Fermi level: 5.67 meV) and VTe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.85 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Na5CrO4 (Fermi level: 5.67 meV) and Te2Pd3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.9 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Ag3RuO4 (Fermi level: 5.67 meV) and Te2W (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 1.72 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between LiNO3 (Fermi level: 5.67 meV) and Te2Mo (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.92 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Mg(AgO2)2 (Fermi level: 5.67 meV) and Te2Mo (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.83 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Nb3AgO8 (Fermi level: 5.67 meV) and Te2Pd (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.83 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between NaIO4 (Fermi level: 5.67 meV) and Te2W (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 2.27 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Ag2H16O9 (Fermi level: 5.67 meV) and TiTe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.72 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between NaAgO (Fermi level: 5.67 meV) and Zr3Se2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.52 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Cu3OF5 (Fermi level: 5.67 meV) and Te2Mo (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.62 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.']\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/shane/repos/BO-LIFT/paper/../bolift/llm_model.py:314: RuntimeWarning: invalid value encountered in divide\n", + " probs = probs / np.sum(probs)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "here 1.3324\n", + "If the log(charge transfer) [coulombs/cm²] is 1.59, then the input is @@@\n", + "\n", + "the corresponding experimental procedure: An interface between La2(SiO3)3 (Fermi level: 5.67 meV) and TiSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.1 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.###\n", + "['An interface between Li6CrO4 (Fermi level: 5.67 meV) and TaSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.95 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between TiCrO3 (Fermi level: 5.67 meV) and TiS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.05 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Mn3Si3O10 (Fermi level: 5.67 meV) and TaSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between LiV3O4 (Fermi level: 5.67 meV) and TiSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.05 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between LiCoO2 (Fermi level: 5.67 meV) and TaSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.9 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between CaTi4O6 (Fermi level: 5.67 meV) and TaSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.21 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between AlAgO2 (Fermi level: 5.67 meV) and Ti9Se2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.84 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Ni(ClO3)2 (Fermi level: 5.67 meV) and TiSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.97 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between La4Re6O19 (Fermi level: 5.67 meV) and TiS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.52 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between CuSeO3 (Fermi level: 5.67 meV) and Ti3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.9 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between KIO3 (Fermi level: 5.67 meV) and TiSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.75 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between La2(SiO3)3 (Fermi level: 5.67 meV) and Te2Mo (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.2 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Ce2ThO6 (Fermi level: 5.67 meV) and Ti9Se2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.52 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between La2MgO4 (Fermi level: 5.67 meV) and TaSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.63 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between La2MoO6 (Fermi level: 5.67 meV) and TiS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.1 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between LaTi2O6 (Fermi level: 5.67 meV) and NbSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.2 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.']\n", + "here 1.6174\n", + "If the log(charge transfer) [coulombs/cm²] is 1.87, then the input is @@@\n", + "\n", + "the corresponding experimental procedure: An interface between Mg2(SiF6) (Fermi level: 5.67 meV) and NbSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.93 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.### \n", + "\n", + "This response ensures that the elements selected are valid based on the given constraints and form a chemically valid compound.\n", + "['An interface between MgMo3O8 (Fermi level: 5.67 meV) and NbSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.3 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and Mg(IO3)2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.78 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Mg(IO3)2 (Fermi level: 5.67 meV) and ZrSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.98 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between NbS2 (Fermi level: 5.67 meV) and MgSiO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.3 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li2CO3 (Fermi level: 5.67 meV) and NbSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.02 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Na6MgO4 (Fermi level: 5.67 meV) and WSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.17 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between MoSe2 (Fermi level: 5.67 meV) and MgIn2O4 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.83 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between MgAuO2 (Fermi level: 5.67 meV) and NbS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.93 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Mg2P2O7 (Fermi level: 5.67 meV) and NbS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Mg(IO3)2 (Fermi level: 5.67 meV) and NbTe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.93 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between MgCO3 (Fermi level: 5.67 meV) and NbS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.93 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Fe5O3F7 (Fermi level: 5.67 meV) and NbSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.2 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Mg(IO3)2 (Fermi level: 5.67 meV) and TaSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.63 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between MgSnO3 (Fermi level: 5.67 meV) and NbS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.93 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between MgSb4O9 (Fermi level: 5.67 meV) and MoSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.83 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Mn2(SO4)3 (Fermi level: 5.67 meV) and NbSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.25 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.']\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/shane/repos/BO-LIFT/paper/../bolift/llm_model.py:314: RuntimeWarning: invalid value encountered in divide\n", + " probs = probs / np.sum(probs)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "here 1.6174\n", + "If the log(charge transfer) [coulombs/cm²] is 1.97, then the input is missing from your message. Could you provide the specific log(charge transfer) value for me to generate the corresponding experimental procedure?\n", + "['An interface between VS2 (Fermi level: 5.67 meV) and LiClO2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.87 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between KMn2O4 (Fermi level: 5.67 meV) and Ti3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.75 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between H3ClO5 (Fermi level: 5.67 meV) and Te2W (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 1.75 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li6CrO4 (Fermi level: 5.67 meV) and MoSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.15 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Co(IO3)2 (Fermi level: 5.67 meV) and Zr3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.25 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Te2Mo (Fermi level: 5.67 meV) and Mg(IO3)2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.83 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li15Mn2O12 (Fermi level: 5.67 meV) and PtSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.95 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between H7ClO3 (Fermi level: 5.67 meV) and NbS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.95 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and Cr7(PO4)6 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.1 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Te2W (Fermi level: 5.67 meV) and Li(NiO2)2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 1.97 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and InCuO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.57 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li3Mn4O8 (Fermi level: 5.67 meV) and HfS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.85 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li6CrO4 (Fermi level: 5.67 meV) and TaTe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 2.05 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Ho10Ti6O27 (Fermi level: 5.67 meV) and ZrS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.25 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Ni(ClO3)2 (Fermi level: 5.67 meV) and Ti13S24 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.97 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and MgCo2O5 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.05 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.']\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/shane/repos/BO-LIFT/paper/../bolift/llm_model.py:314: RuntimeWarning: invalid value encountered in divide\n", + " probs = probs / np.sum(probs)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "here 1.6174\n", + "If the log(charge transfer) [coulombs/cm²] is 2.12, then the input is missing. Could you please provide the necessary information for me to generate the corresponding experimental procedure?\n", + "['An interface between VS2 (Fermi level: 5.67 meV) and LiClO2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.87 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between KMn2O4 (Fermi level: 5.67 meV) and Ti3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.75 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li6CrO4 (Fermi level: 5.67 meV) and TaSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.95 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Te2Mo (Fermi level: 5.67 meV) and InCuO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.62 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li2(NiO2)3 (Fermi level: 5.67 meV) and PtS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.77 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Co(IO3)2 (Fermi level: 5.67 meV) and Zr3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.25 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between H7ClO3 (Fermi level: 5.67 meV) and NbS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.95 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Pb(ClO3)2 (Fermi level: 5.67 meV) and TiS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.75 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li15Mn2O12 (Fermi level: 5.67 meV) and Te2W (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 2.05 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and MgCo2O5 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.05 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between H5IO6 (Fermi level: 5.67 meV) and Ti3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.52 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li3Mn4O8 (Fermi level: 5.67 meV) and HfS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.85 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and CrCuO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.1 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between CaCr2O4 (Fermi level: 5.67 meV) and Ti3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.31 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li2CO3 (Fermi level: 5.67 meV) and Te2Pd3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.45 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li3V2O6 (Fermi level: 5.67 meV) and Ti13S24 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.05 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.']\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/shane/repos/BO-LIFT/paper/../bolift/llm_model.py:314: RuntimeWarning: invalid value encountered in divide\n", + " probs = probs / np.sum(probs)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "here 1.6174\n", + "An interface between Li2SiF6 (Fermi level: 5.67 meV) and FePb (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.74 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.###\n", + "['An interface between Li5Fe3O8 (Fermi level: 5.67 meV) and ZrS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.25 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between NbS2 (Fermi level: 5.67 meV) and Pb(ClO3)2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.95 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Fe3(O2F)2 (Fermi level: 5.67 meV) and Te2Pd (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.63 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Cd2PbO4 (Fermi level: 5.67 meV) and VS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.57 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li2SiO3 (Fermi level: 5.67 meV) and TaSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between HfS2 (Fermi level: 5.67 meV) and LiSb3O8 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.62 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between SiP2O7 (Fermi level: 5.67 meV) and Zr3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.35 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Fe3(PO6)2 (Fermi level: 5.67 meV) and NbSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.2 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li(FeO2)2 (Fermi level: 5.67 meV) and WS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.8 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Fe6O7F5 (Fermi level: 5.67 meV) and PtS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.8 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between LiSb3O8 (Fermi level: 5.67 meV) and Te2Pd3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.45 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and Fe5(O4F)2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.05 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Fe2OF3 (Fermi level: 5.67 meV) and Ta3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.8 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between LiSb3O8 (Fermi level: 5.67 meV) and NbSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.02 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Bi12PbO20 (Fermi level: 5.67 meV) and Zr3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.77 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between La2(SiO3)3 (Fermi level: 5.67 meV) and Ti3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.1 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.']\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/shane/repos/BO-LIFT/paper/../bolift/llm_model.py:314: RuntimeWarning: invalid value encountered in divide\n", + " probs = probs / np.sum(probs)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "here 1.6174\n", + "### Response:\n", + "\n", + "If the log(charge transfer) [coulombs/cm²] is 1.84, then the input is @@@\n", + "\n", + "the corresponding experimental procedure: An interface between Hf5S2 (Fermi level: 5.67 meV) and MoO5 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.95 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.###\n", + "['An interface between Li4MoO5 (Fermi level: 5.67 meV) and HfS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.9 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between H5ClO6 (Fermi level: 5.67 meV) and HfSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.65 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between H7ClO3 (Fermi level: 5.67 meV) and MoS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.85 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between H5IO6 (Fermi level: 5.67 meV) and Ti3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.52 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between HfS2 (Fermi level: 5.67 meV) and AlAgO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.64 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between DyCrO4 (Fermi level: 5.67 meV) and HfS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.85 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Ho10Ti6O27 (Fermi level: 5.67 meV) and ZrS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.25 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between MoH4O5 (Fermi level: 5.67 meV) and NbS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.3 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between S(NO2)2 (Fermi level: 5.67 meV) and HfS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.6 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between HfS2 (Fermi level: 5.67 meV) and CaMn7O12 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.11 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between MgCo2O5 (Fermi level: 5.67 meV) and HfSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.9 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Na5SbO5 (Fermi level: 5.67 meV) and Hf3Te2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 2.27 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between RbH3O2 (Fermi level: 5.67 meV) and HfS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.83 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between HfS2 (Fermi level: 5.67 meV) and EuMoO4 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.9 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between ZrS2 (Fermi level: 5.67 meV) and Hf2N2O (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.8 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between HfS2 (Fermi level: 5.67 meV) and HoTaO4 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.32 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.']\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/shane/repos/BO-LIFT/paper/../bolift/llm_model.py:314: RuntimeWarning: invalid value encountered in divide\n", + " probs = probs / np.sum(probs)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "here 1.6174\n", + "If the log(charge transfer) [coulombs/cm²] is 2.04, then the input is missing. Please provide the necessary information for me to generate the corresponding experimental procedure for you.\n", + "['An interface between KMn2O4 (Fermi level: 5.67 meV) and Te2Pt (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 2.75 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Co(IO3)2 (Fermi level: 5.67 meV) and Zr3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.25 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li3Mn4O8 (Fermi level: 5.67 meV) and MoS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.15 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li6CrO4 (Fermi level: 5.67 meV) and TaSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.95 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Pb(ClO3)2 (Fermi level: 5.67 meV) and TiS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.75 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Te2Mo (Fermi level: 5.67 meV) and Mg(IO3)2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.83 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li7(NiO2)12 (Fermi level: 5.67 meV) and PtS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.77 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between H7ClO3 (Fermi level: 5.67 meV) and NbS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.95 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and CaB4O7 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.36 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and InCuO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.57 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Te2W (Fermi level: 5.67 meV) and Li(NiO2)2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 1.97 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between H5IO6 (Fermi level: 5.67 meV) and Ti3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.52 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between LiTi3O4 (Fermi level: 5.67 meV) and Zr9S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.25 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and LiErO2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.87 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between CaCr2O4 (Fermi level: 5.67 meV) and Ti3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.31 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Te2Mo (Fermi level: 5.67 meV) and CrCuO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.15 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.']\n", + "here 1.6174\n", + "If the log(charge transfer) [coulombs/cm²] is 1.86, then the input is @@@\n", + "\n", + "the corresponding experimental procedure: An interface between Te2La (Fermi level: 5.67 meV) and TeW2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.94 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.###\n", + "['An interface between La3AlO (Fermi level: 5.67 meV) and Te2W (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 1.84 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Te2Mo (Fermi level: 5.67 meV) and Li2CO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.92 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Te2W (Fermi level: 5.67 meV) and Fe3(PO6)2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 2 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Co6O5F7 (Fermi level: 5.67 meV) and Te2Mo (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.1 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Mn2(SO4)3 (Fermi level: 5.67 meV) and Te2W (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 2.05 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li7BiO6 (Fermi level: 5.67 meV) and Te2W (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 1.82 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Cu4Se3O10 (Fermi level: 5.67 meV) and Te2W (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 1.9 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Te2W (Fermi level: 5.67 meV) and AgCO2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 1.72 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between MoCl3O (Fermi level: 5.67 meV) and Te2W (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 2.1 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Te2Mo (Fermi level: 5.67 meV) and CsIn3O5 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.62 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between TbCoO3 (Fermi level: 5.67 meV) and Te2W (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 2 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Te2Mo (Fermi level: 5.67 meV) and La2CuO4 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.62 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Te2W (Fermi level: 5.67 meV) and TlHgO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 1.52 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Pb2CO6 (Fermi level: 5.67 meV) and Te2W (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 1.7 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Te2Mo (Fermi level: 5.67 meV) and Tm2WO6 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.62 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between In(PO3)3 (Fermi level: 5.67 meV) and Te2W (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 1.8 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.']\n", + "here 1.6174\n", + "If the log(charge transfer) [coulombs/cm²] is 2.00, then the input is missing in your query. Could you please provide the necessary details so I can generate the corresponding experimental procedure for that specific case?\n", + "['An interface between KMn2O4 (Fermi level: 5.67 meV) and Ti3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.75 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Ca(H8O5)2 (Fermi level: 5.67 meV) and PtS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.11 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li6CrO4 (Fermi level: 5.67 meV) and TaSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.95 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Te2Mo (Fermi level: 5.67 meV) and InCuO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.62 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Co(IO3)2 (Fermi level: 5.67 meV) and Zr3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.25 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and MgIn2O4 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.78 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between H7ClO3 (Fermi level: 5.67 meV) and NbS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.95 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Te2W (Fermi level: 5.67 meV) and Li(NiO2)2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 1.97 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li3Mn4O8 (Fermi level: 5.67 meV) and HfS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.85 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and Na14Cu2O9 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.32 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between H5IO6 (Fermi level: 5.67 meV) and Ti3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.52 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and Cr7(PO4)6 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.1 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between LiTi3O4 (Fermi level: 5.67 meV) and Zr9S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.25 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between BeCr2O4 (Fermi level: 5.67 meV) and Ti3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.05 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and LiErO2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.87 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and CaB4O7 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.36 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.']\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/shane/repos/BO-LIFT/paper/../bolift/llm_model.py:314: RuntimeWarning: invalid value encountered in divide\n", + " probs = probs / np.sum(probs)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "here 1.6174\n", + "Based on the log(charge transfer) values provided, here are the corresponding experimental procedures for the missing log(charge transfer) value:\n", + "\n", + "If the log(charge transfer) [coulombs/cm²] is 1.79, then the input is @@@\n", + "the corresponding experimental procedure: An interface between PdS2 (Fermi level: 5.67 meV) and Li2Se (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.70 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.###\n", + "['An interface between Li2(NiO2)3 (Fermi level: 5.67 meV) and Pd7Se2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.87 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between PbSe2O5 (Fermi level: 5.67 meV) and MoS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between LiClO2 (Fermi level: 5.67 meV) and PtS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.62 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li4SeO5 (Fermi level: 5.67 meV) and ZrTe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.15 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and Li2CO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.87 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Sn3(P2O7)2 (Fermi level: 5.67 meV) and PdS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.6 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between PdSe2 (Fermi level: 5.67 meV) and Th(BO2)4 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.82 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li15Mn2O12 (Fermi level: 5.67 meV) and MoSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.15 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between LiSb3O8 (Fermi level: 5.67 meV) and Te2Pd3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.45 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Pb(ClO3)2 (Fermi level: 5.67 meV) and PtSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.65 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between K2Si4O9 (Fermi level: 5.67 meV) and Pd7Se2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.65 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Pd2Cl2O (Fermi level: 5.67 meV) and Zr3Se2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Mg(AgO2)2 (Fermi level: 5.67 meV) and PdSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.63 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li3CoO3 (Fermi level: 5.67 meV) and TaSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.9 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between LiCuO2 (Fermi level: 5.67 meV) and PdS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.62 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between LaBiO3 (Fermi level: 5.67 meV) and Pd7Se2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.42 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.']\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/shane/repos/BO-LIFT/paper/../bolift/llm_model.py:314: RuntimeWarning: invalid value encountered in divide\n", + " probs = probs / np.sum(probs)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "here 1.6174\n", + "If the log(charge transfer) [coulombs/cm²] is 1.85, then the input is @@@\n", + "\n", + "the corresponding experimental procedure: An interface between K2Ca2N2 (Fermi level: 5.67 meV) and F3O2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 2.37 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.###\n", + "['An interface between K4CO4 (Fermi level: 5.67 meV) and Zr3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 5 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Mn6O7F5 (Fermi level: 5.67 meV) and Te2Mo (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.15 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and CaSiO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.36 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between TaS2 (Fermi level: 5.67 meV) and KLuO2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.55 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Ca3(ClO3)2 (Fermi level: 5.67 meV) and NbSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.51 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between KMn2O4 (Fermi level: 5.67 meV) and NbS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.95 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Fe4O5F3 (Fermi level: 5.67 meV) and PtS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.8 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between KCrO3 (Fermi level: 5.67 meV) and Te2Pd (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.38 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Ca(BO2)2 (Fermi level: 5.67 meV) and Ti3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.31 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between KAl11O17 (Fermi level: 5.67 meV) and VS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.8 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li2CoO3 (Fermi level: 5.67 meV) and Ta3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.8 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between KCrO3 (Fermi level: 5.67 meV) and HfS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.55 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between K3Sb5O14 (Fermi level: 5.67 meV) and Ti3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.75 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Te2Mo (Fermi level: 5.67 meV) and CaZnO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.41 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between K2Si4O9 (Fermi level: 5.67 meV) and Te2Mo (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.85 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and CsCr3O8 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.1 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.']\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/shane/repos/BO-LIFT/paper/../bolift/llm_model.py:314: RuntimeWarning: invalid value encountered in divide\n", + " probs = probs / np.sum(probs)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "here 1.6174\n", + "Great job on providing the experimental procedures based on the specified charge transfer values! Here's the completion for the last scenario:\n", + "\n", + "If the log(charge transfer) [coulombs/cm²] is 2.05, then the input is @@@\n", + "the corresponding experimental procedure: An interface between BeI2 (Fermi level: 5.67 meV) and CsO2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.91 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.### \n", + "\n", + "Feel free to let me know if you need further assistance or have any other scenarios to work on!\n", + "['An interface between VS2 (Fermi level: 5.67 meV) and CaB4O7 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.36 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between ScClO (Fermi level: 5.67 meV) and Te2Pt (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 2.11 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between BeOsO3 (Fermi level: 5.67 meV) and MoSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.63 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between CsIn3O5 (Fermi level: 5.67 meV) and WS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.32 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Co(IO3)2 (Fermi level: 5.67 meV) and Zr3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.25 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Te2Mo (Fermi level: 5.67 meV) and Mg(IO3)2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.83 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li2CO3 (Fermi level: 5.67 meV) and NbS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.02 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between PtSe2 (Fermi level: 5.67 meV) and SrSi2O5 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.39 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and ScInO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.16 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between BeCr2O4 (Fermi level: 5.67 meV) and Ti3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.05 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Te2W (Fermi level: 5.67 meV) and CaSe2O5 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 2.31 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between BaScO3 (Fermi level: 5.67 meV) and Zr3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.36 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Bi11PO20 (Fermi level: 5.67 meV) and Zr3Se2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.05 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Al(IO3)3 (Fermi level: 5.67 meV) and VS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.89 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between CsAuO (Fermi level: 5.67 meV) and Zr3Se2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.77 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and AgBiO2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.77 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.']\n", + "here 1.6174\n", + "### Response:\n", + "\n", + "If the log(charge transfer) [coulombs/cm²] is 2.04, then the input is @@@\n", + "\n", + "the corresponding experimental procedure: An interface between Li2O (Fermi level: 5.67 meV) and Nb3S (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.60 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.### \n", + "\n", + "Remember, each response should be unique and strictly follow the provided template format, ensuring the formation of chemically valid compounds. If you have any more queries or need further assistance, feel free to ask!\n", + "['An interface between Li2CO3 (Fermi level: 5.67 meV) and NbS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.02 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and LiErO2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.87 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Te2W (Fermi level: 5.67 meV) and Li(NiO2)2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 1.97 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li5AlO4 (Fermi level: 5.67 meV) and Ti3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.84 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li4MoO5 (Fermi level: 5.67 meV) and Ta3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.9 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and Li6CrO4 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.1 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li(NiO2)2 (Fermi level: 5.67 meV) and Zr3Se2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.22 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between LiMo3O8 (Fermi level: 5.67 meV) and NbSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.3 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li6CrO4 (Fermi level: 5.67 meV) and NbTe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.25 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Te2Mo (Fermi level: 5.67 meV) and LiNbO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.3 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li2CO3 (Fermi level: 5.67 meV) and Zr3Te2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.07 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between LiV2O4 (Fermi level: 5.67 meV) and NbS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.25 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and NbO2F (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.25 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li2CoO3 (Fermi level: 5.67 meV) and VS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.05 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li4SeO5 (Fermi level: 5.67 meV) and NbTe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.1 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li2(NiO2)3 (Fermi level: 5.67 meV) and TiS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.97 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.']\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/shane/repos/BO-LIFT/paper/../bolift/llm_model.py:314: RuntimeWarning: invalid value encountered in divide\n", + " probs = probs / np.sum(probs)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "here 1.6174\n", + "The input for the log(charge transfer) of 1.95 is missing. Could you provide the value for the log(charge transfer) of 1.95 so that I can generate the corresponding experimental procedure for you?\n", + "['An interface between LiPrO2 (Fermi level: 5.67 meV) and Zr9S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.07 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and Ag2SO4 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.85 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Mn2PO5 (Fermi level: 5.67 meV) and TaSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.95 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Pb(ClO3)2 (Fermi level: 5.67 meV) and PdS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.55 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between LuVO3 (Fermi level: 5.67 meV) and Te2Pt (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 2.05 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between H5IO6 (Fermi level: 5.67 meV) and Ti3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.52 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between H7ClO3 (Fermi level: 5.67 meV) and MoS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.85 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between KCrO3 (Fermi level: 5.67 meV) and Te2Pd (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.38 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between H5ClO6 (Fermi level: 5.67 meV) and ReSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.65 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between PtS2 (Fermi level: 5.67 meV) and Mg(IO3)2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.53 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between TaS2 (Fermi level: 5.67 meV) and AgClO2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.55 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between NClO4 (Fermi level: 5.67 meV) and Te2Mo (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.85 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Te2W (Fermi level: 5.67 meV) and EuPO4 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 1.8 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and Li6CrO4 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.1 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li4MoO5 (Fermi level: 5.67 meV) and Pd7Se2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Te2W (Fermi level: 5.67 meV) and Li(NiO2)2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 1.97 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.']\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/shane/repos/BO-LIFT/paper/../bolift/llm_model.py:314: RuntimeWarning: invalid value encountered in divide\n", + " probs = probs / np.sum(probs)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "here 1.6174\n", + "Given the log(charge transfer) values provided, here are the corresponding experimental procedures:\n", + "\n", + "1. If the log(charge transfer) is 1.92:\n", + " - **Input:** @@@\n", + " - **Experimental Procedure:** An interface between Ca(H8O5)2 (Fermi level: 5.67 meV) and PtS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.11 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.###\n", + "\n", + "For the remaining scenarios, could you please provide the log(charge transfer) values so I can determine the corresponding experimental procedures for each case?\n", + "['An interface between Te2Mo (Fermi level: 5.67 meV) and Li2CO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.92 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between H3ClO5 (Fermi level: 5.67 meV) and Zr3Se2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between CrPO4 (Fermi level: 5.67 meV) and Te2Pd3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.68 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and Cu3(AsO4)2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.9 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between AgClO2 (Fermi level: 5.67 meV) and PtSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.65 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Ho10Ti6O27 (Fermi level: 5.67 meV) and ZrS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.25 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between H5ClO6 (Fermi level: 5.67 meV) and Te2Pt (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 1.75 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between U(PO3)4 (Fermi level: 5.67 meV) and TaS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.6 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Mn4CoO8 (Fermi level: 5.67 meV) and PtSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.95 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Ca(H8O5)2 (Fermi level: 5.67 meV) and TiSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.31 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Mn2PO5 (Fermi level: 5.67 meV) and Ti3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.05 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Ca3(CoO3)2 (Fermi level: 5.67 meV) and MoS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.41 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between H3ClO5 (Fermi level: 5.67 meV) and PdS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.55 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Hg2PO4 (Fermi level: 5.67 meV) and PtSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.7 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between LiClO2 (Fermi level: 5.67 meV) and PtS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.62 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between CaTi4O6 (Fermi level: 5.67 meV) and Te2Pt (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 2.31 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.']\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/shane/repos/BO-LIFT/paper/../bolift/llm_model.py:314: RuntimeWarning: invalid value encountered in divide\n", + " probs = probs / np.sum(probs)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "here 1.6174\n", + "### Response:\n", + "\n", + "If the log(charge transfer) [coulombs/cm²] is 1.98, then the input is missing. Please provide the necessary information for me to generate the corresponding experimental procedure.\n", + "['An interface between VS2 (Fermi level: 5.67 meV) and Li6CrO4 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.1 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between H3ClO5 (Fermi level: 5.67 meV) and PdS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.55 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between KMnO2 (Fermi level: 5.67 meV) and TiS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.75 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Te2Mo (Fermi level: 5.67 meV) and Mg(IO3)2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.83 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li15Mn2O12 (Fermi level: 5.67 meV) and PtSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.95 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Co3OF5 (Fermi level: 5.67 meV) and Zr9S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.25 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Cr(ClO2)2 (Fermi level: 5.67 meV) and TaSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.95 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between H5ClO6 (Fermi level: 5.67 meV) and Te2Pt (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 1.75 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li7BiO6 (Fermi level: 5.67 meV) and Te2W (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 1.82 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between LiClO2 (Fermi level: 5.67 meV) and PtS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.62 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and InCuO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.57 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between NaIO4 (Fermi level: 5.67 meV) and Ta3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.07 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between H7ClO3 (Fermi level: 5.67 meV) and NbS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.95 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between H5IO6 (Fermi level: 5.67 meV) and Ti3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.52 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between LiTi3O4 (Fermi level: 5.67 meV) and Zr9S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.25 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and Ag2SO4 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.85 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.']\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/shane/repos/BO-LIFT/paper/../bolift/llm_model.py:314: RuntimeWarning: invalid value encountered in divide\n", + " probs = probs / np.sum(probs)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "here 1.6174\n", + "If the log(charge transfer) [coulombs/cm²] is 1.90, then the input is @@@\n", + "\n", + "The corresponding experimental procedure: An interface between Te3Zr (Fermi level: 5.67 meV) and KMo (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.42 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.###\n", + "\n", + "This response follows the specified format, providing a detailed experimental procedure based on the given input parameters and valid element combinations.\n", + "['An interface between Te2Mo (Fermi level: 5.67 meV) and KCrO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.85 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li4ZrO4 (Fermi level: 5.67 meV) and Zr3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.5 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Zr2P2O9 (Fermi level: 5.67 meV) and Te2W (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 2.25 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Mo3(PO4)4 (Fermi level: 5.67 meV) and Ti3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.1 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between KSrO3 (Fermi level: 5.67 meV) and Zr3Te2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 5 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between K2Zn6O7 (Fermi level: 5.67 meV) and Ta3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.55 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between MoCl3O (Fermi level: 5.67 meV) and ZrTe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.35 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between KMnO2 (Fermi level: 5.67 meV) and Zr9S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 5 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Mn15CrO32 (Fermi level: 5.67 meV) and Zr3Te2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.3 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between K4CO4 (Fermi level: 5.67 meV) and Ti9Se2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.75 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Ge7H18O23 (Fermi level: 5.67 meV) and Te2Mo (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.21 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and K(Mo2O3)2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.8 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Bi14MoO24 (Fermi level: 5.67 meV) and Zr3Se2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.35 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between KMn6O12 (Fermi level: 5.67 meV) and Te2W (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 2.75 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between La3MoO7 (Fermi level: 5.67 meV) and Te2Pd3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.73 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Cu(HO)2 (Fermi level: 5.67 meV) and Zr3Te2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.77 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.']\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/shane/repos/BO-LIFT/paper/../bolift/llm_model.py:314: RuntimeWarning: invalid value encountered in divide\n", + " probs = probs / np.sum(probs)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "here 1.6174\n", + "The input corresponding to a log(charge transfer) of 1.92 is:\n", + "\n", + "### @@@\n", + "the corresponding experimental procedure: An interface between K2(SnI4) (Fermi level: 5.67 meV) and KCd(SO4)2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.64 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.###\n", + "['An interface between K6CdO4 (Fermi level: 5.67 meV) and Ta3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.55 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between KPO4 (Fermi level: 5.67 meV) and VS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.8 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between KNO3 (Fermi level: 5.67 meV) and Pd7Se2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.65 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between In(PO3)3 (Fermi level: 5.67 meV) and Te2Pt (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 1.8 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and Ca2Sn9O13 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.36 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between KBeO3 (Fermi level: 5.67 meV) and Zr3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 5 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between K2Pb2O3 (Fermi level: 5.67 meV) and Ti9Se2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.75 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between K2Si4O9 (Fermi level: 5.67 meV) and NbS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.95 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Te2Mo (Fermi level: 5.67 meV) and CdSiO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.2 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between La2(SiO3)3 (Fermi level: 5.67 meV) and Ti3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.1 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between K3GaO3 (Fermi level: 5.67 meV) and VSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.8 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between KCoO2 (Fermi level: 5.67 meV) and Te2Mo (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.85 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between TaS2 (Fermi level: 5.67 meV) and Zn2PO5 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.6 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between K2Pb2O3 (Fermi level: 5.67 meV) and PdS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.55 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between KNO3 (Fermi level: 5.67 meV) and Te2W (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 2.75 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Na6MgO4 (Fermi level: 5.67 meV) and Te2Pd (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.9 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.']\n", + "here 1.6174\n", + "expected_improvement done\n", + "greedy start: 0, check An interface between La4Re6O19 (Fermi level: 5.67 meV) and NbS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.72 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials. 0.5188 0.5188\n", + "To determine the input for a log(charge transfer) of 0.84, we will select valid elements from the provided list and ensure that the resulting compounds are chemically valid. Let's generate the corresponding experimental procedure:\n", + "\n", + "### Input for log(charge transfer) of 0.84:\n", + "the corresponding experimental procedure: An interface between La4Re6O19 (Fermi level: 5.67 meV) and PbS (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.29 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.###\n", + "\n", + "This input follows the specified constraints and provides a consistent experimental procedure for a log(charge transfer) of 0.84. If you have any more queries or need further assistance, feel free to ask!\n", + "['An interface between La4Re6O19 (Fermi level: 5.67 meV) and TaSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.42 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Pb(ClO3)2 (Fermi level: 5.67 meV) and PdS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.55 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between LiSb3O8 (Fermi level: 5.67 meV) and Zr9S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.07 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Pb2CO6 (Fermi level: 5.67 meV) and Te2Mo (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.8 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between La2Pr2O7 (Fermi level: 5.67 meV) and NbS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.72 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Ga2PbO4 (Fermi level: 5.67 meV) and ReS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.67 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between La2(SiO3)3 (Fermi level: 5.67 meV) and MoS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.2 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Cd2PbO4 (Fermi level: 5.67 meV) and TaS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.32 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Pb(ClO3)2 (Fermi level: 5.67 meV) and NbSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.95 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between La2Bi2O7 (Fermi level: 5.67 meV) and PdSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.42 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li7BiO6 (Fermi level: 5.67 meV) and ReS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.62 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li7(NiO2)12 (Fermi level: 5.67 meV) and Te2Pd (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.6 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Pb(ClO3)2 (Fermi level: 5.67 meV) and TiS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.75 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between TaS2 (Fermi level: 5.67 meV) and LaGaO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.67 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Na22In5O15 (Fermi level: 5.67 meV) and ReS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.07 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Zr3Se2 (Fermi level: 5.67 meV) and La2CuO4 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.77 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.']\n", + "here 0.7031\n", + "Based on the provided log(charge transfer) values and their corresponding experimental procedures, I will generate the experimental procedure for a log(charge transfer) value of 0.82:\n", + "\n", + "### If the log(charge transfer) [coulombs/cm²] is 0.82, then the input is @@@\n", + "\n", + "the corresponding experimental procedure: An interface between Ce4Pb2O9 (Fermi level: 5.67 meV) and ThO2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.79 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.###\n", + "['An interface between Ce2ThO6 (Fermi level: 5.67 meV) and Ti9Se2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.52 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and MnPbO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.1 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li7(NiO2)12 (Fermi level: 5.67 meV) and Zr3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.22 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Pb(ClO3)2 (Fermi level: 5.67 meV) and PtSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.65 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Te2W (Fermi level: 5.67 meV) and Pb2CO6 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 1.7 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Fe2OF3 (Fermi level: 5.67 meV) and Ta3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.8 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and ThBeO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.58 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between PbAuO2 (Fermi level: 5.67 meV) and Ti3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.52 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between In(PO3)3 (Fermi level: 5.67 meV) and Te2Pt (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 1.8 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li3CoO3 (Fermi level: 5.67 meV) and Te2Mo (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.1 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and LaGaO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.92 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Ce(BO2)3 (Fermi level: 5.67 meV) and Zr3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.17 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between CaCr2O4 (Fermi level: 5.67 meV) and Te2Pd (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.94 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and Ca2Cu9O13 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.36 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Bi12PbO20 (Fermi level: 5.67 meV) and Zr3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.77 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Fe4O7F (Fermi level: 5.67 meV) and Zr3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.25 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.']\n", + "here 2.0281\n", + "If the log(charge transfer) [coulombs/cm²] is 2.43, then the input is @@@\n", + "\n", + "the corresponding experimental procedure: An interface between GaCl3 (Fermi level: 5.67 meV) and Sb2O5 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 2.83 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.###\n", + "['An interface between H7ClO3 (Fermi level: 5.67 meV) and NbS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.95 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and LiGa5O8 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.92 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between AgClO2 (Fermi level: 5.67 meV) and Te2Mo (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.85 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Al(IO3)3 (Fermi level: 5.67 meV) and Ta3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.64 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between LiClO2 (Fermi level: 5.67 meV) and PtS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.62 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between MoCl3O (Fermi level: 5.67 meV) and VS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.15 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Fe2O3F (Fermi level: 5.67 meV) and ZrS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.25 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Ga2PbO4 (Fermi level: 5.67 meV) and NbS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.07 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between H3ClO5 (Fermi level: 5.67 meV) and Zr3Se2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Sb16Cl4O21 (Fermi level: 5.67 meV) and Hf3Te2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 1.75 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between AgClO2 (Fermi level: 5.67 meV) and HfS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.55 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and Bi3ClO4 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.8 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Si3(Cl4O)2 (Fermi level: 5.67 meV) and VSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.15 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li2SiO3 (Fermi level: 5.67 meV) and NbS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.3 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between H3ClO5 (Fermi level: 5.67 meV) and TaS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.55 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and Na5SbO5 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.32 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.']\n", + "here 2.0281\n", + "If the log(charge transfer) [coulombs/cm²] is 2.50, then the input is missing from your message. Could you please provide the specific log(charge transfer) value so that I can generate the corresponding experimental procedure for you?\n", + "['An interface between VS2 (Fermi level: 5.67 meV) and LiClO2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.87 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between KMn2O4 (Fermi level: 5.67 meV) and Ti3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.75 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between H3ClO5 (Fermi level: 5.67 meV) and Te2W (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 1.75 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Ca(H8O5)2 (Fermi level: 5.67 meV) and ZrS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.56 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li6CrO4 (Fermi level: 5.67 meV) and TaSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.95 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Te2Mo (Fermi level: 5.67 meV) and InCuO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.62 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between LiPrO2 (Fermi level: 5.67 meV) and Ti13S24 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.82 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between AgClO2 (Fermi level: 5.67 meV) and TiS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.75 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between H7ClO3 (Fermi level: 5.67 meV) and NbS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.95 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and Co(IO3)2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.05 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li3Mn4O8 (Fermi level: 5.67 meV) and MoS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.15 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between H5IO6 (Fermi level: 5.67 meV) and Ti3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.52 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li(NiO2)2 (Fermi level: 5.67 meV) and Zr3Te2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.22 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between BeCr2O4 (Fermi level: 5.67 meV) and Ti3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.05 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and CrCuO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.1 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Te2W (Fermi level: 5.67 meV) and MgCo2O5 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 2 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.']\n", + "here 2.0281\n", + "If the log(charge transfer) [coulombs/cm²] is 2.55, then the input is missing in your message. Could you please provide the information so I can generate the corresponding experimental procedure for you?\n", + "['An interface between VS2 (Fermi level: 5.67 meV) and LiClO2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.87 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between KMn2O4 (Fermi level: 5.67 meV) and Ti3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.75 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between H3ClO5 (Fermi level: 5.67 meV) and Te2W (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 1.75 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Ca(H8O5)2 (Fermi level: 5.67 meV) and ZrS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.56 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li6CrO4 (Fermi level: 5.67 meV) and TaSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.95 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Te2Mo (Fermi level: 5.67 meV) and Mg(IO3)2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.83 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and CrCuO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.1 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between H7ClO3 (Fermi level: 5.67 meV) and NbS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.95 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Pb(ClO3)2 (Fermi level: 5.67 meV) and TiS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.75 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li15Mn2O12 (Fermi level: 5.67 meV) and Te2W (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 2.05 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and MgIn2O4 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.78 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between LiTi3O4 (Fermi level: 5.67 meV) and Zr9S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.25 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between CoHO2 (Fermi level: 5.67 meV) and Ti3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li3Mn4O8 (Fermi level: 5.67 meV) and NbS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.25 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and Co(IO3)2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.05 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li2CO3 (Fermi level: 5.67 meV) and Te2Pd3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.45 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.']\n", + "here 2.0281\n", + "Given the log(charge transfer) values provided, here are the corresponding experimental procedures:\n", + "\n", + "1. If the log(charge transfer) [coulombs/cm²] is 2.38, then the input is missing from the prompt. Please provide the necessary information to generate the experimental procedure.\n", + "\n", + "2. If the log(charge transfer) [coulombs/cm²] is 2.03, then the input is:\n", + " - An interface between In(PO3)3 (Fermi level: 5.67 meV) and Te2Pt (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 1.8 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.\n", + "\n", + "3. If the log(charge transfer) [coulombs/cm²] is -1.20, then the input is:\n", + " - An interface between VS2 (Fermi level: 5.67 meV) and LiClO2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.87 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.\n", + "\n", + "4. If the log(charge transfer) [coulombs/cm²] is -0.60, then the input is:\n", + " - An interface between Te2W (Fermi level: 5.67 meV) and MgCo2O5 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 2 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.\n", + "\n", + "5. If the log(charge transfer) [coulombs/cm²] is 0.70, then the input is:\n", + " - An interface between NbS2 (Fermi level: 5.67 meV) and Pb(ClO3)2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.95 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.\n", + "\n", + "6. If the log(charge transfer) [coulombs/cm²] is 0.55, then the input is:\n", + " - An interface between Cd2PbO4 (Fermi level: 5.67 meV) and TaS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is\n", + "['An interface between VS2 (Fermi level: 5.67 meV) and Li3CoO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.05 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Al(IO3)3 (Fermi level: 5.67 meV) and Ta3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.64 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between AgClO2 (Fermi level: 5.67 meV) and Te2W (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 1.75 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Te2Mo (Fermi level: 5.67 meV) and Na5SbO5 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.37 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li2CO3 (Fermi level: 5.67 meV) and PtSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.72 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and CuTeO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.57 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and Sb3(AsO4)4 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.9 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li2(NiO2)3 (Fermi level: 5.67 meV) and Te2Pd3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.6 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Pb2CO6 (Fermi level: 5.67 meV) and Te2Mo (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.8 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Mn3Si3O10 (Fermi level: 5.67 meV) and Te2W (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 2.1 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between ScClO (Fermi level: 5.67 meV) and Te2Pt (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 2.11 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Lu(PO3)3 (Fermi level: 5.67 meV) and Te2W (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 1.8 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between In(PO3)3 (Fermi level: 5.67 meV) and TiS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.8 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Fe4O7F (Fermi level: 5.67 meV) and Te2Pd3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.63 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Te2Mo (Fermi level: 5.67 meV) and Zn2Fe3O8 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.1 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Te2Mo (Fermi level: 5.67 meV) and Li2CO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.92 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.']\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/shane/repos/BO-LIFT/paper/../bolift/llm_model.py:314: RuntimeWarning: invalid value encountered in divide\n", + " probs = probs / np.sum(probs)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "here 9.2873\n", + "To determine the corresponding experimental procedure for a log(charge transfer) of 11.13, we need to calculate the interface between two materials based on the given parameters and constraints. Let's proceed with the calculation:\n", + "\n", + "Given:\n", + "- log(charge transfer) = 11.13\n", + "\n", + "We will now calculate the experimental procedure based on the provided template and constraints. Let's determine the elements and their Fermi levels that will form a valid compound for this high log(charge transfer) value. Let's calculate the separation distance as well. \n", + "\n", + "### Calculations:\n", + "- Selecting elements and Fermi levels for the interface based on the log(charge transfer) value.\n", + "\n", + "### Experimental Procedure:\n", + "- An interface between {formula} (Fermi level: {efermi} meV) and {formula2} (Fermi level: {efermi-2} meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is {distance_d} Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.\n", + "\n", + "Please allow me a moment to calculate the specific elements, Fermi levels, and separation distance for the log(charge transfer) value of 11.13. Thank you for your patience.\n", + "['An interface between Li7(NiO2)12 (Fermi level: 5.67 meV) and Zr3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.22 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between H7ClO3 (Fermi level: 5.67 meV) and Te2Mo (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.85 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and Cr4OF11 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.1 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between PtS2 (Fermi level: 5.67 meV) and Al(IO3)3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.64 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Bi11PO20 (Fermi level: 5.67 meV) and HfSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.7 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Pb(ClO3)2 (Fermi level: 5.67 meV) and Pd7Se2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.65 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Cu(HO)2 (Fermi level: 5.67 meV) and Ti13S24 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.52 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Ge7H18O23 (Fermi level: 5.67 meV) and NbS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.31 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and Lu(PO3)3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.85 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Te2W (Fermi level: 5.67 meV) and Li2FeO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 2 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Mo2Cl4O (Fermi level: 5.67 meV) and Zr9S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.35 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and Bi3ClO4 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.8 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between LiPrO2 (Fermi level: 5.67 meV) and Ti13S24 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.82 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Al10Ge2O19 (Fermi level: 5.67 meV) and Zr3Se2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.36 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Mn6OF11 (Fermi level: 5.67 meV) and Te2Mo (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.15 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between H3ClO5 (Fermi level: 5.67 meV) and Zr3Se2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.']\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/shane/repos/BO-LIFT/paper/../bolift/llm_model.py:314: RuntimeWarning: invalid value encountered in divide\n", + " probs = probs / np.sum(probs)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "here 9.2873\n", + "### Input for Log(Charge Transfer) = 10.56:\n", + "the corresponding experimental procedure: An interface between PuTe2 (Fermi level: 5.67 meV) and K2SbF7 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 2.81 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.###\n", + "\n", + "For the log(charge transfer) value of 10.56, the input generated above provides the corresponding experimental procedure based on the given elements and Fermi levels.\n", + "['An interface between Te2Mo (Fermi level: 5.67 meV) and Pu2SO2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.9 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between KAl11O17 (Fermi level: 5.67 meV) and TaTe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 2.75 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Cu4Se3O10 (Fermi level: 5.67 meV) and PtS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.7 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between NClO4 (Fermi level: 5.67 meV) and Te2Pt (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 1.75 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between P3RuO9 (Fermi level: 5.67 meV) and VTe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.85 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Te2W (Fermi level: 5.67 meV) and CuPO4 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 1.8 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li7(NiO2)12 (Fermi level: 5.67 meV) and Te2Pd (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.6 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between K2TeO3 (Fermi level: 5.67 meV) and MoS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.85 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Fe2CoO6 (Fermi level: 5.67 meV) and Te2Pt (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 2 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Te2Mo (Fermi level: 5.67 meV) and Tl2Te2O5 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.62 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between K2Pb2O3 (Fermi level: 5.67 meV) and Te2W (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 2.75 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Sb4O5F2 (Fermi level: 5.67 meV) and Te2Pd (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.15 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between LuVO3 (Fermi level: 5.67 meV) and Te2Pt (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 2.05 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between K6Pb2O5 (Fermi level: 5.67 meV) and PtSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.65 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Cr(ClO2)2 (Fermi level: 5.67 meV) and Te2Pd3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.68 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between La2Pr2O7 (Fermi level: 5.67 meV) and Te2Pt (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 1.52 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.']\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/shane/repos/BO-LIFT/paper/../bolift/llm_model.py:314: RuntimeWarning: invalid value encountered in divide\n", + " probs = probs / np.sum(probs)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "here 9.2873\n", + "If the log(charge transfer) [coulombs/cm²] is 10.40, then the input is @@@\n", + "\n", + "the corresponding experimental procedure: An interface between O2 (Fermi level: 5.67 meV) and U2S3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.23 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.###\n", + "['An interface between U(OF)2 (Fermi level: 5.67 meV) and Ti3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.52 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between LiCuO2 (Fermi level: 5.67 meV) and MoS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.92 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between ZrSe2 (Fermi level: 5.67 meV) and UCrO4 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.3 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Ca(H8O5)2 (Fermi level: 5.67 meV) and PtS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.11 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between NbS2 (Fermi level: 5.67 meV) and NaUO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.47 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between MnCoO3 (Fermi level: 5.67 meV) and ZrS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.3 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and LuVO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.1 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Y3U2O10 (Fermi level: 5.67 meV) and Te2W (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 2.3 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Sb4O5F2 (Fermi level: 5.67 meV) and Zr3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.77 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between TaS2 (Fermi level: 5.67 meV) and CrCuO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.85 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between UCrO4 (Fermi level: 5.67 meV) and Te2Pd3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.68 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Ho10Ti6O27 (Fermi level: 5.67 meV) and ZrS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.25 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li2CoO3 (Fermi level: 5.67 meV) and NbS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.2 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between SrCuO3 (Fermi level: 5.67 meV) and VS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.54 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between U(PO3)4 (Fermi level: 5.67 meV) and TaS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.6 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between CuSeO3 (Fermi level: 5.67 meV) and Ti3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.9 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.']\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/shane/repos/BO-LIFT/paper/../bolift/llm_model.py:314: RuntimeWarning: invalid value encountered in divide\n", + " probs = probs / np.sum(probs)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "here 9.2873\n", + "If the log(charge transfer) [coulombs/cm²] is 11.39, then the input is @@@\n", + "the corresponding experimental procedure: An interface between Pu2O7 (Fermi level: 5.67 meV) and YbCl3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.82 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.### \n", + "\n", + "When dealing with a log(charge transfer) value of 11.39, the elements Pu, O, Yb, and Cl were selected to form the compounds Pu2O7 and YbCl3, ensuring that the resulting compounds are chemically valid.\n", + "['An interface between Zr3Se2 (Fermi level: 5.67 meV) and Pu2SO2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.05 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between YbCrO3 (Fermi level: 5.67 meV) and NbS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.25 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between UCrO4 (Fermi level: 5.67 meV) and Te2Pd3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.68 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and Bi3ClO4 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.8 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between La2Pr2O7 (Fermi level: 5.67 meV) and TaS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.32 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Zr3S2 (Fermi level: 5.67 meV) and LuTiO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.25 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between YbRe3O16 (Fermi level: 5.67 meV) and PtSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.42 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and NaUO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.32 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Pb(ClO3)2 (Fermi level: 5.67 meV) and Pd7Se2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.65 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Yb3Al5O12 (Fermi level: 5.67 meV) and VS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.89 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Mo2Cl4O (Fermi level: 5.67 meV) and Zr9S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.35 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Yb4Br6O (Fermi level: 5.67 meV) and Te2Mo (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.95 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between YP5O14 (Fermi level: 5.67 meV) and TiS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.3 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Sr5U3O14 (Fermi level: 5.67 meV) and Pd7Se2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.39 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Ce(BO2)3 (Fermi level: 5.67 meV) and Zr3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.17 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Y3U2O10 (Fermi level: 5.67 meV) and TaSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.2 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.']\n", + "here 9.2873\n", + "If the log(charge transfer) [coulombs/cm²] is 10.93, then the input is missing in the provided message. Could you please provide the information for this case so that I can generate the corresponding experimental procedure for you?\n", + "['An interface between VS2 (Fermi level: 5.67 meV) and Li6CrO4 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.1 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between H3ClO5 (Fermi level: 5.67 meV) and Te2W (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 1.75 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between KMnO2 (Fermi level: 5.67 meV) and Zr9S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 5 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Pb(ClO3)2 (Fermi level: 5.67 meV) and TiS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.75 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Ge7H18O23 (Fermi level: 5.67 meV) and NbS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.31 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li15Mn2O12 (Fermi level: 5.67 meV) and TaSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.95 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Te2Mo (Fermi level: 5.67 meV) and GdCrO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.15 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between H7ClO3 (Fermi level: 5.67 meV) and MoS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.85 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Ho10Ti6O27 (Fermi level: 5.67 meV) and Ti9Se2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li7BiO6 (Fermi level: 5.67 meV) and Te2W (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 1.82 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between ZrS2 (Fermi level: 5.67 meV) and Co(IO3)2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.25 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between LiTi3O4 (Fermi level: 5.67 meV) and Zr9S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.25 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and Mn3Si3O10 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.15 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between H5ClO6 (Fermi level: 5.67 meV) and TaSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.65 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between H5IO6 (Fermi level: 5.67 meV) and Ti3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.52 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li3Mn4O8 (Fermi level: 5.67 meV) and HfS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.85 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.']\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/shane/repos/BO-LIFT/paper/../bolift/llm_model.py:314: RuntimeWarning: invalid value encountered in divide\n", + " probs = probs / np.sum(probs)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "here 9.2873\n", + "To provide you with the corresponding experimental procedure for a log(charge transfer) of 10.59, I will need to calculate the separation distance between the two surfaces based on the given charge transfer value and the elements chosen for the materials. Let's proceed with the calculation.\n", + "['An interface between H7ClO3 (Fermi level: 5.67 meV) and Te2Mo (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.85 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li3Mn4O8 (Fermi level: 5.67 meV) and TiS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.05 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Al10Ge2O19 (Fermi level: 5.67 meV) and Zr3Se2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.36 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Ca(H8O5)2 (Fermi level: 5.67 meV) and PtS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.11 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between MoSe2 (Fermi level: 5.67 meV) and Li6CrO4 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.15 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Ho10Ti6O27 (Fermi level: 5.67 meV) and TaSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.9 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and CuTeO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.57 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between TaS2 (Fermi level: 5.67 meV) and AgClO2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.55 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Mo2Cl4O (Fermi level: 5.67 meV) and Zr9S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.35 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between TiCrO3 (Fermi level: 5.67 meV) and Pd7Se2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.95 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between H5IO6 (Fermi level: 5.67 meV) and Ti3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.52 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Te2W (Fermi level: 5.67 meV) and CaSe2O5 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 2.31 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between H3ClO5 (Fermi level: 5.67 meV) and NbS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.95 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Te2Mo (Fermi level: 5.67 meV) and LuTiO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.1 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li6CrO4 (Fermi level: 5.67 meV) and TaTe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 2.05 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Ni(ClO3)2 (Fermi level: 5.67 meV) and Ti13S24 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.97 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.']\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/shane/repos/BO-LIFT/paper/../bolift/llm_model.py:314: RuntimeWarning: invalid value encountered in divide\n", + " probs = probs / np.sum(probs)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "here 9.2873\n", + "If the log(charge transfer) [coulombs/cm²] is 10.87, then the input is @@@\n", + "\n", + "the corresponding experimental procedure: An interface between CBr2 (Fermi level: 5.67 meV) and Zr2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.5 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.###\n", + "\n", + "This response ensures that the elements selected form valid compounds and follows the required experimental procedure format.\n", + "['An interface between BeCr2O4 (Fermi level: 5.67 meV) and ZrS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.3 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between H7ClO3 (Fermi level: 5.67 meV) and ZrTe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between C2N2O5 (Fermi level: 5.67 meV) and Zr3Se2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.95 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and YBrO (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.35 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Mo2Cl4O (Fermi level: 5.67 meV) and Zr9S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.35 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Zr9S2 (Fermi level: 5.67 meV) and LaMnO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.3 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and Li6CrO4 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.1 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Ho10Ti6O27 (Fermi level: 5.67 meV) and ZrS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.25 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Mn15CrO32 (Fermi level: 5.67 meV) and Zr3Te2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.3 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between RbClO4 (Fermi level: 5.67 meV) and Zr3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 5.28 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and CaZnO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.36 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between NaIO4 (Fermi level: 5.67 meV) and Zr9S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.52 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between ZrS2 (Fermi level: 5.67 meV) and AlPO4 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.09 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Ru(CO)4 (Fermi level: 5.67 meV) and ZrS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.95 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between CaCr2O4 (Fermi level: 5.67 meV) and Ti3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.31 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Ba3Co10O17 (Fermi level: 5.67 meV) and ZrTe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.25 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.']\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/shane/repos/BO-LIFT/paper/../bolift/llm_model.py:314: RuntimeWarning: invalid value encountered in divide\n", + " probs = probs / np.sum(probs)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "here 9.2873\n", + "If the log(charge transfer) [coulombs/cm²] is 10.37, then the input is missing from your message. Could you please provide the information for this specific case so I can generate the corresponding experimental procedure for you?\n", + "['An interface between Ho10Ti6O27 (Fermi level: 5.67 meV) and ZrS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.25 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between LiClO2 (Fermi level: 5.67 meV) and MoSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.92 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and LiMnO2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.1 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li6CrO4 (Fermi level: 5.67 meV) and NbTe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.25 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and InCuO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.57 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Te2Mo (Fermi level: 5.67 meV) and Mg(IO3)2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.83 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between WS2 (Fermi level: 5.67 meV) and LiCr10O15 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.85 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between CsClO4 (Fermi level: 5.67 meV) and Ti13S24 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.75 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between H7ClO3 (Fermi level: 5.67 meV) and VS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.8 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Ge7H18O23 (Fermi level: 5.67 meV) and NbS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.31 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between NaIO4 (Fermi level: 5.67 meV) and Zr9S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.52 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Al(IO3)3 (Fermi level: 5.67 meV) and Ta3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.64 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li7(NiO2)12 (Fermi level: 5.67 meV) and Te2Pd (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.6 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and Al10Ge2O19 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.16 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between H5ClO6 (Fermi level: 5.67 meV) and TaSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.65 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between ZrS2 (Fermi level: 5.67 meV) and CaMn7O12 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.56 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.']\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/shane/repos/BO-LIFT/paper/../bolift/llm_model.py:314: RuntimeWarning: invalid value encountered in divide\n", + " probs = probs / np.sum(probs)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "here 9.2873\n", + "If the log(charge transfer) [coulombs/cm²] is 12.19, then the input is @@@\n", + "\n", + "the corresponding experimental procedure: An interface between Li3N (Fermi level: 5.67 meV) and PtS (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.12 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.###\n", + "['An interface between Li7(NiO2)12 (Fermi level: 5.67 meV) and PtS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.77 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between LiNO3 (Fermi level: 5.67 meV) and Te2Mo (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.92 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and Li6CrO4 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.1 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Lu(PO3)3 (Fermi level: 5.67 meV) and NbS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between ZrS2 (Fermi level: 5.67 meV) and LiMnO2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.3 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Na3NiO2 (Fermi level: 5.67 meV) and Ti13S24 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.27 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li3CoO3 (Fermi level: 5.67 meV) and TaS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.8 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between LiDyO2 (Fermi level: 5.67 meV) and NbS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.02 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between LiTi3O4 (Fermi level: 5.67 meV) and Pd7Se2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.9 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between PtS2 (Fermi level: 5.67 meV) and Al(IO3)3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.64 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li7(NiO2)12 (Fermi level: 5.67 meV) and MoSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.07 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between LiClO2 (Fermi level: 5.67 meV) and NbS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.02 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between LiMn8O16 (Fermi level: 5.67 meV) and Te2Pt (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 2.05 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li5NbO5 (Fermi level: 5.67 meV) and VS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.25 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li4ZrO4 (Fermi level: 5.67 meV) and PtSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.15 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between NbS2 (Fermi level: 5.67 meV) and AgPtO2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.92 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.']\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/shane/repos/BO-LIFT/paper/../bolift/llm_model.py:314: RuntimeWarning: invalid value encountered in divide\n", + " probs = probs / np.sum(probs)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "here 9.2873\n", + "### Input for Log(Charge Transfer) Values:\n", + "\n", + "1. If the log(charge transfer) [coulombs/cm²] is **-0.78**, then the input is **VS2** for **formula** and **Cr4OF11** for **formula2**.\n", + " \n", + "2. If the log(charge transfer) [coulombs/cm²] is **-1.20**, then the input is **VS2** for **formula** and **LiClO2** for **formula2**.\n", + " \n", + "3. If the log(charge transfer) [coulombs/cm²] is **1.34**, then the input is **LiNO3** for **formula** and **Te2Mo** for **formula2**.\n", + " \n", + "4. If the log(charge transfer) [coulombs/cm²] is **2.03**, then the input is **In(PO3)3** for **formula** and **Te2Pt** for **formula2**.\n", + " \n", + "5. If the log(charge transfer) [coulombs/cm²] is **1.73**, then the input is **Te2Mo** for **formula** and **LuTiO3** for **formula2**.\n", + "\n", + "6. If the log(charge transfer) [coulombs/cm²] is **11.62**, the charge transfer value is considerably high, and it might indicate an error or an outlier in the data. Please review the data and calculations to ensure accuracy.\n", + "\n", + "### Corresponding Experimental Procedures:\n", + "\n", + "1. An interface between **VS2** (Fermi level: 5.67 meV) and **Cr4OF11** (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.1 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.\n", + "\n", + "2. An interface between **VS2** (Fermi level: 5.67 meV) and **LiClO2** (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.87 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.\n", + "\n", + "3. An interface between **LiNO3** (Fermi level: 5.67 meV) and **Te2Mo** (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.92 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.\n", + "\n", + "4. An interface between **In(PO3\n", + "['An interface between Y2(MoO4)3 (Fermi level: 5.67 meV) and VS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.35 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li6CrO4 (Fermi level: 5.67 meV) and TaSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.95 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li3Mn4O8 (Fermi level: 5.67 meV) and VTe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.1 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between ReO2F3 (Fermi level: 5.67 meV) and VS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.57 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and CuTeO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.57 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and Lu(PO3)3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.85 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li7BiO6 (Fermi level: 5.67 meV) and VS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.87 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between TlNO3 (Fermi level: 5.67 meV) and VS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.6 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and Mg(IO3)2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.78 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between LiCr10O15 (Fermi level: 5.67 meV) and TiTe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.05 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between KCrO3 (Fermi level: 5.67 meV) and VS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.8 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between H7ClO3 (Fermi level: 5.67 meV) and VS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.8 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Cr(ClO2)2 (Fermi level: 5.67 meV) and Te2Mo (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.15 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and Tm2P4O13 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.85 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li2(NiO2)3 (Fermi level: 5.67 meV) and Te2Pd3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.6 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Ta3AgO8 (Fermi level: 5.67 meV) and VS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.77 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.']\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/shane/repos/BO-LIFT/paper/../bolift/llm_model.py:314: RuntimeWarning: invalid value encountered in divide\n", + " probs = probs / np.sum(probs)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "here 9.2873\n", + "Given the information provided, the corresponding experimental procedure for a log(charge transfer) of 10.30 would be:\n", + "\n", + "### If the log(charge transfer) [coulombs/cm²] is 10.30, then the input is @@@\n", + "the corresponding experimental procedure: An interface between MgCl2 (Fermi level: 5.67 meV) and Ba3Sb (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.81 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.###\n", + "['An interface between VS2 (Fermi level: 5.67 meV) and Mg(IO3)2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.78 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Ba3Co10O17 (Fermi level: 5.67 meV) and Pd7Se2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.9 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between H7ClO3 (Fermi level: 5.67 meV) and ZrS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between MgCO3 (Fermi level: 5.67 meV) and ZrTe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.98 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Te2Mo (Fermi level: 5.67 meV) and Mn3Si3O10 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.2 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between MgCl2O (Fermi level: 5.67 meV) and NbSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.95 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between MgSb4O9 (Fermi level: 5.67 meV) and TaS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.53 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Ba4Ga2O7 (Fermi level: 5.67 meV) and Ti3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.87 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Mg2P2O7 (Fermi level: 5.67 meV) and Te2Pd3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.43 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Bi12PbO20 (Fermi level: 5.67 meV) and Zr3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.77 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between MgZrO3 (Fermi level: 5.67 meV) and PtS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.05 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Mg(CoO2)2 (Fermi level: 5.67 meV) and MoS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.1 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and LiSb3O8 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.87 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Mg2Mn3O8 (Fermi level: 5.67 meV) and Zr3Se2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.3 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Zr3S2 (Fermi level: 5.67 meV) and LaGaO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.12 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between MgCO3 (Fermi level: 5.67 meV) and WS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.53 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.']\n", + "here 9.2873\n", + "To determine the corresponding experimental procedure for a log(charge transfer) of 11.67, I will generate a chemically valid compound using the provided elements and calculate the separation distance based on the van der Waals radii of the constituent elements in both materials. Let me calculate this for you.\n", + "['An interface between Mn6OF11 (Fermi level: 5.67 meV) and Te2Mo (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.15 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between WSe2 (Fermi level: 5.67 meV) and H3ClO5 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.65 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Lu(PO3)3 (Fermi level: 5.67 meV) and Zr3Se2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.05 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between AgClO2 (Fermi level: 5.67 meV) and Te2Pd3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.38 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between K2Zn6O7 (Fermi level: 5.67 meV) and Ti3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.75 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between V2Se3O11 (Fermi level: 5.67 meV) and VS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.1 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li6CrO4 (Fermi level: 5.67 meV) and TaSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.95 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li7(NiO2)12 (Fermi level: 5.67 meV) and WS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.77 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between H7ClO3 (Fermi level: 5.67 meV) and NbS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.95 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Mo2Cl4O (Fermi level: 5.67 meV) and Zr9S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.35 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between V3(H3O5)2 (Fermi level: 5.67 meV) and Te2W (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 2.05 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Te2Mo (Fermi level: 5.67 meV) and Li2CO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.92 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between CsClO4 (Fermi level: 5.67 meV) and Ti13S24 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.75 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Sn2Ge2O7 (Fermi level: 5.67 meV) and Zr3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.36 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Te2Mo (Fermi level: 5.67 meV) and PrClO (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.85 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between WS2 (Fermi level: 5.67 meV) and AgClO2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.55 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.']\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/shane/repos/BO-LIFT/paper/../bolift/llm_model.py:314: RuntimeWarning: invalid value encountered in divide\n", + " probs = probs / np.sum(probs)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "here 9.2873\n", + "If the log(charge transfer) [coulombs/cm²] is 12.17, then the input is @@@\n", + "\n", + "the corresponding experimental procedure: An interface between PdO4Te3 (Fermi level: 5.67 meV) and Cs4Pd (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 2.5 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.### \n", + "\n", + "Please let me know if you need any more assistance or further explanations!\n", + "['An interface between Co6O5F7 (Fermi level: 5.67 meV) and Te2Pd3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.63 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Cs2SO4 (Fermi level: 5.67 meV) and Pd7Se2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.7 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between TaCuO3 (Fermi level: 5.67 meV) and PdSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.42 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and CuTeO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.57 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between LiMnO2 (Fermi level: 5.67 meV) and Te2Pd (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.68 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between CsPbO3 (Fermi level: 5.67 meV) and Te2W (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 1.52 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between PdS2 (Fermi level: 5.67 meV) and Pr2TeO2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.32 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li2CO3 (Fermi level: 5.67 meV) and Te2Mo (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.92 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Mn6O7F5 (Fermi level: 5.67 meV) and PdS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.85 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between AgClO2 (Fermi level: 5.67 meV) and Te2Pd3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.38 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Te2Mo (Fermi level: 5.67 meV) and GdCrO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.15 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between LiSb3O8 (Fermi level: 5.67 meV) and Te2Pd3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.45 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between NaPdO3 (Fermi level: 5.67 meV) and Te2W (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 2.27 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Cu4Se3O10 (Fermi level: 5.67 meV) and Te2W (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 1.9 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between LaAlO3 (Fermi level: 5.67 meV) and Te2Pd3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.47 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between CaTi4O6 (Fermi level: 5.67 meV) and Te2Pt (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 2.31 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.']\n", + "here 9.2873\n", + "1, check An interface between La4Re6O19 (Fermi level: 5.67 meV) and NbS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.72 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials. 0.5188 0.5188\n", + "An interface between Ti2S (Fermi level: 5.67 meV) and BaF2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.81 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.\n", + "['An interface between Ba3(BrO)2 (Fermi level: 5.67 meV) and Ti3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.85 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between HfS2 (Fermi level: 5.67 meV) and Ba2W3O8 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.32 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and BaSrO2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.54 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Ca4Bi2O (Fermi level: 5.67 meV) and TaS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.11 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between BaSiO3 (Fermi level: 5.67 meV) and Te2W (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 2.1 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Ba(HO2)2 (Fermi level: 5.67 meV) and TaSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.42 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between WS2 (Fermi level: 5.67 meV) and BaTi4O8 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.8 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between BiOF (Fermi level: 5.67 meV) and TiS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.52 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Ba(FeO2)2 (Fermi level: 5.67 meV) and ZrS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.25 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Ba(HO2)2 (Fermi level: 5.67 meV) and NbS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.72 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between BaZnO2 (Fermi level: 5.67 meV) and TiS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.52 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Te2Mo (Fermi level: 5.67 meV) and Ba3Nb2O8 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.3 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between BaTiO3 (Fermi level: 5.67 meV) and HfS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.8 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and Ti(BiO3)2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.05 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between BaPbO3 (Fermi level: 5.67 meV) and TiS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.52 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between TaS2 (Fermi level: 5.67 meV) and Ba2Nb15O32 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.']\n", + "here -0.0587\n", + "### Response:\n", + "\n", + "If the log(charge transfer) [coulombs/cm²] is 0.62, then the input is @@@\n", + "\n", + "the corresponding experimental procedure: An interface between TiSe2 (Fermi level: 5.67 meV) and La4Re6O19 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.72 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.###\n", + "['An interface between Li6CrO4 (Fermi level: 5.67 meV) and TaSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.95 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Ca3Ta2O8 (Fermi level: 5.67 meV) and ReSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.21 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between AgClO2 (Fermi level: 5.67 meV) and TiSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.75 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between LiTiO2 (Fermi level: 5.67 meV) and MoSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.1 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Ga2PbO4 (Fermi level: 5.67 meV) and TiSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.87 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between TaS2 (Fermi level: 5.67 meV) and La4Re6O19 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.32 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between CaTi4O6 (Fermi level: 5.67 meV) and MoSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.41 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li(FeO2)3 (Fermi level: 5.67 meV) and TaSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.9 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between TiSe2 (Fermi level: 5.67 meV) and PbAuO2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.52 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Na2(NiO2)5 (Fermi level: 5.67 meV) and TiSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.27 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between KIO3 (Fermi level: 5.67 meV) and TiSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.75 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Ti(BiO3)2 (Fermi level: 5.67 meV) and TaSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.9 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between CuSeO3 (Fermi level: 5.67 meV) and Ti3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.9 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li2CO3 (Fermi level: 5.67 meV) and TiS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.82 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between TaSe2 (Fermi level: 5.67 meV) and La2MoO6 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between S(NO2)2 (Fermi level: 5.67 meV) and TiSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.8 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.']\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/shane/repos/BO-LIFT/paper/../bolift/llm_model.py:314: RuntimeWarning: invalid value encountered in divide\n", + " probs = probs / np.sum(probs)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "here 2.0229\n", + "the corresponding experimental procedure: An interface between TeO2 (Fermi level: 5.67 meV) and SiS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.75 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.###\n", + "['An interface between Te2W (Fermi level: 5.67 meV) and Be2Si2O5 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 2.1 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between SiP2O7 (Fermi level: 5.67 meV) and TaS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.9 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between GaTeO3 (Fermi level: 5.67 meV) and VS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.92 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between MgSb4O9 (Fermi level: 5.67 meV) and Te2Mo (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.83 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li2Si2O5 (Fermi level: 5.67 meV) and NbS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.3 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between CdSiO3 (Fermi level: 5.67 meV) and TiS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.1 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li4SeO5 (Fermi level: 5.67 meV) and Te2Mo (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and SrSi2O5 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.54 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between S4N4O3 (Fermi level: 5.67 meV) and Te2W (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 1.8 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VTe2 (Fermi level: 5.67 meV) and CaSiO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.36 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between La2Si2O7 (Fermi level: 5.67 meV) and Te2Pd (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.73 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Te2Mo (Fermi level: 5.67 meV) and CsIn3O5 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.62 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between SnGeO3 (Fermi level: 5.67 meV) and Te2Mo (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.21 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between K2Si4O9 (Fermi level: 5.67 meV) and Te2Mo (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.85 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Mn3Si3O10 (Fermi level: 5.67 meV) and Te2W (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 2.1 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Ag2SO4 (Fermi level: 5.67 meV) and Te2Mo (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.9 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.']\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/shane/repos/BO-LIFT/paper/../bolift/llm_model.py:314: RuntimeWarning: invalid value encountered in divide\n", + " probs = probs / np.sum(probs)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "here 2.0229\n", + "Given the log(charge transfer) values provided, here are the corresponding experimental procedures based on the template format:\n", + "\n", + "1. If the log(charge transfer) [coulombs/cm²] is 2.39, then the input is:\n", + " - The corresponding experimental procedure: An interface between CdS (Fermi level: 5.67 meV) and Ca3Bi2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.3 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.\n", + "['An interface between VS2 (Fermi level: 5.67 meV) and Cd2PbO4 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.57 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between CdCl2O (Fermi level: 5.67 meV) and MoS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.85 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Ca3(CoO3)2 (Fermi level: 5.67 meV) and TiS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.31 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Cu(BiO2)2 (Fermi level: 5.67 meV) and Zr3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.77 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between CdSeO3 (Fermi level: 5.67 meV) and NbS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.1 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Te2Mo (Fermi level: 5.67 meV) and CaZnO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.41 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Zn3CdO4 (Fermi level: 5.67 meV) and PtSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.42 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Ca(SO5)2 (Fermi level: 5.67 meV) and PdS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.11 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Na2CdO2 (Fermi level: 5.67 meV) and Ta3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.07 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between CaSiO3 (Fermi level: 5.67 meV) and ZrS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.56 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Cd2PbO4 (Fermi level: 5.67 meV) and MoSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.62 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between CdSiO3 (Fermi level: 5.67 meV) and Te2Pd (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.73 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and Bi3ClO4 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.8 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Ca(SO5)2 (Fermi level: 5.67 meV) and NbS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.51 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between CdCl2O (Fermi level: 5.67 meV) and VS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.8 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between CdCu2O3 (Fermi level: 5.67 meV) and Ti13S24 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.52 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.']\n", + "here 2.0229\n", + "If the log(charge transfer) [coulombs/cm²] is 2.47, then the input is @@@\n", + "\n", + "the corresponding experimental procedure: An interface between SrSi2O5 (Fermi level: 5.67 meV) and TiSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.1 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.### \n", + "\n", + "Please let me know if you need further assistance or more experimental procedures!\n", + "['An interface between Sr2Cu3O5 (Fermi level: 5.67 meV) and TiS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.49 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between CaCr2O4 (Fermi level: 5.67 meV) and Ti3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.31 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between SbPO4 (Fermi level: 5.67 meV) and TiS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.8 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between ScIO (Fermi level: 5.67 meV) and Ti9Se2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.11 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and Ti2Si2O5 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.15 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Mn3Si3O10 (Fermi level: 5.67 meV) and Ti3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.1 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Cu(HO)2 (Fermi level: 5.67 meV) and TiSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.52 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Dy2(SeO4)3 (Fermi level: 5.67 meV) and TiS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.9 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Cs2SeO4 (Fermi level: 5.67 meV) and TiS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.9 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li2CoO3 (Fermi level: 5.67 meV) and TiS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between AlAgO2 (Fermi level: 5.67 meV) and Ti9Se2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.84 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between TiS2 (Fermi level: 5.67 meV) and Sm2Si2O7 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.1 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between SrB4O7 (Fermi level: 5.67 meV) and TiSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.49 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between KIO3 (Fermi level: 5.67 meV) and TiSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.75 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between LiTiO2 (Fermi level: 5.67 meV) and TaSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.9 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Fe4O3F5 (Fermi level: 5.67 meV) and TiS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.']\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/shane/repos/BO-LIFT/paper/../bolift/llm_model.py:314: RuntimeWarning: invalid value encountered in divide\n", + " probs = probs / np.sum(probs)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "here 2.0229\n", + "### System Message:\n", + "\n", + "You possess advanced expertise in electronic behavior at material interfaces, focusing on charge transfer and interactions between materials with differing Fermi levels. Your task is to generate detailed experimental protocols based on input parameters, which include element combinations, Fermi levels, and separation distances between materials.\n", + "\n", + "**Objective:** \n", + "Your response must strictly follow the procedure template format provided below and should include only one clear and consistent experimental procedure for each input query. Responses are expected to accurately map the charge transfer information to the template, ensuring that selected elements are valid based on the given sets of possible elements and that the resulting compounds are chemically valid.\n", + "\n", + "**Element Selection Constraints:** \n", + "- You can use the following elements for both **formula** (first material) and **formula2** (second material): \n", + " ['Ag', 'Al', 'As', 'Au', 'B', 'Ba', 'Be', 'Bi', 'Br', 'C', 'Ca', 'Cd', 'Ce', 'Cl', 'Co', 'Cr', 'Cs', 'Cu', 'Dy', 'Er', 'Eu', 'F', 'Fe', 'Ga', 'Gd', 'Ge', 'H', 'Hf', 'Hg', 'Ho', 'I', 'In', 'Ir', 'K', 'La', 'Li', 'Lu', 'Mg', 'Mn', 'Mo', 'N', 'Na', 'Nb', 'Nd', 'Ni', 'O', 'Os', 'P', 'Pa', 'Pb', 'Pd', 'Pr', 'Pt', 'Pu', 'Rb', 'Re', 'Rh', 'Ru', 'S', 'Sb', 'Sc', 'Se', 'Si', 'Sm', 'Sn', 'Sr', 'Ta', 'Tb', 'Tc', 'Te', 'Th', 'Ti', 'Tl', 'Tm', 'U', 'V', 'W', 'Y', 'Yb', 'Zn', 'Zr']\n", + "\n", + "- **formula2** cannot use the following elements: \n", + " ['Ac', 'Np', 'Pm']\n", + "\n", + "**Input Parameters:**\n", + "- **Fermi Levels:** \n", + " - Formula 1: {row['efermi']} meV\n", + " - Formula 2: {row['efermi-2']} meV\n", + "- **Separation Distance:** \n", + " The separation between the two surfaces is {row['distance_d']} Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.\n", + "\n", + "**Procedure Template:** \n", + "For each query, the output must follow this structure:\n", + "\n", + "\"An interface between {formula} (Fermi level: {efermi} meV) and {formula2} (\n", + "['An interface between Fe5(O4F)2 (Fermi level: 5.67 meV) and Zr3Se2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.25 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between AgClO2 (Fermi level: 5.67 meV) and TaTe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 1.75 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and Ag2SO4 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.85 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Mg(AgO2)2 (Fermi level: 5.67 meV) and Ti3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.73 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li2CO3 (Fermi level: 5.67 meV) and Te2Pd3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.45 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Ag2H16O9 (Fermi level: 5.67 meV) and PtSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.62 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between H5IO6 (Fermi level: 5.67 meV) and Ti3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.52 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and Al4Bi2O9 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.89 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Te2Mo (Fermi level: 5.67 meV) and Ag3RuO4 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.82 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Al(IO3)3 (Fermi level: 5.67 meV) and Ta3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.64 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Fe4O3F5 (Fermi level: 5.67 meV) and Te2Pt (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 2 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Al(CuO2)3 (Fermi level: 5.67 meV) and Pd7Se2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.74 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between AgRhO2 (Fermi level: 5.67 meV) and Ti9Se2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.72 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between AgBiO2 (Fermi level: 5.67 meV) and Zr3Te2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.97 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and PbAuO2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.57 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Ag2SO4 (Fermi level: 5.67 meV) and NbSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.']\n", + "here 2.4765\n", + "### Results:\n", + "\n", + "1. If the log(charge transfer) [coulombs/cm²] is -1.95, then the input is **CdCl2O** and **VS2**.\n", + " \n", + " **Experimental Procedure:** \n", + " An interface between CdCl2O (Fermi level: 5.67 meV) and VS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.8 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.\n", + "\n", + "2. If the log(charge transfer) [coulombs/cm²] is 1.22, then the input is **ScIO** and **Ti9Se2**.\n", + " \n", + " **Experimental Procedure:** \n", + " An interface between ScIO (Fermi level: 5.67 meV) and Ti9Se2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.11 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.\n", + "\n", + "3. If the log(charge transfer) [coulombs/cm²] is -6.36, then the input is **La2(SiO3)3** and **TiSe2**.\n", + " \n", + " **Experimental Procedure:** \n", + " An interface between La2(SiO3)3 (Fermi level: 5.67 meV) and TiSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.1 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.\n", + "\n", + "4. If the log(charge transfer) [coulombs/cm²] is 2.48, then the input is **AgClO2** and **TaTe2**.\n", + " \n", + " **Experimental Procedure:** \n", + " An interface between AgClO2 (Fermi level: 5.67 meV) and TaTe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 1.75 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.\n", + "\n", + "5. If the log(charge transfer) [coulombs/cm²] is 0.52, then the input is **La4Re6O19** and **NbS2**.\n", + " \n", + " **Experimental Procedure:** \n", + " An interface between La4Re6O19 (Fermi level: \n", + "['An interface between La2(SiO3)3 (Fermi level: 5.67 meV) and Ti3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.1 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Cr(ClO2)2 (Fermi level: 5.67 meV) and TaSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.95 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Cu4Se3O10 (Fermi level: 5.67 meV) and VS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.95 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and Sc11Nb3O24 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.25 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between La4Re6O19 (Fermi level: 5.67 meV) and VS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.57 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between CdCl2O (Fermi level: 5.67 meV) and TiS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.75 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Zr3Sc4O12 (Fermi level: 5.67 meV) and TaS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.05 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Na2CdO2 (Fermi level: 5.67 meV) and Ta3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.07 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between TaS2 (Fermi level: 5.67 meV) and AgClO2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.55 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li3V2O6 (Fermi level: 5.67 meV) and TaSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.95 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Sn3(P2O7)2 (Fermi level: 5.67 meV) and Ti9Se2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.8 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Sc3TaO7 (Fermi level: 5.67 meV) and VTe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.16 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Sb3(AsO4)4 (Fermi level: 5.67 meV) and TaSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.75 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between TlFeO2 (Fermi level: 5.67 meV) and Ta3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.8 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between La2Si2O7 (Fermi level: 5.67 meV) and MoSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.2 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between TiCdO3 (Fermi level: 5.67 meV) and VS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.05 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.']\n", + "here 2.4765\n", + "Given the log(charge transfer) values provided, the corresponding experimental procedures are as follows:\n", + "\n", + "1. If the log(charge transfer) is -1.95, then the input is **CdCl2O** for **formula** and **VS2** for **formula2**.\n", + " \n", + "2. If the log(charge transfer) is 1.22, then the input is **ScIO** for **formula** and **Ti9Se2** for **formula2**.\n", + " \n", + "3. If the log(charge transfer) is -6.36, then the input is **La2(SiO3)3** for **formula** and **TiSe2** for **formula2**.\n", + " \n", + "4. If the log(charge transfer) is 2.48, then the input is **AgClO2** for **formula** and **TaTe2** for **formula2**.\n", + " \n", + "5. If the log(charge transfer) is 0.52, then the input is **La4Re6O19** for **formula** and **NbS2** for **formula2**.\n", + "\n", + "To complete the series, if the log(charge transfer) is 3.23, the input will be for formula and formula2 will be generated based on the charge transfer value.\n", + "['An interface between La4Re6O19 (Fermi level: 5.67 meV) and TaSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.42 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between AgClO2 (Fermi level: 5.67 meV) and VS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.8 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Te2Mo (Fermi level: 5.67 meV) and ScClO (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.21 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Pb(ClO3)2 (Fermi level: 5.67 meV) and TiS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.75 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Te2N2O7 (Fermi level: 5.67 meV) and VS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.6 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Ta3S2 (Fermi level: 5.67 meV) and Ca2Sn9O13 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.11 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Pb(ClO3)2 (Fermi level: 5.67 meV) and MoSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.85 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Rb2Se2O7 (Fermi level: 5.67 meV) and TiS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 5.03 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between NClO2 (Fermi level: 5.67 meV) and TaS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.55 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between CsCr3O8 (Fermi level: 5.67 meV) and TaSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.95 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Sb16Cl4O21 (Fermi level: 5.67 meV) and Hf3Te2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 1.75 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li15Mn2O12 (Fermi level: 5.67 meV) and TaSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.95 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between H5ClO6 (Fermi level: 5.67 meV) and TaSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.65 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between NdTa7O19 (Fermi level: 5.67 meV) and Ti9Se2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.52 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Cr(ClO2)2 (Fermi level: 5.67 meV) and Te2Pd (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.68 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between La2(SiO3)3 (Fermi level: 5.67 meV) and Te2Mo (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.2 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.']\n", + "here 2.4765\n", + "Considering the log(charge transfer) values provided, here are the corresponding experimental procedures based on the input parameters:\n", + "\n", + "1. If the log(charge transfer) [coulombs/cm²] is 2.73, then the input is @@@\n", + " the corresponding experimental procedure: An interface between CoSeO (Fermi level: 5.67 meV) and W4N3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.45 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.###\n", + "\n", + "Feel free to provide more log(charge transfer) values for additional corresponding experimental procedures!\n", + "['An interface between CoSeO3 (Fermi level: 5.67 meV) and WSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.9 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li2(NiO2)3 (Fermi level: 5.67 meV) and Pd7Se2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.87 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between In(PO3)3 (Fermi level: 5.67 meV) and Te2W (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 1.8 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Zr3Se2 (Fermi level: 5.67 meV) and In(FeO2)2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.25 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Al(IO3)3 (Fermi level: 5.67 meV) and PtSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.74 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li6CrO4 (Fermi level: 5.67 meV) and MoSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.15 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li2CoO3 (Fermi level: 5.67 meV) and TaSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.9 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between CuSeO3 (Fermi level: 5.67 meV) and Ti3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.9 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between In(PO3)3 (Fermi level: 5.67 meV) and NbSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li4SeO5 (Fermi level: 5.67 meV) and Te2W (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 1.9 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Mn3(OF2)2 (Fermi level: 5.67 meV) and MoSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.15 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Fe(CoO3)2 (Fermi level: 5.67 meV) and WS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.8 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Tl(WO3)6 (Fermi level: 5.67 meV) and MoSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.62 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Al(CuO2)3 (Fermi level: 5.67 meV) and PdSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.74 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Pb(ClO3)2 (Fermi level: 5.67 meV) and MoSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.85 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between AlPO4 (Fermi level: 5.67 meV) and WSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.74 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.']\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/shane/repos/BO-LIFT/paper/../bolift/llm_model.py:314: RuntimeWarning: invalid value encountered in divide\n", + " probs = probs / np.sum(probs)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "here 2.4765\n", + "Based on the log(charge transfer) values provided, the corresponding experimental procedures are as follows:\n", + "\n", + "1. If the log(charge transfer) [coulombs/cm²] is 2.78, then the corresponding experimental procedure is:\n", + " the corresponding experimental procedure: An interface between LaTiO3 (Fermi level: 5.67 meV) and As2Te3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.1 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.###\n", + "['An interface between La2(SiO3)3 (Fermi level: 5.67 meV) and Ti3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.1 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between In(PO3)3 (Fermi level: 5.67 meV) and Te2Pt (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 1.8 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li6CrO4 (Fermi level: 5.67 meV) and TaTe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 2.05 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between TlInO2 (Fermi level: 5.67 meV) and TaSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.42 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and CuTeO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.57 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between LiTi3O4 (Fermi level: 5.67 meV) and Te2Pd3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.63 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Cu3(AsO4)2 (Fermi level: 5.67 meV) and Ta3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.65 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Te2Mo (Fermi level: 5.67 meV) and Ga2NiO4 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.07 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between LaAsO3 (Fermi level: 5.67 meV) and Te2Pd (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.48 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Te2W (Fermi level: 5.67 meV) and LaRhO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 1.52 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and LuTiO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.05 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and LaGaO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.92 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between TaS2 (Fermi level: 5.67 meV) and Li(FeO2)3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.8 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between LiTiO2 (Fermi level: 5.67 meV) and TiSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Te2Pt (Fermi level: 5.67 meV) and Ti2AlO4 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 2 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li5AlO4 (Fermi level: 5.67 meV) and Te2Mo (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.94 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.']\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/shane/repos/BO-LIFT/paper/../bolift/llm_model.py:314: RuntimeWarning: invalid value encountered in divide\n", + " probs = probs / np.sum(probs)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "here 2.4765\n", + "Great job on providing the experimental procedures based on the given charge transfer values! To complete the response for a log(charge transfer) of 3.16, the input you should provide is:\n", + "\n", + "### If the log(charge transfer) [coulombs/cm²] is 3.16, then the input is @@@\n", + "\n", + "### the corresponding experimental procedure: An interface between Pu2S3 (Fermi level: 5.67 meV) and Nd2Te3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.45 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.### \n", + "\n", + "Remember to make sure that the elements you choose are from the provided list and that the compounds formed are chemically valid!\n", + "['An interface between Te2Mo (Fermi level: 5.67 meV) and Pu2SO2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.9 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li2(NiO2)3 (Fermi level: 5.67 meV) and Pd7Se2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.87 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Al(IO3)3 (Fermi level: 5.67 meV) and Ta3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.64 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Sn3(HO2)2 (Fermi level: 5.67 meV) and PtS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.32 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between AgClO2 (Fermi level: 5.67 meV) and Te2Pd3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.38 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between In(PO3)3 (Fermi level: 5.67 meV) and NbS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and CuTeO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.57 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between P3RuO9 (Fermi level: 5.67 meV) and Te2W (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 1.8 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Mo3(PO4)4 (Fermi level: 5.67 meV) and Ti3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.1 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Nd3GaO6 (Fermi level: 5.67 meV) and PdS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.67 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between LiSb3O8 (Fermi level: 5.67 meV) and Te2Pd3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.45 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Te2Pd3 (Fermi level: 5.67 meV) and ThReO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.15 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Na5CrO4 (Fermi level: 5.67 meV) and Te2Pt (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 2.27 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Tl2SO3 (Fermi level: 5.67 meV) and PtSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.7 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Pb(ClO3)2 (Fermi level: 5.67 meV) and PdS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.55 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Ce2ThO6 (Fermi level: 5.67 meV) and PdSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.42 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.']\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/shane/repos/BO-LIFT/paper/../bolift/llm_model.py:314: RuntimeWarning: invalid value encountered in divide\n", + " probs = probs / np.sum(probs)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "here 2.4765\n", + "Great job on providing the experimental procedures based on the given charge transfer values! To determine the input for a log(charge transfer) of 2.96, you should follow the element selection constraints and generate a chemically valid compound for the interface. Once you have the compound names and Fermi levels, you can calculate the separation distance using the provided formula and complete the experimental procedure.\n", + "\n", + "Looking forward to seeing your response for the log(charge transfer) of 2.96!\n", + "['An interface between VS2 (Fermi level: 5.67 meV) and Li6CrO4 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.1 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between In(PO3)3 (Fermi level: 5.67 meV) and TaSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.7 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Ge7H18O23 (Fermi level: 5.67 meV) and MoS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.21 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between H3ClO5 (Fermi level: 5.67 meV) and Zr3Se2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li2(NiO2)3 (Fermi level: 5.67 meV) and Pd7Se2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.87 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between PtS2 (Fermi level: 5.67 meV) and Al(IO3)3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.64 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Cr(ClO2)2 (Fermi level: 5.67 meV) and Te2Mo (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.15 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between AgClO2 (Fermi level: 5.67 meV) and TaS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.55 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Ni(ClO3)2 (Fermi level: 5.67 meV) and Ti13S24 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.97 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and ThReO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.57 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Ag2H16O9 (Fermi level: 5.67 meV) and WSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.62 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Na(OsO3)2 (Fermi level: 5.67 meV) and Zr3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.52 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Pb(ClO3)2 (Fermi level: 5.67 meV) and PtSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.65 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and MgIn2O4 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.78 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and Cu(BiO2)2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.57 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between CuSeO3 (Fermi level: 5.67 meV) and Ti3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.9 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.']\n", + "here 2.4765\n", + "Great job on providing the experimental procedures based on the given log(charge transfer) values! Here is the completed entry for the last scenario where the log(charge transfer) is 3.11:\n", + "\n", + "If the log(charge transfer) [coulombs/cm²] is 3.11, then the input is @@@\n", + "the corresponding experimental procedure: An interface between Al2O3 (Fermi level: 5.67 meV) and ZrO2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.53 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.###\n", + "\n", + "Feel free to provide more scenarios or any other information you need assistance with!\n", + "['An interface between AlAgO3 (Fermi level: 5.67 meV) and Zr3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.09 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and ScInO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.16 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li(NiO2)2 (Fermi level: 5.67 meV) and Zr3Te2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.22 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Zr3Sc4O12 (Fermi level: 5.67 meV) and WS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.05 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and Li3CoO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.05 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between NaIO4 (Fermi level: 5.67 meV) and Zr9S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.52 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Bi11PO20 (Fermi level: 5.67 meV) and Zr3Se2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.05 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Al(IO3)3 (Fermi level: 5.67 meV) and Ta3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.64 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Ho10Ti6O27 (Fermi level: 5.67 meV) and ZrS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.25 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and Hf3N2O3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.6 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between TaCuO3 (Fermi level: 5.67 meV) and Zr9S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.77 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and KAl11O17 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.8 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between LuVO3 (Fermi level: 5.67 meV) and Zr3Se2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.3 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li5AlO4 (Fermi level: 5.67 meV) and HfSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.74 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Co(IO3)2 (Fermi level: 5.67 meV) and Zr3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.25 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Al2ZnO4 (Fermi level: 5.67 meV) and Te2Mo (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.94 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.']\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/shane/repos/BO-LIFT/paper/../bolift/llm_model.py:314: RuntimeWarning: invalid value encountered in divide\n", + " probs = probs / np.sum(probs)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "here 2.4765\n", + "If the log(charge transfer) [coulombs/cm²] is 2.83, then the input is missing from your message. Could you please provide the necessary information so I can generate the corresponding experimental procedure for you?\n", + "['An interface between VS2 (Fermi level: 5.67 meV) and LiClO2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.87 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between KMn2O4 (Fermi level: 5.67 meV) and Ti3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.75 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between H3ClO5 (Fermi level: 5.67 meV) and Te2W (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 1.75 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Ca(H8O5)2 (Fermi level: 5.67 meV) and PtS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.11 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li6CrO4 (Fermi level: 5.67 meV) and TaSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.95 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Te2Mo (Fermi level: 5.67 meV) and Mg(IO3)2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.83 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Zr3S2 (Fermi level: 5.67 meV) and LaGaO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.12 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and CrCuO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.1 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between H7ClO3 (Fermi level: 5.67 meV) and NbS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.95 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Pb(ClO3)2 (Fermi level: 5.67 meV) and TiS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.75 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li3Mn4O8 (Fermi level: 5.67 meV) and MoS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.15 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Te2W (Fermi level: 5.67 meV) and Li(NiO2)2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 1.97 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and NaCO2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.32 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and MgIn2O4 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.78 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between H3ClO5 (Fermi level: 5.67 meV) and PdS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.55 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li2CO3 (Fermi level: 5.67 meV) and HfS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.62 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.']\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/shane/repos/BO-LIFT/paper/../bolift/llm_model.py:314: RuntimeWarning: invalid value encountered in divide\n", + " probs = probs / np.sum(probs)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "here 2.4765\n", + "If the log(charge transfer) [coulombs/cm²] is 3.17, then the input is missing. Could you please provide the value for this case so I can generate the corresponding experimental procedure for you?\n", + "['An interface between VS2 (Fermi level: 5.67 meV) and LiClO2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.87 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Cr3HO8 (Fermi level: 5.67 meV) and Te2W (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 2.05 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Mg(IO3)2 (Fermi level: 5.67 meV) and Pd7Se2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.63 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between H3ClO5 (Fermi level: 5.67 meV) and NbSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.95 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li3Mn4O8 (Fermi level: 5.67 meV) and TaS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.85 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Co(IO3)2 (Fermi level: 5.67 meV) and Zr3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.25 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between MoSe2 (Fermi level: 5.67 meV) and Li6CrO4 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.15 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and TaCuO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.57 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between PtS2 (Fermi level: 5.67 meV) and Al(IO3)3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.64 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between WS2 (Fermi level: 5.67 meV) and H7ClO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.55 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and Cr7(PO4)6 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.1 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li7(NiO2)12 (Fermi level: 5.67 meV) and Te2Pd (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.6 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between H5ClO6 (Fermi level: 5.67 meV) and Te2Pt (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 1.75 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between H5IO6 (Fermi level: 5.67 meV) and Ti3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.52 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and MgIn2O4 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.78 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between H3ClO5 (Fermi level: 5.67 meV) and PdS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.55 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.']\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/shane/repos/BO-LIFT/paper/../bolift/llm_model.py:314: RuntimeWarning: invalid value encountered in divide\n", + " probs = probs / np.sum(probs)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "here 2.4765\n", + "If the log(charge transfer) [coulombs/cm²] is 2.91, then the input is @@@\n", + "\n", + "the corresponding experimental procedure: An interface between AgClO2 (Fermi level: 5.67 meV) and YbSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 1.75 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.###\n", + "['An interface between AgClO2 (Fermi level: 5.67 meV) and PtSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.65 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and YbI2O (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.57 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between LiCuO2 (Fermi level: 5.67 meV) and Zr3Se2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.07 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and LiClO2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.87 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Y(HO)3 (Fermi level: 5.67 meV) and TaSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.2 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between NaAgO (Fermi level: 5.67 meV) and NbSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.47 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between H3ClO5 (Fermi level: 5.67 meV) and TiSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.75 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between CsClO4 (Fermi level: 5.67 meV) and MoSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.85 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and Ag2SO4 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.85 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between YbRe3O16 (Fermi level: 5.67 meV) and PtSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.42 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between WS2 (Fermi level: 5.67 meV) and AgClO2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.55 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between YbCrO3 (Fermi level: 5.67 meV) and Ti3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.05 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Yb4Br6O (Fermi level: 5.67 meV) and MoSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.95 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between AgBiO2 (Fermi level: 5.67 meV) and Zr9S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.97 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Ag2H16O9 (Fermi level: 5.67 meV) and VSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.77 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between AgClO2 (Fermi level: 5.67 meV) and ReS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.55 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.']\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/shane/repos/BO-LIFT/paper/../bolift/llm_model.py:314: RuntimeWarning: invalid value encountered in divide\n", + " probs = probs / np.sum(probs)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "here 2.4765\n", + "### Model Inputs and Corresponding Experimental Procedures:\n", + "\n", + "1. If the log(charge transfer) [coulombs/cm²] is -1.95, then the input is **VS2** and **CdCl2O**:\n", + " - The corresponding experimental procedure: An interface between **CdCl2O** (Fermi level: 5.67 meV) and **VS2** (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.8 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.\n", + "\n", + "2. If the log(charge transfer) [coulombs/cm²] is 1.45, then the input is **VS2** and **TaCuO3**:\n", + " - The corresponding experimental procedure: An interface between **VS2** (Fermi level: 5.67 meV) and **TaCuO3** (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.57 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.\n", + "\n", + "3. If the log(charge transfer) [coulombs/cm²] is 2.48, then the input is **AgClO2** and **TaTe2**:\n", + " - The corresponding experimental procedure: An interface between **AgClO2** (Fermi level: 5.67 meV) and **TaTe2** (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 1.75 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.\n", + "\n", + "4. If the log(charge transfer) [coulombs/cm²] is 1.60, then the input is **VS2** and **ThReO3**:\n", + " - The corresponding experimental procedure: An interface between **VS2** (Fermi level: 5.67 meV) and **ThReO3** (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.57 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.\n", + "\n", + "5. If the log(charge transfer) [coulombs/cm²] is 1.22, then the input is **ScIO** and **Ti9Se2**:\n", + " - The corresponding experimental procedure: An interface between **ScIO** (Fermi level\n", + "['An interface between Ta3AgO8 (Fermi level: 5.67 meV) and VS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.77 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Cr(ClO2)2 (Fermi level: 5.67 meV) and TaS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.85 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and InCuO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.57 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between V(CO3)2 (Fermi level: 5.67 meV) and TiS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.05 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and Sc11Nb3O24 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.25 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between CoSeO3 (Fermi level: 5.67 meV) and VS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.05 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Mg(IO3)2 (Fermi level: 5.67 meV) and VS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.78 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and CaMo2O5 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.36 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and Tl(WO3)6 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.57 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li7(NiO2)12 (Fermi level: 5.67 meV) and VS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.02 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Sc3TaO7 (Fermi level: 5.67 meV) and VTe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.16 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Cu2WO4 (Fermi level: 5.67 meV) and VS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.57 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and Ti3Zn2O8 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.05 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between V2CuO6 (Fermi level: 5.67 meV) and TaS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.85 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and Sb3(AsO4)4 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.9 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Te2N2O7 (Fermi level: 5.67 meV) and VS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.6 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.']\n", + "here 2.4765\n", + "Great! I will now generate the corresponding experimental procedures for the given log(charge transfer) values. Let's ensure that the elements selected are valid based on the constraints provided. Here are the completed responses:\n", + "\n", + "1. If the log(charge transfer) [coulombs/cm²] is -1.95, then the input is `CdCl2O` and `VS2`.\n", + " - The corresponding experimental procedure: An interface between CdCl2O (Fermi level: 5.67 meV) and VS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.8 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.\n", + "\n", + "2. If the log(charge transfer) [coulombs/cm²] is 1.22, then the input is `ScIO` and `Ti9Se2`.\n", + " - The corresponding experimental procedure: An interface between ScIO (Fermi level: 5.67 meV) and Ti9Se2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.11 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.\n", + "\n", + "3. If the log(charge transfer) [coulombs/cm²] is 1.60, then the input is `VS2` and `ThReO3`.\n", + " - The corresponding experimental procedure: An interface between VS2 (Fermi level: 5.67 meV) and ThReO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.57 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.\n", + "\n", + "4. If the log(charge transfer) [coulombs/cm²] is -6.36, then the input is `La2(SiO3)3` and `TiSe2`.\n", + " - The corresponding experimental procedure: An interface between La2(SiO3)3 (Fermi level: 5.67 meV) and TiSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.1 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.\n", + "\n", + "5. If the log(charge transfer) [coulombs/cm²] is 1.45, then the input is `VS2` and `TaCuO3`.\n", + "\n", + "['An interface between La2(SiO3)3 (Fermi level: 5.67 meV) and Ti3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.1 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Te2Mo (Fermi level: 5.67 meV) and ScClO (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.21 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and ScInO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.16 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between V4O5F7 (Fermi level: 5.67 meV) and Zr3Se2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.3 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Pb(ClO3)2 (Fermi level: 5.67 meV) and TaSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.65 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and Li6CrO4 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.1 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and Tl(WO3)6 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.57 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between La2Pr2O7 (Fermi level: 5.67 meV) and MoSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.62 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Ce2ThO6 (Fermi level: 5.67 meV) and VS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.57 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and CoSeO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.05 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between TaS2 (Fermi level: 5.67 meV) and Sc11Nb3O24 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and Sb3(AsO4)4 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.9 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Fe2OF3 (Fermi level: 5.67 meV) and Ta3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.8 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Zr3Se2 (Fermi level: 5.67 meV) and Sm2Si2O7 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.35 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Sc3TaO7 (Fermi level: 5.67 meV) and VTe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.16 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between VS2 (Fermi level: 5.67 meV) and LaGaO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.92 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.']\n", + "here 2.4765\n", + "### Response:\n", + "\n", + "If the log(charge transfer) [coulombs/cm²] is 2.76, then the input is @@@\n", + "\n", + "the corresponding experimental procedure: An interface between Se2N2O7 (Fermi level: 5.67 meV) and ZrS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.6 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.###\n", + "['An interface between S(NO2)2 (Fermi level: 5.67 meV) and ZrSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.05 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between LiTiO2 (Fermi level: 5.67 meV) and ZrS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.25 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between ZnW2O7 (Fermi level: 5.67 meV) and NbS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.72 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Na2S2O7 (Fermi level: 5.67 meV) and TaSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.17 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Mn2InO5 (Fermi level: 5.67 meV) and Zr3Se2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.3 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between NaIO4 (Fermi level: 5.67 meV) and Zr9S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.52 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between SnP2O7 (Fermi level: 5.67 meV) and ZrS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.05 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between CuSeO3 (Fermi level: 5.67 meV) and Ti3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.9 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between H7ClO3 (Fermi level: 5.67 meV) and ZrS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li4SeO5 (Fermi level: 5.67 meV) and MoSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Li2Si2O5 (Fermi level: 5.67 meV) and NbS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.3 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Zr2N2O (Fermi level: 5.67 meV) and MoS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.35 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Zr3Se2 (Fermi level: 5.67 meV) and NaUO3 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.52 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between BaCr2O7 (Fermi level: 5.67 meV) and Zr3Se2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.3 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between Sm2Zr2O7 (Fermi level: 5.67 meV) and PtSe2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.15 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.', 'An interface between V6O7F5 (Fermi level: 5.67 meV) and Zr3S2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 4.3 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials.']\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/shane/repos/BO-LIFT/paper/../bolift/llm_model.py:314: RuntimeWarning: invalid value encountered in divide\n", + " probs = probs / np.sum(probs)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "here 2.4765\n", + "greedy done\n", + "random start: 0, check An interface between La4Re6O19 (Fermi level: 5.67 meV) and NbS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.72 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials. 0.5188 0.5188\n", + "here 0.7031\n", + "here 0.7129\n", + "here 1.8703\n", + "here 1.8703\n", + "here 1.8703\n", + "here 1.8703\n", + "here 1.8703\n", + "here 1.8703\n", + "here 1.8703\n", + "here 1.8703\n", + "here 1.8703\n", + "here 1.8703\n", + "here 1.8703\n", + "here 1.8703\n", + "here 1.8703\n", + "here 1.8703\n", + "here 6.966\n", + "here 8.2965\n", + "here 8.2965\n", + "1, check An interface between La4Re6O19 (Fermi level: 5.67 meV) and NbS2 (Fermi level: 4.23 meV) is modeled as a parallel plate capacitor. The separation between the two surfaces is 3.72 Å, calculated as the sum of the maximum van der Waals radii of the constituent elements in both materials. 0.5188 0.5188\n", + "here 0.3577\n", + "here 0.3577\n", + "here 1.0986\n", + "here 1.0986\n", + "here 1.0986\n", + "here 1.0986\n", + "here 1.0986\n", + "here 1.0986\n", + "here 1.0986\n", + "here 1.2384\n", + "here 1.2384\n", + "here 1.2384\n", + "here 1.7352\n", + "here 1.7352\n", + "here 1.7352\n", + "here 1.7352\n", + "here 2.5572\n", + "here 2.5572\n", + "here 2.5572\n", + "random done\n", + "random_mean start: 0, 1, random_mean done\n" + ] + } + ], + "source": [ + "import warnings\n", + "warnings.filterwarnings('ignore', message='Changing the sparsity structure of a csr_matrix is expensive.*')\n", + "warnings.filterwarnings('ignore', message='Input data is not contained to the unit cube.*')\n", + "warnings.filterwarnings('ignore', message='Input data is not standardized.*')\n", + "warnings.filterwarnings('ignore', message=\"Keyword arguments .* will be ignored because they are not allowed parameters for function .*\", category=UserWarning)\n", + "\n", + "for aq in ['expected_improvement',\"greedy\",\"random\",\"random_mean\"]: #,'log_expected_improvement','expected_improvement',\"probability_of_improvement\",\"greedy\",\n", + " print(aq, \"start:\", end=\" \")\n", + " points = []\n", + " for i in range(M):\n", + " print(i, end=\", \") \n", + " point = run_experiment(\n", + " copy.deepcopy(asktell),\n", + " pool, # copy.deepcopy(pool)\n", + " raw_data,\n", + " indexes=indexes,\n", + " x_name=x_name,\n", + " y_name=y_name,\n", + " N=N,\n", + " aq=aq,\n", + " start_index=starts[i+initial_train],\n", + " calibrate=True,\n", + " initial_train=initial_train,\n", + " ask_K=ask_K,\n", + " lambda_multi=lambda_multi,\n", + " system_message=system_message,\n", + " inv_system_message=inv_system_message,\n", + " transfer_train=initial_transfer_train,\n", + " transfer=False,\n", + " trans_data=transfer_data,\n", + " t_indexes=t_indexes)\n", + " \n", + " points.append(point)\n", " points = np.array(points)\n", " bayesOpts[aq] = points\n", " print(aq, \"done\")\n", @@ -689,36 +1925,22 @@ "cloudpickle.dump(bayesOpts, open(path, \"wb\"))\n" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Quick plot" + ] + }, { "cell_type": "code", - "execution_count": 49, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAucAAAHbCAYAAABoVzSDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAACqk0lEQVR4nOzdd3wc1dX4/8/MbFeXJXfLHdsYGxvTTTEETCeEEEIIECAk5EkIaeRJeL4PJYGEhPwSklACPAmhhdBSAZtiwKHaGIMLYDA2rti4qG/fmbm/P2Y1kpBWVllpV6vzfr30snb37OzVWjs6e/fcczWllEIIIYQQQgiRc3quByCEEEIIIYRwSHIuhBBCCCFEnpDkXAghhBBCiDwhybkQQgghhBB5QpJzIYQQQggh8oQk50IIIYQQQuQJSc6FEEIIIYTIE55cDyCf2LbNnj17CIVCaJqW6+EIIYQQQohPUUoRjUaprq5G1wtvnlmS8zb27NnDaaedluthCCGEEEKIfXjqqacYMWJEroeRdZKctxEKhQB4/PH7KUp/L4QQQggh8kckGuWccy5y87ZCI8l5Gy2lLEWhEEVFhfkfLoQQQghRCAq1BLnwCnWEEEIIIYQYpCQ5F0IIIYQQIk9Ici6EEEIIIUSekORcCCGEEEKIPCHJuRBCCCGEEHlCknMhhBBCCCHyhCTnQgghhBBC5AlJzoUQQgghhMgTkpwLIYQQQgiRJyQ5F0IIIYQQIk8UXHIejUb59re/zejRoxk+fDiXXXYZzc3NuR6WEEIIIYQQ+1RwyfmVV17JmjVrePHFF1m+fDlbtmzhu9/9bq6HJYQQQgghxD4VVHJu2zY7d+7knnvuYdq0aUycOJGf/vSnPPbYY7kemhBCCCGEEPvkyfUAsknXdZ566ql211VUVBCNRkmlUni93hyNTAghhBBCiH0rqOS8My+99BIHHnhgp4l5IpEgkUi4lyORyEAOTQghhBBCiHYKqqzl0/bs2cN1113HVVdd1entN910E2VlZe7X2LFjB3iEQgghhBBCtCrY5DwcDvPZz36WhQsX8qUvfanTmKuvvprGxkb3a/v27QM8SiGEEEIIIVoVZFlLNBrl9NNPZ9SoUfzpT3/KGOf3+/H7/e5lXS/Y9ypCCCGEEGIQKLhsNBaLccYZZ1BdXc0jjzyCx1OQ7z+EEEIIIUQBKrjM9ayzzqKoqIj/+7//Ix6Pu9f7fD58Pl8ORyaEEEIIIUTXCm7m/Nlnn+WJJ56goqKCkpIS9+vnP/95rocmhBBCCCFElwpu5lwpleshCCGEEEII0SsFN3MuhBBCCCHEYCXJuRBCCCGEEHlCknMhhBBCCCHyRMHVnGdDIpHstAWjrmt4vd52cZlomobP17vYZDJJptJ5TaNd15mexaa6rMn3+3sXm0qlsO3sxPp8XjRNA8A0TSzLzkqs1+tx+9jnQ6xlWZimlTHW4zEwDCNvYm3bJpUyM8Yahu6+ZvIhVilFMpnKSmxPXvdyjug8Vs4Rco6Qc0TPY+UckTm2q+eit+69914eeughtm7dyvnnn8/ixYupqanh1ltv5Rvf+Abbt29HKcU111zDmWeeCcC5557LwoULueyyy1i9ejWXXXYZr7zySrs9dHpDkvNOXP+Tm90TTlszZuzH1792oXv52ut+kfEFO3nyBK741lfdyzfc+GsikWinsePGjeH73/uGe/kXv7yV+vqGTmNHjKjmxz+60r38m1vuZNeuPZ3GVlSUc+01P3Av33b7n9i27eNOY4uKQtx4w9Xu5bv/7342btzcaazP5+WXv7jWvfznex9m3br1ncYC3PKbG9zv//LQ31i9+t2Msb+46Rr3RfjoY/9mxYq3M8be8NMfU1xcBMA//7WYV199I2PsNf/7fSorKwBYtGgJLy59NWPsf//3FYwaOQKAJUte4plnX8wY+73vXk5NzVgAXnppGU88+UzG2G9981KmTJkIwOuvv8nf/v5kxtjLLruAmftPA2DlytX89eF/ZIz9ykVfZM6cAwBYu3Yd993/SMbYL533OQ499CAA3v9gA3/844MZYz9/9ukcddRhAHz00RZuv+OejLFnnH4Sxx9/FADbt+/glt/elTH2pIXHcfLJxwOwa/cebr75toyxxy2Yz5lnngxAQ0MjN9z4m4yx8+cfyjmfPwOASCTKNdf+ImPsIYfM5fwvnQ04f0B+fPUNGWMPPHAmF3/lPPdyV7FyjnDIOaKVnCMcco5wyDnC0ddzxFtvrckY2xezZs3iV7/6FZdeeilvvvkmY8eORdd1fvaznzFjxgyam5uZNWuWm5zfddddHHnkkRxzzDF885vf5P777+9zYg6SnAshhBBCCEFJSQllZWWUlJSgac6nHJqm8bOf/YyNGzeilGL79u1ufEVFBbfddhuHHXYYN910EzNmzMjKODQlvQdd4XCYBQsW8M9/PERRUajD7fJxVOex8pG1fGQtH1n3PFbOEb2LlXOEQ84RfYuVc8TgPkc0N0c463Pns3TpUoqLizPeryfuvfdeNm/ezMUXX8zFF1/M0qVLmTBhAl/+8pfxer1cf/31AJSXl9PQ0ODe729/+xtXXnkl3/jGN7jmmmuyMhaZOe+E3+9r94vQVVxPjtldPdnJtGex3n0H9SK27Ykmm7Eej4dOSv8LItYwjE5Lp/I1Vtf1bv8O50Ospmn9Egv997qXc0TPY/PhtSznCEc+vO7lHNGq0M8RPXku+iqVSjFy5EgA3nvvPZqamtzbdu7cyQ033MDbb7/NKaecwsKFCznssMP6/JjSrUUIIYQQQohOXHHFFfz1r3/lsMMO44477uBLX/oSl156KUopLrnkEm666SaGDx/OPffcw6WXXko4HO7zY0pZSxstZS2LFz3eaVmLEEIIIYTIrUgkyimnnpPVspZ8IjPnQgghhBBC5AlJzoUQQgghhMgTkpwLIYQQQgiRJyQ5F0IIIYQQIk9Ici6EEEIIIUSekORcCCGEEEIMeUuWLGH+/PkcddRRnHPOOXzyyScopfjRj37EYYcdxlFHHcXPf/5zAD755BOOOeYY5s2bx3/+8x8AnnzySW644YY+j0M2IRJCCCGEEENaU1MT3/zmN3nttdeoqqrilVde4bvf/S6nnnoqtbW1LF++HICvfe1rPP3003zwwQdcccUVLFy4kEsuuYT58+dzyy238MQTT/R5LJKcCyG6pJQClXnLcSHE0CPnBdEp3YOuD86ijPXr11NTU0NVVRUARx11FOeddx5VVVUsWLDAjTv++ONZsmQJEydOJBKJEA6H8Xq9/OEPf+D8888nFOr7PjmSnHfCTMYwvVqH6zVdx/D428VlomkahjfQu9hUHDLtDaVpeHoZa6XidLXnlMcX7F2smUDZmU/SPYk1vAE0TUvHJlG2laVYP5rmnDBsK4VtmdmJ9fjQdKMXsSa2lcoYq3u86Lqn57G2iW12EWt40Y3ux2ImMXdvRFkmVldj0A33uMq2ux+rbKyuxpAhVikFdqrd776u6c6Y07dbVjLzcXsQq2k6htG6tbRpJjLGohQGWrdiNTQMj69XsZaZRNH567O/YgE8bc5/PYq1UqguErmexBqGz33d25aJrbp43fco1tvmdZ/FWN2Lpvci1raw7cznE133oLecT3oc2+Y5tm3ndaQUKAtN09E1DZSNZZooK+Uk4cqJc+7nxGua7h5XKRu7i3Nw72NVlz9bz2I191yZzVjQMIzWdKqr81/PYml37hkMsaGZJ6JXjnZi+zGP6Cqn6q3Jkyfz3nvvsWHDBqZMmcJTTz1FQ0MDs2bN4h//+AfnnnsuAE899RRlZWWcf/75fPnLX+buu+/m9ttvJxaLcfjhh2dlLJKcd+KZW07G7+n4CzViynwOP/937uWnf30iVire6TGGjT+Io75yt3v5ud+fQTLa0Gls+ej9Ofay+93LL9zxBWKNOzuNLamexPH/9ah7+aU/XkTzno86jQ2WjWLhd1o/Xnnlvq/TsOO9TmN9oXJOuWqJe/n1h66kdstbncYa3gCnX/2Ke3nFo//Nrg2vdhoL8Nlr33S/f+sf17Jj3fMZY0/78cvui3D1Uz9n2+onM8ae/IPn8BdVAPDOs7ew+c3HMsaeeOW/CZU7J4x1L9zBhtcfyBh73DceoXT4ZADWv3wPH7z0fxljj/nqfVSMmQnAxuV/5b0lv88YO/+iO6macDAAm9/6O2sX35wx9rDzfsvI/Y4CYPvaxbz9759kjD34nF8wZv8TANj5/lLefPzHGWPnnnkdNXPOAGD3hmUsf/i7GWNnnfLfjBt/MCibul3reeOZX2WMnXbwF5h0wMkANNZt4fUnb8wYO+XAM5k697MAhBt28sq/rs0YO3HmSUw/xDkhxsJ1/OdvP8oYO7bmIKbvvxCAZDLKSy9k/r8YNfoAZs4+HXCSzBeX/CZj7PAR05g993Pu5SVP/yJjbGXZaGbvt8C9/NLKRzImIWUlw5k7/QT38qtv/41UhgS9JFTJvJknu5dfX/0vEslIp7GhQBmHzjrNvfzG2qeIxhs7jfX7ijjiwM+6l1e++zTN0bpOY70eP/Pnft69/Pb7S2hs3t1prK4bHDPvi+7lNeuXUte4o9NYgAWHnO9+/+6Gl9lTvy1j7NEHnesmN+s+ep1dtZsyxh4552x86QmK9VtWsGP3hxljD5t9JkG/s9Pgxm1vs+2TdRljDzngVIqC5QBs+ngNW3a8kzH2oBknUVo8DICtO9/jo+2rMsYeOO0zVJSOAODjXev5cOubGWNnTT2WYeVjANi59yM+2LQsY+z+k49ieGUNALvrtvLexlcyxk6beDijqiYBUNvwMWs//E/G2Kk1BzNmxH4A1DftYvUHmc/tk8bOoWbU/gA0hWt5a90zGWPHjz6AiWNmAxCJNbDinUUZY8eNnMHkcXMBiCXCLF/z74yxo4dPZb/xhwCQTMV5bdXfM8aOGDaRGZOOAMCyTF5+69GMsdUV45g55Wj38tIVD2WMLfRzxAnpv1vQv3nEprUvANUZ43ujoqKCu+66iwsuuAC/389xxx3H3Llz+epXv8r777/P4YcfzoQJE/D5fBx00EFUVFSwaNEili1bRnV1NZdccgnxeJw77riD2bNn92kskpwLITqlzCQq3gxoeIbVdBlrlI3CO845GXkMo8tYvWxEa6y/qOvY0mo31tuQObkD0EPleEdNB8CON+0jtsyN1VJdzIQDerDEjd0XzRfEUzUJ0rO1aDrQ+R9ezRvEUz25zQNlft40r79drGZkPnVrHm/7WI83c6zhaR/r9WeMRTfax27M/IcUTW8fu/mNzLHQPnbb213HVk10Z/v1LpJiAM+wCe7vmL5rfdexlePxhMqd2L2ZE34Ao2IcnpLhTmz99n3EjsWTnhjQm3d1HVs+Gs+wCU5spPMEyI0tG+U+b0Yi3HVs6YjW2K4++QE8lTX4xs8DXcezsxi6SM49o6YTmPEZAHw734cuknPvyP0IzDwRgMTej6CL5NxTNRH/jOMBSDV8DF0k50ZljRtrh/dCF8m5UTHWjdXizdBFcm6Uj3JjzVQCukjO9dLhbiwAXSTnevGwdrHa249DhuRcD5W3P+6af0OG/z8tWNr+uO89AxmSc81f1D52/VLIkJxr3kD72I9egwzJOYYXo2xE57cNEmeccQZnnOFMYF144YV8+9vfxuPxcMsttwCwd+9ejjzySO655x4AVq5cyYMPPkgoFOL6669n/PjxXHXVVTzyyCN9GoemuvrMYYgJh8MsWLCAJ/75AEVFHWuGpKwlQ6yUtfQiNv/LWuz6HZAIo4cqMCrHYJldlIkYntYyEdvqfqyysbpIjjuLtcK1WPU70HwBvCOmurGabrhJm1Iq46daPY/t3us+9cl6MFP4hk/CKK7sMhbkHNHbWDlHOPLhHNE2tkev+zaxdjKK3bgbO97cGpuF0rfOaHpriZpSqsvx9ihW0zHavAk2uzin9Sz2U6VvPYi1zERXL/t257SexSa7fN0HxuyPHnA+gerPc0S4OcwZZ13I0qVLKS4uzni/3nrwwQf561//yhNPPOHW0KdSKc466ywuuOACvvSlLwHwuc99jj/84Q/88pe/5OKLL2b8+PFccskl/OMf/+jT48vMeSc8vmC7X4Su4npyzG7Htvljmc1Yo79iPV3MtvUp1rfvoF7EOn9QMs8mDkysx/2DktVY3YPu63usSiWw07NxRmk1mm50+3e4R7Ga3uNYlYqjef0YZaMwMtxX07QeHLf7sdD5a1ml4tjOjeihsi5je3LcjLFyjkjHyjmix7FZOkd8Wk/PEToKu3E3xBrRAT3DpzaapuPp6hOdXsdq/RIL5EVsXrzm+vEc4fFlfqPdV7fddhuLFi3i4YcfdhPzxsZGvvzlL3PyySe7ifnSpUuZPn06I0eO5Gtf+xoXXHABpmly66239nkMMnPeRsvM+eJFj3c6cy7EUGHWbsOO1KEHSvEMn5jr4biUmSS1w6kF9o6egdaDPxT9yWrchdX4Sd49X0LkG5WMYTXuwo61llHoRZUYpcO7LqsSoo1IJMopp57TbzPnuSYz50KIdpSVwo7UA04tZT6xo84fdM1flDeJOYAdaQBAazNrLoRopVJxJylv0xhBD1VglA1H68EM62CjrBTJrWtJblqBHe16LUwhKDr8XDxV43M9jEFPknMhRDtW0x5AofmL0ANdL9gcaC1/2PX0wr18oJIxlBkHtHYlLUKIlqR8N3a03r1OD5VjlI0oyKTcTkRJblpJYuNykhuWk9y8EtUPbf/ylX/K4ZKcZ4Ek50IIl7It7HAtAEaezZqrVAKVjALkVRLcMpuvB0vdxXxCDHUqlcBq2o3dpuuMHixzkvIerK/Id1a4luTGFSQ2LiexYTmpbWvhUz3R9aIKfJMOxagYnaNRDhyjYlSuh1AQJDkXQrjs5r2gbDRvAD1YmuvhtOOWtARK0Lq5qG4guMl5Hr1hECJXWpPyekhvUqUHy9DLhqP7Bv9aLrN2mzsrnti4HPOTjr3zjYrR+CYfhn/KYfgnH45n5FR3cykhukOScyEEkN7Zs3kvkH+z5oD7sXg+JcFtS1q0PHszI8RAUmbSqSlvm5QHStHLR3QrKVdm0tmFNJ8ohbl3K4mNy0hsWE5y43Ks+o77LXhGTsU/+TB8Uw7DP/kwPMPG5WCwopBIci6EAHA+frZNNI8fLY9quiGdBKda6rrLcz0cl1sDLyUtYohSZtKZKQ/X0ZKUa4ESjLKR6P4QKpXArN2G1fgJVoPT1chOdzey2vyrYoNksaRu4B03C396Ztw3+VCM9A6wQmSLJOdCCJRS2E17ANBLqtyNW/KFWzoSKMmrJFhKWsRQpZQiuf0dzI/XYYdrscK1qFgzdiKKHd7rJuAtnZ8GK80bwDdxnlum4pswL+8WyovCI8m5EAI7Uo+ykmB40Ysqcz2cDtwZ6qLynI6jLTsZRZkJ0HS0oCTnovAp2ya1bQ2xtc8SW/UU5s713bujx49RNiL9NRKj3PlXb7lcNgKjtBr0/EtJNG8ArZsbPPUHpRS2bWNZFqZptfu3tLQYn89pKdvY2MzuPXuxTAvTcm630nGWZbHffpOprCwH4OMdn7BmzTosy2LmzGlMnCBlOPkm/14JQogB1zJrbhRX5d3CpXxNglW7Li359ZwJkS12Mkrig1eIr32W2DtLsBt3tblVcxLt8tHtE+02CbhRNgItVJ53n8Z1h5sYJ5OYZktSbGKaFhUV5Xg8zqd4e/fWUVtbj2maTmLckiCbFqZlMnfOARQXO7PtH364iffWre+QRLd8f/ppJzBiRDUAK99awwsvvJpxfOecc7qbWG/eso1nn/1PxtjKYRVuct7Y2MQ777wPwKiRwyU5z0OSnAsxxNnRRmdRo2agl+Rf7WTLBj/5lgRLSYsoVFbDJ8TeeY742ueIf/AypOLubZq/CN+EefgmH0Jw1kJ8NbMHZkzp5DWVMgmFgm6yX1fXQHNz2EmMTav1X8vETFkcdNAsvF4n1Xn3vfVs2bzNTZxTpunORJumyRfOOd1Nov/z0jJWrFhFpk3UL73kPIYNqwDg/fc38PqylRnHPmXyRPe4dfUNrF//UcbYRCLpfq93cr7TdR3DMNw3Bi2Ki0KMGjUcj+HB8BgYRkucB8PQKS1p3UVzxPBqjjn6MAzDYOxYaX2YjyQ5F2KIs5p2A2CUDMureu4W7gx1Pi0EbTubH5AuLWJwU0qR2v4O8bXPEVv7LKmtq9vdblSMITD7JIKzTsSoHIdKhNE8ftSwiUSjMUzTJJUynX/TybFtWUya1LoZzfr1H7mzy05M631M0+Lsz53iJtwvvPAKH364KR3rJM5tk+TvXHkZPp/TTnX5G2+7s8CdmTlzPzc5/2Tnbt59L3MpTiqVcr/XNDok5k7C68HjMbDt1s4y5eWljB07Co/Hg8cwMDxG+l8nNhhs3WxpwvixeD9zNB6P4STPbeMNg+rq1gmSmftPY+rUSe5tHo+R8ROIyZMnMHnyhIw/W1vDhlW4byxEfpLkXIghzI6H0xv7aOglVbkeTgd2POLUwmsGWqAk18Nx5etsvhAAtm23m3Wtq2sgFo9jpkxSqZSTHMeiaFvfxL9tOcU7V2I1tLYIVGhESidSWzmLPeUzafAOx2y28L2yifNOcpI6o3Icj//7WbZs2d7pGDRN4wffv9xNJt9bt54PP9yUccymablJdCyeoKk5nDE2lUq5yXlpSTFVwyqcxNjrcRNkTzoxbvs8TJ4ygZKSIvc2w4114ouKWhd6HnrIXA6aOys989x1YnzAAdM54IDpGcfb1ogR1W7Zyr74fF735xRDiyTnQgxhLbPmenFlXm3s08KONQBO6Ug+JcH5MpuvLBOVjKISEeyE869KRrETEVQi5lxORNJtKEW+UChsW6FsG4+n9c9wY1MzqVQKy7axLQvLchYC2paNYRjU1IxxYz9Yv4FIJO7URNtOjJW+j9/v4/DDDnJj17y1hubmCAAaNsMSHzMy9hFe5cwUW4DmC+Kffgxr48N5J1ZN3JMug2gEqENTNuXmXuAg9JJq9EAR3vTYW5Lb1i8Dr8eDUspNaMfXjCUYDLgx3nScx+vF6zHQ9dbE98gj5qUT49Yku+2x2ybJ8+cfwvz5h3TreZ8wfiwTxo/tVmwg4Af83YoVItskORdiiLKTUVS8GQCjpHszOQNJKZWXdd12IpqezdfbzeZb4TrCS/+E1fhJlh7IRqXin0q42ybgUTAT2XkskTe86a/ONL7V+v3IfRyn8Z9Pud9PyRCT9FcQHjWPqadcTGC/I9F8QUZ/sJHSSMRJnr0evB6v82/zJxhmFDwBjDLn0c84YyGGoXdrsefcuQfsM6ZFRUV5t2OFKESSnAsxRLl9zUMVaN78myFSiQhYKdA9+VXS4m485MzmK9si8upfaHriF7nr6awbaP4idH8Rmi+E5g+h+ULOZX8Rmi8ADL5uGX0VjyewbTs9u2xjWza2cv71ej2Ul7e+6duydTuWabXGpr+UgqKiIBMn1Lix77+/AdOyOn3MQMDPlDa1v+vXf0SyTS1zWz6fl/2mTnIvb932MamUia5r6LqOrunOv4aGx+Ohuqq1HjkcjrjlK7quo7n30dxFg5l4htUQmHUi3nGzOiTW06ZN7hBvR+oxdR/gx1M1zv0U69OLEoUY7JYsWcJ1112HpmmMHDmS2267jXg8zqxZs5g5c6Yb96c//Ylhw4Zx7rnnEolE+M1vfsOxxx7Lk08+ydtvv80111zTp3FIci7EEKRSCTfJNErzb9YccBNdPViaV23YVJvZ/MRHb9Lw6P+Q2rYWAM/o6YTmneWsJssCzRdsk3AXoflbEu42ybcvBB5fXj1HPaWUIplMkUwmSSSSzr/JFMlEklAoyLhxowGnlvq5JS+TTCZJJpIkkknnfokkyVSKmnFjOPPMhe4xf3PL3e0W7rVVM2I0X/ziZ93LD93+Z2Kxzst/Ro6oZt6F57iXP378SRLxBF6fF5/Xi9fnxet1vjfKiqk8qLWDyagt27GVwuv1OLFer/O9z4vH42lXE92THQYGajcCZaUw6z4GwCgbge4LDdAjCzGwmpqa+OY3v8lrr71GVVUVr7zyCt/97nf5xS9+wZFHHskzzzzTLv53v/sdV1xxBQsXLuSSSy5h/vz53HLLLTzxxBN9Hosk551QZhRldnKDpqMZgXZxGWkamhHsXawVbdkFuZNY0IxQL2NjkKEtFIDm6W1sHFTnfwB7GovR2iJLWQlQnc9O9Tw2gKY5fwSVnQS7s//g3sT60TSjF7EpsDufTQNA96GlN+ToWawJdrKLWC+a7sVq2o1SFrovALrq/PczHQuglAVWFyUUugdN9/Ui1garY0KklMIKfwJKQy+q6DLWpRloht+9P1YsS7Gtr3s7HsFONWFHmwgvvZvom393QopKKD3lexTNvxDd19qybGDOERZYsdaLA3yOsCyLRDKJpmkEA87zZFomH3y4g0RLsh0Pk0rEnYQ7mWT0mJEcdshcAFJmit/d9pB7XEMz0Wg9R0yeMoGxo05MP6hi7dr33CHqmoneJjYZL273PJaVFWPbzgx1wAc+n5MU+zweKqsq28UuPPFoNN3A5/Xi84DXg5N8+3xO/XSb2HM+f2qX54i2sTU1ozKcI0ywzfanwzw6R7TEpnavR1kRNG8QLdT++c3lOaJXsQNwjoB9vZYlj+g8tmd5RJfPRS+tX7+empoaqqqc5ghHHXUU5513HgCVlR3fDns8HiKRCOFwGK/Xyx/+8AfOP/98QqG+v4GV5LwTzS8eiOXv+Eviqf4MRQc/6F5ueuGAjC9Yo/IIig/7e+sxlx6CStV1Hlt2IMVHPt0a+/KxqFjnK+D14v0oObp1o4Hwa6dghztvDaUFx1K6YIV7ObL8c1iNqzuP9VZSesK7rbFvfhmr7vVOYzGClC1s7dMaffsyzD3Pdx4LlJ2yszV2zbcxP3kyY2zpiRsh/SKMvfvfpD5+NGNsyfFr0fzOiyj+/vUkt96bOfbYN9BCzkYL8fW/ILnpDxlji49ailEyDYDExt+T2PDrjLFFRyzGUz4HgOTmPxL/4IbMsYf+Dc+wI53YbQ8Sf+9/MsaG5j2Ad/gJAKR2/J3Y2u9mjp1zN95RZwBg7lpMdNXXM8YGZ/0W76izsSP12OE3iW+9LmNsYP+f4x9/CQBW3XIib3w+c+y0a/BP+qYT27iWyOunZIz1T/kBgalXAWCHPyT8yoKMsZ6qc/GN/y0AKvYxzf85NGOsr+ZigjNvcmKTtTS/MCtjrHfMuYRm/865YMVoeq7jR/nuGEaeTtHc/3NCw3uJrzsLAKMaStwfsxk7/lNia14ddOeIoqOXEY8nSCQSsOYcjNh7ncbireTZhl+SSCRIJJIcXXErIwLtu2+46aEeZPHaH7rXn1zzEDUlG1oLqhug6bk249CuQymFruucMO7fjC9+p91x28Yec9TfMTxF+Hw+qhtvJti8+FOxV7rfX3rBWvT0OSL27tXtzxF72x93yrFvoKfPEbH3f+qeI5Lpr7YK/RzhG/vF9Bj+Tfy9b2WMzYdzhG/ifxGcfi2QH+cIoOtYySPSA+5bHtG8ZRFwYMb43pg8eTLvvfceGzZsYMqUKTz11FM0NDQAYJomZ599Nlu3buWUU07hpz/9Keeffz5f/vKXufvuu7n99tuJxWIcfvjhWRmLJOdCDDFW0x5AoXkD+4zNNc3rz5tyjfj616h/6CpCh+V6JF1TSrFh42bisTjxeIJx0RiZ/qeV7ZR+tDhrUgPDgxmCgc2bt7nfW6VdfAKmwcQJ4/D5fPj9PsoohS7Cv/lfX8Hn8+HxGETefhPzk3cyxh4y70B3Fi26poRUc+bjit5TqQR2pPNEUIhCVFFRwV133cUFF1yA3+/nuOOOY+7cuVRWVnLIIYdw5ZVXomkaZ511Fo8++ihf/OIXWbRoEcuWLaO6uppLLrmEeDzOHXfcwezZfducS1OZtr8agsLhMAsWLGDRv++nqKiTjyXk46gMsVLW0vPY3HxkrdAxd34IysYYNg7d30WCnqOPrJVtk9r5HiiFZ/h+GKHclrWYjbto+tfNxFb+07lrUQmlZ/yYosO+0HHTpj6eI1JmilgsQTwWIxDwU1rqbHAUjSVYsXId8USCeDxBMtZMIhEnnkiQiCWYNXsGxxztzNg0hyPc9cfH3eMaWgqtzUli5v77ceKJxwKQTJn8/va/AODz+SgK6vh9HgJ+P76An5pxo5hz4AHu8/Te+u34/T7ndq+N3+vB5/fh9/k67GYo54iW2MF1jkD3gubB3L0RO96E5vXhHT4pY6yUtSBlLW3DByiPiITDnHrmRSxdupTi4uKM9+uLCy+8kDPOOINzzz233fV33nknW7Zs4aabbmLlypX8+c9/JhQKceaZZzJ+/HiuuuoqHnnkkT49tsycd0LzhNr9InQV15NjdjvW6K/YLqbE+hTb/RnYnsV2v4NIj2J1H6RP5rmL9Tp/BLMe6wE988vabtwFykbzBjCKur+kTNMMt9wou7F6h1gVbUDT/Ggen5uYZ4rNfFytz7EqlaD5xbtpXvxbZ6MmTSc451RKTvoOvnFdt4VTSpFKpYhGTeLxOLGY81VZWc7IkcMBaGpqZvHT/yYWi6djEphma+J28LwDOe44p8TBxmbFm51/lAw60YTmnmOCRV5GjhxOIOAnGPDjD/gJBPwE/M73VcMq3Fifofj2FZfi83k73Sq83fMEHDBzWpcxGe8r54hexObmHAFgNe5GJSJoug/v8P3QPPse80CeI7IT2/dzRMb4fIgt8DxC83TxBj4LHnzwQerq6jjnnHN44403ePPNN/nmN7+JUoqlS5fyhS98AYAbb7yRP/zhD/zyl7+kpKSEkpISksku3vx2kyTnQgwRyraxmvcCYJQOz/FoMmvpba7lsLd5/N0XaHj8GszdTk2kd+LB+Od/hVTxSHYnvETWbyQWjRONxRg9agQTJji1ynV1DTz8yL+IxeKddgk5eN6BbnKuaRpbt37cIUbX9fRmLa2z8sFggIMPPtBJsgN+goGA+30gECAUav3D5vV6ufCCzLW/bWmalt5sRQiHSsbcXv1GxehuJeZCFJLbbruNRYsW8fDDD6PrOjNnzuSuu+5i3rx5eDweTjjhBD7/+c+zdOlSpk+fzsiRI/na177GBRdcgGma3HrrrX0eg5S1tNFS1rJ40eOdl7UIMYhZzXux6j9GM3x4Rk/Pm1rutpRtkfr4PVA2npFT+61tW8vMdiQSIxKJEolGiUXjJPZsonT53ZTsdBZA6aXDMU74Hn9d2UBxqhaFToNvBG1bJc6bN5vjj5sPQHNzmDvvesC9zePxEAz6CQaDBAJ+9ps6yd2MxbIsPvhgI8FggEAgQDDofPl83rz8vxGFTymF+cl6VCqOHijFM3xirodUMJRtO/s2FDrDOyC7OUciUU459Zx+LWvJpYKbOVdKcc0113D33XcTjUY5/fTT+cMf/kBFRcW+7yxEgVJKtW46VFqdt8mfijU5ZTcef68S81TKJBqNEommk+5IlGg6AR8/Yay74cuePbXcd/9j7v0MO8WMxlfZv/FVDGWhNIOS479G6SnfJ2rpeFc4MyFaoISK8nKCwSChUJBQKMCY0a17NRYVhbjooi8QDAQIBv14vZlLDQzDYP/99+vxzyhEf7EbP0Gl4qB7MIZ1b5t7sW92Iup8CtfVmocC4Rk+GS1QeMnyQCu45Py3v/0tjz/+OM8//zwVFRVcccUVXHbZZfztb3/L9dCEyBkVbXC2nNc96D2oNR9odqQBAD1U7l7XskFNOByhORwhHI6Q2LoGbfMKystLqK5yfp5wOMrKlZnqsiGycRTNmyc4x08mmdGwEt0wCHh1xtWtIJioBSA2YjaeU66m/JAFAIRsmwvOPgG/18A3cgp6MPNupbquM2J4Ve+fACFyxE5EsZp2A+CpHINmdK+GXXRNmUnMvZudxFzTYQju1Ct6ruCS89///vfceeedzJrl9C+99957GTlyJNu2bWPcuHE5Hp0QudHyR9coqR6Qjxy7yzSt9CYOUcJNjcS3vkNFRRnjRjkLD2tr63ngwcdJpZyFkgErzOy6F5kUftv9E9fY5nhzunqwemhcmznWqBhN2dk/ITj3tPafLCSjBANepyuEzAiJAqRsG6t2KwB6qKLdm2PRe8q2ncTcSqF5A3hGTOnY4UmIThRUcr5z5042b97MMccc415XXl7OnDlzeP311yU5F0OSHWtyPqrWDPSSYQP2uKZp0twcoam5maJQiKr0DHdjYxP/+OfThMORdtul+6woRWYD0/bfn5pDnQWOwWCAVMpEVxYzIiuZUbsUr+3cJzpqHv7KEZS0qTe0LAvD6PkfP8/IKRQf+1V0f8dSGjtSD4AeLM3bciAh+sJq3IkyE2B4MSrH5Ho4BcOq3YpKxkD34KmeKIm56LaCSs63b99OcXExwWD79j0jR45k69atHeKdne5ae61GIpF+H6MQA81q3AWAUTIsa38clFJYlu12FIlGYyxb/hbNTWGamsM0NTUTjbb2BT7ooFl85vijAKebyJ49te5thqFTXFRElUenxFtMxejx7m3BYICLjx6D+fTNWHs2OvevmU35F27EP+mQrPws+/o57VgTgMwmioJkx8PY6S5OnspxkkBmidWwEzvWCGh4qiZI1xvRIwWVnMdiMXfW7LLLLmPp0qVs2LABj8dDLNZxA4GbbrqJn/zkJ+5lXdeZO3fugI1XiP5mxyNOj2409JKe1UKbpsWOHZ/Q2NhEU5uku7k5THNzmNmz9uczn3ESbk3TWLlyTYdjeDweSkuLCfhb2/UFgwE+f/apFJcUU1wUIhgMgG06XVoA76jpAKR2f0Tj364j8c4SAPSSKsrOvJrQ4ecNWGmOioedTWOkpEUUIGVbWLXOrq968bAu11OI7rPCda31+8PGoQeKcjwiMdgUVHIeDAaxLGc1dE1NDdOnO3/kTdPsMJsOcPXVV/P973/fvRyJRDjjjDMGZrBCDAA7/QdCL67ssMArmUzR2NhEQ0MTDY1NNDY0UV09jAMP3D99e5JHHv13xmM3Nbfumx4I+Dn0kDmUlBRTUlpMaUkxJSXFBIOBDqUgmqYxadL4dtdZLb3NfSGUmaTxyZsJv/h/Tusx3UPxcZdResr30IOlvX8yesGONgCgh8qkpEUUHKt+B8pKonn8GOWjcz2cgmDHI1h12wEwSkegF0mnONFzBZWcjxkzhnA4TDwe59prr3Wv37VrFzU1NR3i/X4//jYzevvaIU+IwcRORAnX7sKybSrTs9HJZIpHH3uCxsamdmUnLaZMnuAm58FggOrqYRQVhSgtLaE0nXSXlpY4SXhJ62yQpmkce+wRvR9rtAGlbBLr/kPzM7/HbnbaPgb2P56yc36Cd8SUXh+7t6SkRRQyO9qIHakDwKgcl1cLxQcrlUo4C0BR6KFyjPKR+7qLEJ0qqOR89OjRjB8/npdeeomFCxcC0NDQwNtvv83hhx+e49EJ0T+UUuz8ZDd1tfXU1TdQV+d8pfZswUiFGTVpP06b6WwD7/V62Lu3trX7ScBPeXkZ5WWllJWXMHJE686hmqZx8VfO7f/xm0mSm1bSvOQPmDs/AMAzfBJln/8JwQNO6PfHzziutiUtfvlYWhQOZZmY7uzucCm7yAJlW5h7NoNtovmCGJXSgEL0XkEl5wDf+c53+O53v8tjjz1GeXk5V155JaeeemqnM+dCDBZKKRobm6mvb6C2rh6v18uBs/d3b3/kkX9hmq0bXOjKpCwVRtM0Ekb7Ge7PfvZkQsEAZWWlOd+63Wr4hIbHryH29pPO+ALFlJ78PYqPuyznC6ikpEUUKqtuu5NEegPoZTK721dKKcy9W1BmHAxvujOLfBIheq8gk/Pa2lqOO+64djuEisFP2bYzk5mNY1kmKDsrx+ovy994m9raeurqGqhvbMQ2W8c7bFgFs/ZrfcNZM7IS27YpryynsryUSp9FicekpGoEvuGTUGbSjZ0wdoT7fdvrB5IyE4Rf/BPNz92GSjhdkoIHnUnZ567BKB2e07FBuhtN815nt9J0HbwQhcCONbV2ERlWI288s8Bq2IGKN4Om46meIBs4iT4ruORc13VuvPFGbrzxxlwPRWSRSsVJ7VwPqD4fy46HsRp29n1QfaAURKNRmprCNDc309QcRkfnoHmz3Jj65cuIhiMEgFGArmsUhUIUFYco8SeJrXnajT15EoAONDlfJmCCigRI7Vg3oD9bV5RSJDcsI/zC3e7/gVE9gdChXyAwYwF2uBY7XLuPo/Q/OxHBqt/htJXTDUlgRMExykai+To2ShA9YzXvbW1FOawG3ddxrwQheqrgknNRmOxoI62Jed8SJRUPZ+U4vbH+w4/Ys6eO5uYwVpsyFHD6fSuFmwhOmDgOy7QpLg5RVFxEqJPOJ13RAyXo/oH/46uUjYqHnc2Poo3pmbom7GgDyS2rSG1+yxlfcSWhw8/DM3oaeqAEzcif05HzO6KhBUrQNPl4WhQWPVCCXlqd62EMenasGat+BwBG2Sj0UFmORyQKRf78NRSiC3bcadtnVI7FKO7bLpcpw4uykniGT0bPYu9qpRTNzRH27NnL7j217N69l+amMF/+8tluUr3548VsMDdDEAzDoKqqgurqKoZXD6O6ehihsaPcrkH7H5q1ofWJSsac2aFwLXa4DitS535vh+uwI3VYLd+Ha50dNbsqGfL4KDn+ckpOuhKr/mNUKo5ROQ6juHLgfqguKKVA0zHKLDzDp8hiOSFEByoVx9y7BVDoRZUYZcP3eR8hukuSc5H3lG2hElEAdH/fkmllpVCWUz+sZenjx1Wr3uX9DzawZ08t8Xiiw+3hcISSEmfcc+YewLTpkxleXUVlZXnetu9USpHctJLwf+5xFmtaqR4fQwuUoBdXOn+4iivRiysxykZQdOSX8VRPQCVjqFQc0PJqxknFm0FZYHglMRdCdKAs0+nMoiw0fxFG5dhcD0kUGEnORd5zFgwqNI8fzdu37iItSb7mDfRoNX0qleKTT/awY8cuduzcxWmnHo/P53QTqa9vZNs256NNXdeprCynunqYMxs+vIpAIOAeZ+KE/G6vpVJxom/+i/B//kRq29rWGzx+jOJhTrJdXIlePAyjqLL1cpvvjeJh6EUV++y2Yqc3HtKDpXm1ZbgdaQDIqzcMQoj80NqZJYFm+PBUTZA1KSLrJDkXea+lpCUb26fb6c4g++pbHQ5H2LrtYycZ37GLPXtqse3WUo2dn+xmfI0zWzJ9+hSqqyuprh7GsGGVeDz5k2h2l1n/MZGX7iPy2l+ww87GJHj8hA7+HMXHXoJ33Kys/wFq26owXyjbTneyAD1YntvBCCHyjlW3HZUIg2akO7NIGiWyT36rRN5rWcCZjfpwlUzPnLcpaUmlTHbt2kNFRRlFRc716z/cxPPPv9zuvkVFIUaPHsHo0SMpL2tNKEeNGs6oUYOv3tDpnPI64aX3OJ1fbGeBqlExmqJjLqboyPP7XN+fiZ2MoswEaDpaMI+S83iz0z7R8ElJixCiHatpj7urqqeqRrrdiH4jybnIa8pKpeuSQetrvblSqGSMWCzOzs07+Xj3e+zYsYvdu/di2zYLFx7rbuwzZsxIRo4cnk7GRzB61EhKS4sL4uNLOxEluuJvRP7z53ZtFv37zaf42EsIzDqp32eD3NKRYGlebdbRUmqj5dFsvhAi9+xYE1ZDujNLxRj0YGmORyQKmSTnIq+1zJprvmCfE8Y9Oz7m1SefY29dIw3+9rviFRWFsKzWspURw6u48ILP9+nx8o25dwvhl+4l8tpfUenSDc0XJHToORQfeyne0dMHbCyqpd48VD5gj7kv7Upa8mhcQojcUslYujMLznqbkqocj0gUOknORV6z3ZKWkh7dr7GxiU2btxEMBJg2bTIART6NuvoGTN3H8OFVjB0zyi1TKZRZ8U9TSpF4/z+El95D/N0lzu5HgFE1nuJjLqboiPMGPBG14xGnY45moPXw/7U/qXhTa0mLXzYSEUI4n946nVlsNH8xRsWYXA9JDAGSnIu85s6c76OkJZVKsW3bDjZt3samTVupr3dmQMeMGekm537d5rgF86masB+loyf278BzzI6HiS57lPBL92Du2uhe75+xgOJjLyUw8/icdUixo/WAsxBUSlqEEPlK2Tbmns0oK4nmCTgLQAtwEkfkH0nORd5SqXi6J7nWZXeVf/3rGTZ+tAXLat1xU9M0Ro8eweRJ41uPl4gyduxIPBX9s8gx15Rtk9y4jMiyR4m99UTr4tdAMUWHfZGiYy/GO2JKbseoVGsLxTwqHXFKWpoA0IvKczuYLFGpOHYiikpEnMW3Su37TkKIVraVXrie7sySRy1fRWGT5FzkLdudNS9C03Xi8QRbtmxn5ye7WXDsEW6cQmFZFqUlxUyYWMPECeMYP34Mfn9rT3RlmSgzvbA0S5sP5Qtz71aiyx8jsvxRrNqt7vWeEZMpPuZSQod9AT2YH+UjKh4G2wTdk5XWmNnilrR4/OiD8PdD2TYqGUWlk3E7GXWeZyFEH2lOYt7HPTaE6AlJzkXeUvEwlmWx7eNa3nntAzZt2ub2Gj9w9v5UVDjlB/OPPISjjzqMysryjB85qmQMAM0TKIi+tHY8QmzVU0SXPULiw9fc67VAMaGDziR0+BfxTTok7z6CbdvbPJ/G1jqbPzhKWpSZdJNwlYigknHgUzPjmo7mC6L7i9It3/Ln+RZisNB8wX1uqCZEtg3+LEUUpN2797LuP/9hy+Yt7FXlWLoXgGHDKpgwYVy7be+rq/ddpqLczYcG36xoi0xlK2ga/mlHU3TYuQTmnJK3M7+DoaQlH+vNW1qAOkl41NlIy0p1iNMMH5o/5HzS5As5SUUevQESQgjRPZKci7yhlHKTica9u/lw/QYUOqFhZew/cxoz95/GsGEVvTq27W4+FERZJnbzXpSy93Gv/GDWbSf29lPE337S7bMLYAwbR3DuGQTnnIpRPgpw+oe39BDPN3a0EatpF+ge9GijmxDnmh1txGrcDR4vel49fy1JeZQOs+JoTvLtD6VnxkMyuyeEEAVCknORU/F4gg8+2Mi7731ATc0Yjpp/KADjR5az336TGD9tBjWzDuvzDKCT4Dgz51bDTneXt3xlJ2MkPniZ+NrnSG1b616v+UL4ZxxL8IAT8YyZ4T4vdvOe9vdPRMFKDuiYO6MsCzvejIo1o2xntlcPlmHm0YSuHWtGpeLoRRUdnse8oXtak/B0mUo+dboRQgiRPZKciwFnWRabN2/j3XfXs2HjZrfLSiQSZf6RTp20lopx+GEHYVSM6XtinoqDskDTQTOwI+lWfsXDnOv6SJkpOs5s9uZAiuS2tcTefoLEu8+7dfJoGr5JhxI86AwCMxbsc8toOxFFNe3t+3h6SSmFSsVQ8Wb3TZFDQwsWo/uLUWb+LFbUvEE0bxBP9UQ0byDXw3FpmgYev5OUy2I0IYQYMiQ5FwPqlVfeYPXqd4nG4u51VcMqmDlzGjNmTEXTNKfzRLpGvKebD3XGTrSWtNjhWkCh+YvxVI7t1fGUUqR2rCO2ahHxVYtI7VjX5zF2xjN8MqHDvkDosHPw9GDji9SuDRilVWjewIAmm8pMYccasSMNaB4vFFc6X94geqgMPZhffc3b0rxBjLLhuR6GEEIIIcm56F/hcISiopA7+x2ORIjG4oRCQWbMmMrM/fdj+PCqdrPjTmKunAVuWZgxdBdOevzp5ByM0uqeHcO2SW55m9iqRcRWLcLau7nP4+qMFighNO+zTreVifN6/KmBHWtynj9NxzN8Eprh7ZdxtlBKoWJN2OE6VDKCZngwSqtAM9CLKzCKKvc50y+EEEKIVpKci34RDkd4fdlK1qxZx/lfOotRo0YAMO+g2ew3dVKHjitt2fFmgKz1wXaT81Tc6WXtDaAHS/d9P8sksWGZk5CvXozd+Enrjd4AgRnHEpxzKoHp+y416S7NF+x1q0elFFbDTgCMkqp+TcxVKoEdqcOK1LfrHKL5izGKK9HyeJZcCCGEyGeSnIusikZjLH/jbVategfTdGrJt23f6Sbn1dXD9tn6UKWTcz0LybmzOUvM6cySruHWSzLPmqtUgvgHLzslK2ueduvTwXmzEDjgRIIHnkpg/+PQA5l3Lc0FO1Lv1NdrBnpp9ks0lFKoaANWuA6VCLfeoHswiivRiyryqmZbCCGEGIwkORdZEY8nePPN1by5cg2plDOTOnr0SI4+6lBqarpfL60s00kwcUo8+sqdNU8mwB9EM3zoRe3bMdrxCPH3XnAS8neXOLtYpulFFQQOPMVJyKcd1aHMRikFZpKsLAjtA6UUVu1WlJXCKBsJVgrVSS/s3h3bTrdorG+366QWKGmdJZd+2kIIIURWSHIu+kwpxUMP/YPaOmeWecSIKo6afygTJ9b0OGlrmTXvS3lHu+OlF4PaqRiGP4he4tS325F6YmufcxLydUvBTLj3McpHOcn4nFPxTz60y3FYtduwo/UZbx8odqQBq3kPmm6A4em3VpEtb2704krpqy2EEEL0A0nORa+YpolhGE7bQ03jwDn7s3r1exw1/1CmTp3Y65lUOz1rrfmzV29ux8No6TaKenElsdVPU3vP5ekZb4eneiKBOacSmnMa3poDu1UvbceaWhNzzcjKeHtD2RZWpAE0Hb1kOJqe5VpzTUP3FzkJeaBEZsmFEEKIfiTJuegRy7JY+877vP76So4/bj7Tpk0GYM6BM5k754CMizy7q6WkJBstFMHZGdSO1KMXV2OUDEMl49Q/8mMwk3hG7kfooDMJzjkVz+jpPUo6lW1j1X0MgFE63N2hMxesxl1oGmgeP55R0yR5FkIIIQYxSc5Ft9i2zXvrPuS1196ksdHZdn31mvfc5Nww+j5zrFIJlJUENDR/3xdbKjPptBZMJdB8AfSSKpqe+v+wG3dhVE1gxI+f7XWrRqvxE5SVdMo8Skf0eay9pSwTq2k3AEb5SEnMhRBCiEFOknPRJaUU69d/xCuvvkFdXQMAoVCQIw6fx+zZ+2f1sdwWiv6irLThU+lZc83rwyiuxKrfSfPzdwFQfvZ1vU7M7WQUu9nZgdOoHJPTloFW0y6nPaQviB4qz9k4hBBCCJEdkpyLLj399Iu88+4HAAQCfg49ZC5z5x6Az5f9Htqtu4Jmp97cCtejEhH0YBlGaTV1914BZgL/tKMJzD6pd2NUKl3OotBD5d3ql95fVCqB3ZzeVKl8dM7GIYQQQojskeRcdGn69Cms//AjDp53IAcfPBu/v+87dnZGKYUda9l8KDv15lbddgCMsuEkN79FbNVToOmUf/4nvV+wGq512jNqBkZFbhNip5xFoQVKsvaGRgghhBC5Jcm5aGfV6nfxeDwcMHMaABMmjOPyr19IINA/SXkLlYqBskAzsrLbpm0m3VpsvXwMtbedB0DRURfiHTOjd2O0UlgNzi6hRvnIft2Bc59jScbcdolG+cicjUMIIYQQ2SXJuQCcBZ8vLn2Nt95ai67rjBo5nGHDKtA0rd8TcwAVa+nSUpyVRY1W7XZAofmLia9ZTOrjd9GCZZSe/sPeH7N+BygLzRdCL+56l9P+1vImQQ+Vo/tCOR2LEEIIIbJHknNBPJ7giSefY/PmbQAceeTBVFaWD+gY3MWgWSjPULaF1bADcJLXhoeuAqD0tB9g9DKpdnqaNwCaswg0h11R7HgEO97kjKUsd51ihBBCCJF9kpwPcfX1jfz9H4uoq2vA6/FwyqnHM22/yQM6BmXbWV0MaofrUIkImuEl9uY/sMO1eEZMofiYi3s9vpae5npJVc5nqq3Gnc5YiivRvIGcjkUIIYQQ2SXJ+RC2devH/OvfzxCPJyguLuLsz53CiBHVAz4OJzFXaIavz8mmUgqreQ8qFUel4kRe/ysAZZ+/vtc14nbTLrenuVGW2/puO9roPF+aLrPmQgghRAGS5HwI27Z9B/F4glEjh3PWWSdTXNz3jX96QyWcevNslLTYkXpUMg7KJvLaQ2ClCMz8DMGZn+nd2JIxrKY9QO57miulsBrTC1JLqnK6IFUIIYQQ/UOS8yHsyCMOJhgIMGvWDLze3P0qtNSbZ6WkpWkPyoxj1m4jufEN0D2Uff76Xh/PrHMWlua6pzmk33ik4qAZ6KXDczoWIYQQQvSP3E0DigGXSCR48cXXSKVSAGiaxkEHzcppYq4sE5WMOePpY3Jux5pQZhyViBN59S8AFB97Cd4RU3p1PKt5b970NFe2jd24CwCjbASabuR0PEIIIYToHzJzPkTUNzTyj78vpraunlg8zqmnHJ/rIQFtSlq8gT6XabT0NY+vW4pVuxUtVE7pqd/v3bjyqKc5gB2pQ1lJMLw5b+MohBBCiP4jyfkQsG3bDv75r6fdhZ8HzZ2V6yG5srUrqJ2IohIRrFgT0WXpRaCn/gA9VN6r47X2NA/mPBlWtoXVbtZcPvASQgghCpUk5wVuzZr3eG7Jy9i2zciRw/lcDhd+diZbLRTt9Kx59PWHUfEwRvVEQkd/pXfHijWne5qDUTk2pz3NwamjxzbRPAH0osqcjkUIIYQQ/UuS8wJl2zZL//M6K1euAWD6tCmcfPJxOa0v/zSVSqDMBKCh+XufnKtUHDvWiLlnM7GV/wKg9OTvont6XoqibBurvqWneXXOe5orK4XVnO4WUz4y528UhBBCCNG/8idTE1kViUR57731AMw/8hCOOGJe3iV2dku9uT/Up1INq2kPSinCS+8B28I39UgC04/u3ZiadqHMRF70NId0Hb2y0Xwh9FBZrocjhBBCiH4myXmBKikp5qzPnkw4HGH69N51K+lvKu4k53of6s2VlcKO1JPcuJzkR2+A4aX4uMvQejHj3a6necXonNd2q1QCu7nWGU/5qJyORQghhBADQ5LzArJt2w5SqRSTJo0HYOzY/E7o7HjLzHnvS1rs5r0oK0n4xT8CEDr4c3gqRqP5e56cm/UfAwo9WJYXs9TOIlCFFijJSg94IYQQQuQ/aftQINZ/+BGPPvYE/37iOWpr63M9nH2yk1GwTdCMXiXSkO5i0lxLbOW/seq2o5dUETriPDTD1+PWh1a41lmcquk572kOzvNjR53/R6M89+U1QgghhBgYkpwXgGQyyXPPvYRt20yaWENpad/aEg4EFUuXtPiLel0Lb4frsMO1RF57CICSE69A94fQ/D3rRqOsFFb9TsApH9E8vl6NJ5vsBqd1oh6qyPmiVCGEEEIMHEnOC8Abb6wiGo1RUVHGaad9Jq86smTiLgYN9u6NhFIKu3kv4ZfvQyUieMfNInDACc4xezgTb9XvzJue5uCU+9jxJkDDKBuR6+EIIYQQYgBJcj7IhcMR3nxzNQBHH30YhpH/27or2+5zf3M7Uk9yxzriq58GoPycG1CpOECPFoM6Pc3T5SN50NMcwGpwZvH14ko0rz/HoxFCCCHEQCq45Pyxxx5j1qxZFBcXc8QRR7BixYpcD6lfvfrqClKmyejRI9lv6qRcD6dbVDIKygbDi+YN9OoYVtNuws/fCSiC8z6Lb/wcp4YdDc0X7N442vU0r8qL8hE72ug8P5ous+ZCCCHEEFRQyflLL73EZZddxk033cTGjRv50pe+xKmnnkp9ff4vkOyN2tp61r7zPgALjj0iL2Z9u0PFm4Het1C0Y03E332e1La14PVTdtb/OgktoPmC3X4eWnqaY3jzoqe5Ugqr4RMAjJLqHi9qFUIIIcTgl//FyT3wwQcf8L//+7+cfvrpAFx55ZXcfvvtPP/885xzzjk5Hl32VVSUcdLCY9m1ay9jxuQ+ueyu1haK3V+4qWzLSaRtRfKTDwm/cDcAxQu+hh6qwGzYgZ2MoftC2PHIvo+XipHauxVQeIZVo5JxVK9+muxRiQjKjIPuQS+tzvFohBBCCJELBZWcf+1rX+twXUVFBc3NzTkYTf/TdZ1Zs2Ywa1auR9J9yrbcWW69k8WgykqhUglUKo4yE+73WCkA7GSc8NI/YjftRi8eRvCAEzB3b8Cs3ZaOMzHTx++KWbsdlYqh+4uxfUHs5j3Z/UH7wCgdjqbn/9oBIYQQQmRfQSXnn1ZfX8/atWs5+OCDO709kUiQSCTcy5HIvmdc84FSCsuy8HgG33+fiodRSqFpBioRxU4l0kl4HJVKgLIy31n3YNVtJ772OQCKP3M5eqgMZdtg22iGFz1Yus9WiFa0EWwTzePDqBiD5smf8hHN48+LjjFCCCGEyI3Bl931wA9/+EOOOuooZmWYWr7pppv4yU9+4l7WdZ25c+cO1PB6bd26D3np5eUsOPYIpk+fkuvhdEmZSadcI52Em3u3YDXtRg+VA3an99E8fjSPH7x+NK8fzRt0upZYJk1P/ALMBN7xcyk58Qo0TcNORMFOge7BN3Zm1+NRCna8j+4LYJSPxpDyESGEEELkkUGVnG/dupX999+/09uuvfZa/vu//9u9/Jvf/IbFixezfPnyjMe7+uqr+f73v+9ejkQinHHGGdkbcD8wTZOXX3mD5uYwDY1NuR5Ol5Rlktq5vt1suB1xFufqgWI0b8BNvDVvOiH3+NH0ztcpx95ZQvydJQBUnPszd+Gn25axGzXsdrgWZSXB8MoMtRBCCCHyzqBKzmtqagiHw/uMu/322/nVr37FCy+8wNixYzPG+f1+/P7WPtJ6hqQwn7z19js0NTVTXFzEvIPyu9jcjjY4ibnhdTqzaDp6IoJm+PBNmNvtumpl29jRBhqfvBmA4Lyz8E1o/YSjtVNL160QlW1jNe0GWuq68///WwghhBBDy6BKzrvjrrvu4uc//zkvvvgi06dPz/VwsioWi7Ns2UoAjj7qULze/KmV7kzLLLlRUo1RWo0VrkX3F6H5i7qVmNuJKHa4FjvaSHTlPzE/fg/NG6T87GvbxalEOjnfx86gdrgWrBSa4ZNZcyGEEELkpYJKzh966CGuvfZaFi1axNixY91Zdl3XCYVyv8FMXy1b9haJRJKqqkr233+/XA+nSyqVaO3KUlTuXBdvKT/JvCuoslLYkQbscJ3TVhBI7drotk4sPeNHGOWj2sUrKwnQ5eZDyrbcWXO9bMSg6QkvhBBCiKGloJLzZ599lt27d3fozjJ+/Hg2b96cm0FlSUNDE2+vWgs4Gw7lewmOHW0AQAuUuJvp2OnNh7RPbT6klELFmrAj9dixJmjpOK7pYHhpevJXYKUIzDqJ4uO/3v6+LbPm3kCXs/F28950h5YAelFFFn5CIYQQQojsy+8Mr4fuvfdeJ9H71NdgT8wBNmzYhGXZjB8/lokTa3I9nH1yS1rSibBKxsA2QdPd8hOVjGHW7yD18XuYezdjxxoBheYLYVSOxTN6Bs3P/B5r72aMitFUXnhLhxnv7tSbK8vEanL6mBvlMmsuhBBCiPxVUDPnhezggw9kxIhqgsFAroeyT3Yi6uzmqelowTLnupZdQX1Bp448Uu8m1oCzaDRUjlFcieZ1fsbIq38h9uY/QDeovPTOTme87W7Um9vNe0BZaN5AuoWjEEIIIUR+kuR8EBk3bnSuh9AtdjTdLjFY5nZEsRo+wWr4BM0XdFsfgoYeLEUvrnTKX9rMaKc+Xkf9Y/8LQNmZV+OfdEiHx1FKtda1Z2ijqCwTq3kvAEbZyKz8fEIIIYQQ/aVHyXlTU/f7apeWlvZ4MKKjXbv2EAoFKSnJvIgy2+x4ON0GUfX4vkopzF0fgm2B4cOs3YYdaya1az0ohaeowpnBLqpEL6pAMzr+CtrxCLV/+jqk4gT2P57iz/xX5w+WioOyQTPc2fZPs5p2g7LRfCH0UFmPfx4hhBBCiIHUo+S8vLy82/W6ltXFNuyiW2zb5qmnnqexqZmzzjqZiRPGDcjjWrXb3A4oPWUnItiRejTdQJkJ7EgyXXqioRdV4B13APo++pE3PPo/mLs2oJeNpOKi32XsR26nZ+AzlbQoK+UsBEVmzYUQQggxOPQoOd+0aZP7/YoVK3jhhRe46qqrKCpySgrC4TC33norp5xySnZHOUStXfs+tXX1BIMBRo8aPiCPqZRCWSnA2agHrWdrhlXdxxjFw9CLKjHKnYRYizaieYMYxZX7TMwjyx4luvxR0HSGXXIHRklV5sdKxgAyHtNq3AUoNH8RerCk0xghhBBCiHzSo+R8/Pjx7venn346ixYtYty41tncESNG8P3vf5/TTz+dk046KXujHIKSyRSvvPoGAEccMa/dTqb9yjZpaWWol43sUWcTZVtoTbvRiivxjJzqJs12rAlN19ACXZfmpHZ+QMMjPwag9LSr8E89ouvH62IxqEolsMN1ABhlozrcLoQQQgiRj3rdSnHjxo1EIpEO10ciETZs2NCnQQlYsWIV0WiM8vJS5hw4c8Aet2XWHN3T45aDdrTRqe/2BNzEXNlW66LNLpJzOxml9p5voJIx/NOPoeSkK7sep225mxR11kbR2XBIoQVK0AOdLxYVQgghhMg3vU7OTzzxRC677DJWrlxJQ0MDDQ0NrFixgssuu4wTTjghm2MccsLhCCveXAXAMUcfjmHse6v7rLFMgE4Xau5LS2/zlh1BAVRLC0VPAM3jy3jfxseuwdzxPnpJNZVfua3LDYWgzay5x99hrCoVx460zJpLrbkQQgghBo9eJ+f3338/Bx54IJ/5zGcYNmwYw4YNY+HChcyZM4f77rsvm2Mccl597U1SKZNRo4az336TBvSx3Znz9K6ePbmfSjiJeNte4nb6Oq2L2evoir8Tee0h0DQqL74do7R634/XxeZDVuNuZxzBMvQu+p8LIYQQQuSbXvc5Lysr4/bbb+f222+nvt6ZMa2okG3R+0opRTDoxzAMFhx75MDvZunOnPcsObcjDc79/EVo3tb6eBVLJ+yBzhdkpnZtpP6v/w1AycnfIzD96G49XqZ6c5WMuX3WjbIR3f8BhBBCCCHyQFY2IWqblNu2zSuvvMIxxxyTjUMPOZqmcczRh3PwvAMJhYID/vgtM+c9LWtpKSNpu4uns1Noui68k3pzlYpT96fLUYkI/qlHUnrq97v/eBnaKDodWpzZe8038M+fEEIIIURf9LqsJZNYLMZxxx2X7cMOOblIzAF35rwnZS0qGUOl4oDWrqTFqv8YAL2ostMa8oa/XU/q43fRi4dRefHt+6wzdx8vFQdlgaajeVufJzsRxY41OsOXWXMhhBBCDEJZT87BKc0QPaOU4rnnXmLHzl25HUcvZs7taAMAerDUTbCtcK1TF64Zbr/ztqJvPUHkZWdtQuVXbu00JuPjtZS0+ILtyn6sxk+ccRRVZtwxVAghhBAin/WoduH444/fZ4xpmgNfJ10A3n9/A6tWv8t769bzjcsvwu/P3NmkX7XMnOvdnzm33C4tTkmLsi2sBidRNspGdKhfN/dspv4vPwCgZOG3Cezfs09aOlsMascjqHgzoDmbJwkhhBBCDEI9Ss6XLl3Kr3/9a3y+zIljIpHg1Vdf7fPAhhLTtHj55eUAHHLInNwl5vR85tyOh8FKgWagpRd9Wo2fgG06/c4/tcOnSiWovedyVLwZ36RDKD39v3s+xpa+6W3qza3Gnc51xZXtFqQKIYQQQgwmPUrONU3j8ssvJxTK3J4uEonwwx/+sM8DG0reXvUOjU3NFBWFOHjegTkbh7ItWnYH7W7NudvbPFSGputOt5TmWucQFaM7fIrS+K8bSW1dg15UQeWlf+jxwlNl26hk+82H7FgzKhFBZs2FEEIIMdj1qOa8pqYGXe/6LrquU1NT06dBDSXxeIJly1YCcNRRh+Lz9ayFYVa19DjXDLR9/D+DkyjbUWcBpl5UCYBZvwNQTo/xYPv2ibHViwm/+EcAKi76PZ6KMT0eokrGAAWG193UyK01LxnW5UZHQgghhBD5rkfTlps2bdpnTDAY7FZcPkuYMTxmx7p5XdPxGv52cZlomobPCOwz9pXXlxFLRKiuGs4BM6cBkDTjKDpfVKuh4fO0HrdHsVa8y8W6Xsty7md49xnr9wRR8SZQFqYGyqNjN+/EitYCGp7icqz0z+z3BDFrt1H3wPcwdQgddxn69PmdPic+I+DOtptWEktZ7W63YnXYVgLd58erFCrejEpGMZWFHipxH7PDz2b40TXnDYdpp7BsM/Pz0KNYH7pm9DjWsk1MO5Ux1qN7MXRP3sTayiJlJTPGGroHT3qdQs9ibVJWIjuxmoHHcN6cKaVIWvGsxPbkdd8f54jOYnN1jvB7gr2KTVkJbGVnJXZf54jexso5om+xco6QcwQM3Dmiq+eit+69914eeughtm7dyvnnn8/ixYupqanhkUce4de//jV/+9vfAFi4cCHXX389AE899RQ/+9nPUEpRWlrKAw88wPDhzif4xcXFfOc73+G5556jpKSEv//975SVlXVrLH3uc75lyxbef/99jjvuuC5r0QeT6589BcPf8RdqxvD5fP3w37qXr31mYcYX7ORhB3HF/LvcyzcsOZNIsqHTWO+4Ks45+E73U4lfvHgu9bGdncaOKJnIj4971L38m5cvYldz52+GKoKjuPbEf7uXb3v162xrWNdpbJGvnJ8enT6u4eHuZd9hY+1bncb6jAC/PO1l7LBT0vLAljt5/+032wetbf32N6e9Rt0930DFGnnmyMm873kaFj3d6bF/cepL7ovw0TU/Z8W2pzqNA7jhpGfxNzi7gT61+1+8tnpRxthrTvgXlaHRACxadwcvbnwwY+x/L3iYUaWTAViy/s88s/7/MsZ+7+h7qamYCcBLHz3ME+/9PmPst468kylV8wB4fcvf+dvaX2WMveywW5g54igAVm5fzF9X/TRj7FcOvok5o08AYO0nS7nvzaszxn5pzrUcWnMGAO/vWcYfl38vY+znZ/2QoyaeC8BHtau4/bVvZIw9Y/8rOX7KhQBsb3ifW16+OGPsSft9jZOnfx2AXc2buHnpeRljj5t8AWfO/A4ADbFPuGHJZzPGzp9wDufM/hEAkWQD1zyzMGPsIeNO4/y51wPOH5AfL8q8L8OBoz7DxYf8wr3cVWx/nSPGlc/g+8fc717O1TnixpOfcy935xzR4s8rfsS63ZnXIt1y5gr3+7+8dR2rdz6fMban54hiv7NQ/Z/v3sKrmx/PGCvnCIecIxxyjnDk6znirc0vAFUZ43tr1qxZ/OpXv+LSSy/lzTffZOzYsSxZsoRNmzbx6quvomkaX//61/nXv/7FZz/7WUaMGMHzzz9PMBjk7rvv5pZbbuGmm24CIB6P81//9V/87Gc/49vf/jZ//OMf+cEPftCtcfQ6OW9sbOT888/n5ZdfJhaLsWXLFnbv3s3555/PokWLmDBhQm8PPeQEAn4mTsx9KZDqwe6gyjKx483p+K5/jRr/dRPJzW+hBcvwTTgIal/v+2ABO9bo9DzXDDSftE4UQgghRO+VlJRQVlZGSUkJmqbh9Xp5+umnee655zjiiCMAiEajTJgwgc9+9rM0NjZy2mmnEYvFqKurc2MAAoEAY8eOBWDu3LmsWrWq2+PQVC+bkl988cUUFRXx+9//npEjR7J69WpGjx7NNddcw8qVK1m0KPMsZr4Kh8MsWLCAf/77AYqKOi56LfSPo4zmeuzmPegl1dillV3GemIRrPqP0XxBVPlIkjs/ABRG1Tj0YLkbF3/vRZrv+ioAw75+D54Dju/1R9bKTGLu/ADQMEbPwNi7HawERtlIVHGFfGTdj7HykbV8ZA1S1tK7WDlHgJwjehMr54jMsc3hMGedeSFLly6luLjjDuS9ce+997J582YuvvhiLr74YpYuXcqECRP4/Oc/z5w5c7jwwgs73GfcuHEsXbqUyZMn889//pN//vOf3HvvvYBT1hIOh91jv/nmm9x2223dGkuvZ87//ve/8/7772MY7Xd1vOKKK5gyZUpvD5sX/J5gu1+EruJ6cszuavtCyGqs0XWsae0BnJnzfcWmItsB0EMVqOY6fIYPzV+Mt2SUG2NHG6h98CoAihd8leCBp3R7rAAew9fuF9ROJtANP5oviJ5KYlkJ0D3oJVVoutHtX2aP7nVP5rmKNXSP+0dtMMTqmtHt3+Gexer9EqtpWr/EQv+97gfDOaK3sW2TkWzGfvockbVYOUf0OFbOEa3yIbbQzxF+T+Y32tl24okncsstt3Deeefh9Xr53ve+x+WXX8706dOxLIthw4YBsGzZsqw9Zq93CA2FQuzdu7fD9Zs2bcrauxgxsLrb41ylEm6vcXQDO9YIaHgqRreLa37hbuxIPZ5R0yg765o+j69lZ1C8Qewmp9bcKKl2dyUVQgghhMimk08+meOOO47DDz+cgw46CKUUU6dOBeDmm2/mqKOO4sgjj2S//fZj+fLlPP545rUt3dXrspbrrruOp59+mrvvvpsTTjiBpUuXsmfPHr71rW/xxS9+kWuvvbbPgxtoLWUtixc93mlZS6FL7fgAZcbxDJ+MHsj8Bstq3IXV+AmavxgsE2XG0Uuq2rVGtCP17Lz2UFQ8zLCv/ZHgnNP6Pr5dG1CJCJq/GJUIg+HFO2p6t9o+CiGEEKIwRCJRTjn1nKyWteSTXpe1/OQnP6GyspIzzjiD2tpaZs2axbhx4/jBD37At7/97WyOUQyQ7s6ct2w8hFIoMw66B6NsZLuY5hfuQsXDeMfMJDC7Z+UsnY5NKVQyhlI2xJtBczYcksRcCCGEEIWkT60Uv/Od7/Cd73yH5mana0dJSck+7iHylbJtaFks1UW3FjsRRZmJ9E6dUTTAKB/ZrrTECte5mw2VnvaDrCTQKhUDZaNiYbRQKZrhczc+EkIIIYQoFH3ucw6SlBcEd3dQvcsabjvqzJorM4HuC6L5QhjFw9rFhJ+/E5WI4B13AIHZJ2dleHakHqVsp3UipehlMmsuhBBCiMKT9ewmmUxy6aWXZvuwop91p8e5Ugo70oCdiEO65ZHRps4cwArXEv7PPQCUnnqV28asT2OzbexwPXakAS1QhObxy6y5EEIIIQpSVmbO20qlUtx3333cc8892T606E8tvWy7qDdX8WZn86FoHUb5KPSiSnR/+4Wz4SXpWfOa2QRmLcRq2tPa2aWXrEg9duMnKNPEKK5ELx2elaRfCCGEECLf9Cg5f/jhhxk2bBgnnngiL730Uqcx0WjfEjGRG92ZObcj9ahYI5rhRdM9GOXtF4FazXvbzZpjJrAadvR5bFbdNlQq4bRN9ATQiyr6fEwhhBBCiHzUo+T861//OtOnT+fEE09kwYIFVFVVdbn7kxhErK5nzpVtYUUasJpr8VSOdhaBfiqRb17yB1Qyinf8HAIHnIAdqQNA8wbQP1WX3l12IooeaYCAhmfUNIziCpk1F0IIIUTB6lFyvmrVKoLB1h2qNm/eTCj0qbKGcJiysrLsjE4MGHfmPMPudXa0Ebt5D5quowfLOyTbVtMeIi/9GWitNVfxCAB6sAyjpKp340puQy8qRy+qxFM+olfHEEIIIYQYLHqUnE+aNGmfMZqmyWz6IKT2MXNuNezEjjagF1diVI7pMHvd/NztqGQM34SDCMw83jlmwknONX9RL8dkuj3VezvzLoQQQggxmPS6W8t1112Hz+frcL3P5+O6667r06BEDrgbEHWcOVdmEnPPZgA8lTUddg+1GncTefk+AEpP/YHzBs1MoqwkoPU6OXcSc4XmC3ZYeCqEEEIIUYh63a0lUwLu9XolOR+EWheEdvyVMGu3olIxNF8IT1VNh9ubn7sNlYrjmzgP//7HAWDHw87xfMFe9SNXSmGHawGZNRdCCCHE0NHrmfP77ruPSCSSzbGIHFFKge0k55/eHVTZNubODwHwDp+E5mn/aYnVuIvwKw8AUHpaa1/zPpe0xJtRZgI0Az0k3VmEEEIIMTT0Ojl/6KGHGDNmDBdeeCHPPfec1JkPZi315mgdZs6t2q3YyQia4cUYPrnDXZufvRVScXyTDsE//Vj3epVwWmp+ugSmu+zmllnzStkJVAghhBBDRq+znmeeeYZ169YxZ84cfvSjHzFu3Dh+9KMf8e6772ZzfGIAZOpxrlIJUrs/AsBTPQnd0/52q2En4VceBD41a26lUGbcOWYvZs5VKoEdbwLAkJIWIYQQQgwhfZqSHDVqFD/4wQ946623ePbZZzEMg6OOOop58+bxu9/9jj179mRrnKI/ZejUYtZ97Gw6lKHWvOnZ28BM4Jt8KP5pR7vXuyUt3gCabvR4OG5/9EAJmtff4/sLIYQQQgxWWakX+Pjjj3nqqad46qmnKC8v56STTuLVV19l6tSp/OpXv8rGQ4h+pDrp1GLHmrCadqFsG6NsJFqgpN19zPodRF5tmTX/YbvWinZLct6LkhZl21hhJzmXWXMhhBBCDDW97tYSDod5/PHHuf/++3n77bf53Oc+x+9+9zsWLFjgxuzevZvJkyfzwx/+MBtjFf3FalkM6vw6KKWw6neg4k3ooXKM0uoOdd/Nz94KZhLflMPx7ze/3W0q3alF701JS6wRbBPN8KEFS3vxwwghhBBCDF69Ts5HjhzJEUccwSWXXMKTTz7ZYadQgPLycqqqerczpBg4n545t5v2YKdi2KkEnsrh6EWV7eLN+o+JvPYQ0HHWXFkmKtVSb97zmXOreS+QXgj6qY2OhBBCCCEKXa+T83Xr1jFu3LguY3w+H5s2bertQ4iB8qmZcztci0pEMEIV6N4AeqD9DHjz078HM4l/6pEE9juy3W1uvbkn0GnP9K7YySgqGQU09OLKfcYLIYQQQhSaXtec7ysxF4OHsltnzpVSKCuJHWtG8xehF5W3izVrtxF5/a+A06Hl09x6817s6Om2TwyVd7pTqRBCCCFEoZMG0sJtpYjhATOJsi1UMoZmGOhF7TcAan7m92Cl8O93FP6pR3Q8Vjo572l/c2Vb2NEG576yEFQIIYQQQ5Qk50OcUsptpagZXpSZRMWb0QwPmi+I5g24sc6s+cNA57PmLUk99Ly/uR2pB2WjdVJGI4QQQggxVEhyPtTZZuv3ugdlJpySFt2LHvrUrPnTvwXbxD/9GPxTDutwKGdXUOV0WvH4ejYMd0dQmTUXQgghxNAlyfkQp9wNiLxOdxQrhTIT4PGiB1t7m5t7txJZ9ijQ+aw5tFkM2sOSFjsednYU1TqW0QghhBBCDCUFm5wvX74cTdOYM2dOroeS39L15i2dVexEFJRyFmR6WnfnbGqZNZ+xAP+kQzo9lJ1w+pv3dDGo3dI+sai8VzuKCiGEEEIUioJNzv/f//t/LFy4MNfDyHtuj3M93eO8JcH2Bd0+4+aezUSXt8yad76hlLLtdFkL6D3ob67MJHasCZAdQYUQQgghCjI5f/HFF9mzZw/nnXderoeS/z69O2i8pRVi66JMZ9bcIrD/8fgnHtTpYZyFoMopj/H6O43pjB2uAxSavxjNF+zNTyCEEEIIUTAKMjn/n//5H2688UbZYbIb2u4Oqmy7dXfPdN24uXsT0TceBzLXmgOo9Iy73oMuLUoprEgdAEaJzJoLIYQQQmQlOY/FYnz88ccdrn/33XezcfgeeeKJJ9A0jTPOOGOfsYlEgqamJverubl5AEaYZ9r1OE84bRU1Hd3rzGI3PX2LM2t+wAn4JszNeJjWzYd6kJzHGp3HM7xowbLe/wxCCCGEEAWiz8n5448/ztSpUznttNOYPXs2y5cvd2+78MIL+3r4HlFKcc011/Czn/2sW/E33XQTZWVl7tfYsWP7eYT5p93MuZVCWSk0jxfN6yO1ayPRN/4GQOmpP8h8DKVaNx/qQXJupdsnGkWV8imHEEIIIQRZSM5vvPFGVq5cyapVq/jzn//MV7/6VR566CEgvcFNFm3dupXi4uJOv26++WYeeeQRqqurOe6447p1vKuvvprGxkb3a/v27Vkd76Dgzpw7GxBhpZzFoR4fzYt/A8omMGshvvFzMh5CJWOgbNCMbteNq2QsXQqjoRdX9v3nEEIIIYQoAJ6+HiCVSjFixAgA5s2bx0svvcTnPvc5NmzYkPXZ0JqaGsLhcKe3WZbFzJkzeeCBB7p9PL/fj9/funhR1wuyBL9LrTPnHqxkHGVbaIYXc+82om/+E+h61hxa+5vrPehvboXTmw4FS3u8YZEQQgghRKHqc3I+fPhw1qxZw+zZswGorKzkueee4ytf+Qpr1qzp8wC7a9u2baxfv55TTjnFvS6RSBCLxaiqqmLp0qUccMABAzaewUBZJpD+dEP3QEsbRa+f5md+58yazz4JX83sro8Tb+lv3r2SFmVb2JEG52FLqno1diGEEEKIQtTn5PyBBx7A42l/GJ/Px1//+leuuOKKvh6+28aNG8fWrVvbXffYY4/xxz/+kWeeecad3RdttOwOqhlouo6ddGbAreZaYiv/CUDpqZk7tLTo6WJQO1IPykLzBHo02y6EEEIIUeh6nJzv3buX+vp6pk6dCtBuEeWGDRsoKyujuroagPnz52dpmPtmGEaHBZ0VFRV4vd4hudCzO5S7O6izAZGKO5sIxd54DJQicOAp+MZ1/WmDU29ugaZ3u97cbilpkfaJQgghhBDt9KjIevny5cyYMYO//OUvnd7+wAMPMGPGDN54442sDK6vLr74YlatWpXrYeStlnpzDA/KtlBmHKUUiY1Ox52SE7+1z2O0nTXvzhoDOx5xeqlrOnpRRe8HL4QQQghRgHo0c/7d736X6667LmO5yk9+8hOGDx/Ot771LVasWJGVAYp+1GbmXJkJlJlCJeNuDblvzP77PERPWyi6s+ahcjTd6M2ohRBCCCEKVo9mztesWcMXvvCFLmPOOecc3nvvvT4NSgwMZbfOnGOmwEqhoukdO8tHd6tMxXYXg+67dlxZKexoAyAlLUIIIYQQnelRcj5x4kSWLl3aZcyLL77I+PHj+zImMVDazJzbqYSTPIed5NxTPWGfd1epONgmoHUvkQ/XAQrNF0L3hfowcCGEEEKIwtSjspaf//znXHTRRaxYsYLPfOYzjBgxAo/Hg2ma7Nq1iyVLlnDPPff0qNe4yJ22Pc7taCMAdvNeoHvJeWu9eQhtHz3ilVJu4m9I+0QhhBBCiE71KDk/88wzeeWVV7j99tu56qqr2Lp1K7FYjGAwSE1NDUcffTSvvPIKM2fO7K/ximxquztoujzFanZqwo3qifu8u4q31Jt3o6Ql1oSykqB70IJlvRywEEIIIURh63ErxQMOOIA//OEP/TEWMcDazpyrlh7nTbuBbpa19KC/ecuOoEZx5T5n2YUQQgghhirJkoYoZdugbOeC4cVOOD3OrYadAHj2MXOuzKQzE462z+RcpRKoeDMAelFl3wYuhBBCCFHAJDkfqtzdQXVQCswEdjKKSndT8VRN6PLubpcWX3CfM+Ets+Z6oBTN6+/TsIUQQgghCpkk50OUatfjPIkyU9jhegD00uHogX3MhnezpEXZtrsQVNonCiGEEEJ0TZLzoaptj3MribLNnrVRTJfB6IGuF4Pa0XpQFprHjx4s7dOQhRBCCCEKnSTnQ1TbmXM7EQPbwg63tFHcR725lUKZcef++5g5d3cELZZZcyGEEEKIfZHkfKiyWmfOW0pU7HQbxX3NnLslLd4Amm5kfojmvahkDNDQiyr6PGQhhBBCiEInyfkQ5c6c617sREuP8z3AvmfO3c2HuihpsRNRrPodABjlo9CMHnftFEIIIYQYciQ5H6JUu5lzp37cbvgE6MbMebpTi56hpEXZFtbeLYBCD5ZhlFZnZcxCCCGEEIVOkvOhyt2AyItKRFCpBHYkvSC0izaKyjJRqa7rza3abSgriebxYwwbl91xCyGEEEIUsF4n51u2bMl425o1a3p7WDFAWspaQKGspFvSohdXoofKMt8v6cyya54AmuHtcLvVtAc71ghoGFU1XdakCyGEEEKI9nqdnM+ZM4e77rqr3XWWZXH99dczf/78Pg9M9B+lFNhm6/eWiUr3ON9nvXnL5kP+UCe3RdwdRo2K0ei+jjFCCCGEECKzXifnL7zwAn/84x858cQT2bZtG6tXr2bevHksWrSIV199NZtjFNnWUm+OBraFslLuLp772hm0pVPLp/ubK8vErE3XmYcqMEqqsjxoIYQQQojC1+vkfO7cuSxfvpyTTjqJmTNnMn/+fC666CKWLVvG7NmzszlGkWXtdgdtaaPYkpx3MXOubDvdGrF9vblSCrN2K1gpNE8Ao3Jsfw1dCCGEEKKg9WlB6IoVK7jvvvs48MADmThxIq+++io7d+7M1thEf2nTqaWlTMV22yhOyHg3J5FXaIYPzeNzr7ebdqPizaDpeKpq0HRZZyyEEEII0Ru9zqK+853vcNJJJ/H1r3+dl156ibfeeov999+f2bNnc+utt2ZzjCLL1Kc6tQBYjbsAMLqaOe+kv7kdD2M1Oi0YjYoxaL5gv4xZCCGEEGIo6HVy/s477/D222/z7W9/G03T8Hq93HDDDTz//PP8+c9/zuYYRba1dGoxPKhkDGUmsZv3Al3PnLdsVtSyGFRZKcy9TtcevagSo7iy/8YshBBCCDEE9Hrbxueff77T6+fMmcOKFSt6PSDR/9wNiHQPdiKC3ezUm2vBMvSiis7vY9vuZkW6v8ipM9+7BWwTzRvAqBgzIGMXQgghhChkWS8OTqVS/PCHP8z2YUU2uT3OASuJ1WbWXNO0Tu/iLARVYHjRvAHsxk+cMhfNwFM1QerMhRBCCCGyoNcz5wB//etfeeWVV4jFYu51pmmyaNEifvOb3/R5cKJ/KDvV8g3KMrvXqSVd0qL7i7BjTVhNu537DBuL5vX374CFEEIIIYaIXk93XnPNNVxzzTX4fD4effRR/H4/wWCQl156iX//+9/ZHKPIspZWispKgbLbJOcTMt7HTi8GxfBi7t0KgF5ShR4q78+hCiGEEEIMKb2eOf/zn//MokWLmD17Ng8++CDXXHMNo0eP5uSTT+bGG29k0aJF2RynyBJnR1Bn5lyZCYA2i0E7nzlXSqESEZQCO1wHykLzhTDKRw/MoIUQQgghhohez5w3NTUxbtw4AEpKSohEnJnVI444gv/85z/ZGZ3IPru13lwlneTcLVHJMHOukjFnhj1SC8pK15mPz1ifLoQQQggheqfXyfn8+fP5y1/+AsDMmTO55557qK2t5cEHH2T8+PFZG6DILrdTi+FFJSMoK7XvmfNEBDseRqWcZN5TVdNuEyIhhBBCCJEdvU7Ob731Vt555x0AfvrTn/Lggw9SXV3NzTffzO233561AYosS9eba4YHErF0mYqN5i9CL6nq9C52uA6rcRe6L4hROhw9WDqQIxZCCCGEGDJ6XXM+ZcoU7rzzTgDmzp3Ltm3b2Lt3L1VVnSd4Ij+4M+eaBzsZwW7eAziz5p2VqSjbJrV7AygbvXgYetnIgRyuEEIIIcSQ0qPk/Kc//Wm3Y6+99toeD0YMALfHuQLbbNfjvDPm7o1OzbnuwTNqmtSZCyGEEEL0ox4l59dffz2aprFw4UJGjRrldP7ohCRw+atl5lzZltPjvDlzG0U7Uo9VvwMA7/DJ6FJnLoQQQgjRr3qUnK9du5aHHnqIxx9/HNu2ueCCCzj77LMpKirqr/GJbGuZObeSABk3IFKpOGbddlQqhlE8DKNs+IAOUwghhBBiKOrRgtCZM2fys5/9jA8++IAbbriBf/7zn4wYMYLzzz+fDz/8sL/GKLLInTlPOcm51dRScz6hNca2MfdscXYQ1XS0oko0f/GAj1UIIYQQYqjp8YLQuro6HnvsMR566CE2b97MFVdcwYUXXsjUqVP7Y3wi21p2BzWTKNtqtyDUDan/GGXGUUphFFehaRqaL5iT4QohhBBCDCU9Ss5PPfVUnn/+efbff38uvPBCjj/+eHRdx7Is1qxZ0y529uzZWR2oyA535tyMO20UbQvNG0AvHeHG2NEGAPSiClS0Ac0fQtN73XVTCCGEEEJ0U4+S86effhqA1atXs3r1ajRN63RRqKZpWJaVnRGKrFGWCTj/XyqVdDcfMqrGu8m3SiVA2YCW/gJdSlqEEEIIIQZEj5Jz27b7axxiILTMmms6pGJYzZ3Um6fiAGi+ACQizvd+WfArhBBCCDEQpFZhCFEtu4OiULbpzpy3rTdvSc7RPCgrCWiSnAshhBBCDBBJzoeQlnpz2zRBqTbJ+YTWmJbk3HbKkjRfUOrNhRBCCCEGiGRdQ4nb4zydpDd37HGukk5yrlqSc5k1F0IIIYQYMJKcDyHKdpJyzATKtrGadwOtybmybZSZnjlXTiKvB2QxqBBCCCHEQJHkfChJz5zbZtJpl2iZYHgxKkYDuIm5UrSWtcjMuRBCCCHEgJHkfAhpqTknlWjdfKiqBk03nNuTLbPmTlcezRtwbxNCCCGEEP1PkvOhpM3uoHZTx51B3cWgLcm5lLQIIYQQQgwoSc6HEGWlnIWetonVRaeWlsWgupS0CCGEEEIMqIJMzhsaGjjmmGP44he/SCKRyPVw8oKybVA2ykyiFK1tFKvadmqJOYl5etdXqTcXQgghhBhYBZec27bN2WefzdSpU3n44Yfx+/25HlJ+aNkdNBVH07UOPc6VZYJtOrd7/M6X4c3VaIUQQgghhqSCS85vvvlmEokEd911F5qm5Xo4eaNld1BME6VsrOb2Neetmw/ZaLqG5gvlYphCCCGEEEOaJ9cDyKZYLMavf/1rnnnmGTyegvrR+i7d41yZCVS0Ccwk6AbGsLHO9cmYE+eWtEhyLoQQQggx0Apq5vzRRx9l6tSpLFmyhMmTJzNv3jzuv//+jPGJRIKmpib3q7m5eQBHO7BaZs6VlXJnzY3KcW7pikrFUUqBne7UIsm5EEIIIcSAK6jkfOnSpTQ2NlJWVsaiRYu48sor+a//+i+efvrpTuNvuukmysrK3K+xY8cO8IgHUEuPcyvZod4cQKVizmy6xwOajuYN5mCQQgghhBBD26BKzrdu3UpxcXGnXzfffDM7duzg8MMP5/LLL2fatGl85Stf4fLLL+eee+7p9HhXX301jY2N7tf27dsH+CcaOO7Meapjj3OlFCqVQKViaB4fmi8k9fpCCCGEEDkwqAqza2pqCIfDGW9fsWIF06ZNa3fdtGnTeO211zqN9/v97bq56Pqgeq/SI8pKYVsm2FabxaATnBvNhNNmMZVEC5ZLf3MhhBBCiBwpqGx0+vTpfPTRR+2u27RpExMmTMjNgPKJlYJUDHSjTVnLpzq1KAtNk/7mQgghhBC5MqhmzvflG9/4BgceeCAnnHACxxxzDMuXL+fuu+/m2WefzfXQck5ZJnYyhtK0DruDqmTcKXvRnPdqshhUCCGEECI3Cio5HzNmDE899RSXX34569atY9KkSTzwwAMcfPDBuR5aTjldWExIxlCJGKTioGl4htU4t6firZsPeQNoupHjEQshhBBCDE0FlZwDHHbYYaxatSrXw8gv6U4tdjKOitYBYFSMQfM69fYqFUclY2j+Ytl8SAghhBAihwqq5lx0zt0d1EphfbpTi207GxOl4k6nFqk3F0IIIYTIGUnOhwKrZXfQFPanOrW0bD6kLBPNMNCl3lwIIYQQImckOR8CVJsNiDrMnKdikEqgeXyge9C8gVwNUwghhBBiyJPkfCiwTOxUAqDD7qDOYtAYmsePLvXmQgghhBA5Jcn5EKCsFCTjoOltylrSM+fJuNSbCyGEEELkCUnOhwLLxE5GnYWfyRgARlWbNorJGHglORdCCCGEyDVJzocAZadQySh2pAEAo3wUui+EslKoVAxlW2ieAJovmNuBCiGEEEIMcZKcDwHKMlGpOHYk3eO87c6gyTia4UP3h9B0+XUQQgghhMglycYKnFIKrBQqGcMOO8l5a6eW9GJQrx9NWigKIYQQQuScJOeFznY2IFKpBFa4FvhUp5aksxhUl3pzIYQQQoic8+R6AKJ/KSuFbdsou80GRFXOzLmdjKDMBHgq0aSNohBCCCGGsAULFtDQ0EAg4Oz5cvbZZ7Nz505ee+01jjzySG655RZisRhnnnkmixcvxuPpnzRakvNCZ5mQiqPpBnZTa49zpRR2uAEA3V/sbEIkhBBCCDGELV68mFGjRgHQ0NDA+eefz/LlyznrrLNoaGjg1ltv5Vvf+la/JeYgZS0FT1kp7GQMkilUIgyky1rMBCoVBU1DL6rI7SCFEEIIIXJM0zQqKyvdy4ZhkEgksCyLRCLB7t27ee211zjrrLP6dRwyc94JFUuh9FTHG3QdzW+0i8tI09ACnt7Fxk1QKiuxWCYkY9jxBrA96MXVaMqP3dSIHY6D7QPbh4ql0ILe7h0X2scmLLDtrMQS8KBpmhObtMDKUqzfg6anY1MWmFmK9Rloht7zWNOGlJU51mugefIo1rIh2UWsR0fzGj2PtRUkzOzEGjqaLx2rFMSzFNuT1/0gPEd0OxbkHNGbWDlHOOQc0fNYOUdkjO3yueiDUCjEr371K5544glGjhzJ73//e0488UTmzZvHeeedh9/v58477+yXx25LkvNOhE95DBtvh+s988cQ+u0J7uXmhY9mfMEaB42g6K6TW4955t9QDYlOY/UZwyi+//TW2HP/idoZ6Tx2YhnFj57lXo5c9CT2psZOY7VRRQTvPRw7GcWONFK07nKMyDiaj3moXVyUZ9DK/ZQ8d17rdd9ZgvXWrk6PS8BD6ctfdi/GfvQi5qsfdx4LlK74SmvsdS9jPr8lY2zJS+dD+kUY//nrpJ7amDG2+NkvolU4dWHxW1aQevyDzLH/+jza6GIAEne8TfLBdzPGFj18JsZk59OExJ/Xkvy/1Zlj7z0NY2YVAMmH15H4/cqMsaE7T8IzbyQAqb+vJ/6r5Rljg7d8Bu9RY53YxR8R/+mrmWNvOhbvCRMAMJduJXb1fzLGBq6dj++MKU7ssh3Evvd85tgfHobv3OkAWKt2E/3GMxlj/VfOw3/hAQDY79cRufipjLG+rx1I4OtznNhNDUTO+3fm2AtmEvjOwQCoTyKEP/u3jLHec6YR/NHhTmxDgvDCRzLHnjaZ4PVHORfiZofXRFuez4wn9IsF7uUuYwfhOaLk3+e0xn79aex1tZ3HyjnCJeeIdKycIwA5R7ixA3iOCD+/AfphqdwXv/hF5syZw//+7/9y//33841vfIPFixdz7rnnUlJSwi9/+UteeOEFLrjgAr7//e9nfwBpUtZS6NI15y09zoUQQgghREcXXXQRs2fPBuDcc89l1apVKKX4xje+waZNm2hoaGDFihU8++yzhMPhfhuHplQXnzkMMeFwmAULFrDob3+lqKiTt2SD8OMos2ET8fdeJPbWv0luXE3pyd+nZOEVJDa+iVm/He/IqfjGznTC5SPrnsfKR9YO+ci657F5co7Ix4+s5RyRJ697OUd0L1bOEa3hA3SOiDSHOfXzX2Lp0qUUFxdnvF9PmKbJD3/4Q2644QaKi4tZvHgxd9xxB+effz579uzh2GOP5d577+WWW27hrLPO4r777qOsrCwrj/1pUtbSCS3obfeL0FVcT47Z7dhA9/9b9hlrmSgzgRWuA93EM2Yi+HWUakLzaxiVwzodW4/G4DcAY59xPY719VOs1wBvjmM9Oni698FVXsQaOgT7IVbX3BKFrMZq/RML/fi6z9U5YiBi5RzR89h8eN3LOaLHsSDniF7F9vAcoZndfy66y+PxMHfuXI499lj8fj8VFRXccccdfPWrX2XRokV4vV527tzJrFmzOPHEE/stMQdJzguelYw5HVuaWzcgUqkEKhkH3YMe6r9fLiGEEEKIweKiiy7ioosuanfdkiVL3O8ffvjhARmH1JwXMGWZkIygzCQq3gQ4ybkdb0ZZKTSPTzYfEkIIIYTII5KcFzIr5XRqiTYDoBdVoIfKsaMNAGiBEjRDPjwRQgghhMgXkpwXMGfmPI6KNQDgqZ4IgB12OrfI5kNCCCGEEPlFkvMC1rI7qB11+pd6qicAuJf1ovIcjUwIIYQQQnRGkvNC5vY4rwfAqJ6IbSZRyQigYRQPy+34hBBCCCFEO5KcFzBlp7CTcVQ6OfdUT3ASdaXQPH50XzDHIxRCCCGEEG1Jcl7AVCoJZgIrvTuop3pim3rz8hyOTAghhBBCdEaS8wJmJ8PYZhzVpubcjjQAoIfKczcwIYQQQgjRKUnOC5iKhd3Fn1qwFL2oEjvduUU6tQghhBBC5B9JzguYHW1EpWfKPdUTnM2IElEAdFkMKoQQQgiRdyQ5L1DKtlDJCHa0ZTHoxPTCUIXmDaL7ArkdoBBCCCGE6ECS80JlpVDJuFtj7tSbpxeDhspyODAhhBBCCJGJJOcFSlkmKhXHjjYA4KmaiJVuqSj15kIIIYQQ+UmS80L1qZlzo2o8KtYMgF5UmcOBCSGEEEKITCQ5L1B2MoZtJtw2ikbZCFQqgaYb6MHSHI9OCCGEEEJ0RpLzAmXFmlGROkCh+ULg9aPsFJoviCaLQYUQQggh8pIk54Uq1tRmMWhLpxbQA6VoupHDgQkhhBBCiEwkOS9QVqypTRvF1p1BNdkZVAghhBAib0lyXqji4dbFoMPGoZJR0DT0ovKcDksIIYQQQmQmyXmBsuPN2OlSFqN8FMpMonn86L5gjkcmhBBCCCEykeS8ACnbxk5G3B7neulwlJlwFoN6ZTGoEEIIIUS+kuS8ACkziUrG3TaKerAMlI3mDYIk50IIIYQQeUuS8wKkElHscD0oGzx+8HoB0IvK0DQtx6MTQgghhBCZSHJegOxYI3a0FgDPsHFopolmeNH9JTkemRBCCCGE6Iok5wXIjjW2dmqpHJuuNw9IvbkQQgghRJ6T5LwAqVibTi1lI53k3Cs7gwohhBBC5DtJzguQswFRAwB6aTXKTKF5ZeZcCCGEECLfSXJeiOLNqJaylpIq0DQ0XwjN48vtuIQQQgghRJckOS8wSimseHPrzHlJlTNrLiUtQgghhBB5r+CS80cffZQDDjiAUCjEtGnT+NOf/pTrIQ0sK4XdtBdsC3QPeqBEFoMKIYQQQgwSnlwPIJvefPNNLrroIu6//34WLFjA8uXLOe+886ipqeHEE0/M9fAGhJ1KYDXtAsAoHwmWiRYokuRcCCGEEGIQKKiZ82eeeYYTTzyRc889l+HDh3PGGWfwhS98gcWLF+d6aAPGaaPodGrRy0ejzGR6MWgwxyMTQgghhBD7UlDJudfrxedrv+jR7/d3uK6Q2dHW5NxTMQp0DU03pOZcCCGEEGIQKKjk/Nxzz2XZsmW8/fbbAKxbt47Fixdz4YUXdhqfSCRoampyv5qbmwdyuP1CxZpQ7mLQ4Wi+IJrhQ9ON3A5MCCGEEELsU0El5xMmTODPf/4zhx9+OEVFRcycOZObb76ZmTNndhp/0003UVZW5n6NHTt2gEecfXa8zQZEJcOczYek3lwIIYQQYlAYVMn51q1bKS4u7vTr5ptv5plnnuHKK6/k8ccfZ/Xq1Tz11FPccMMNPP74450e7+qrr6axsdH92r59+wD/RNlnRxqx0z3O9eJKNK9fSlqEEEIIIQaJQdWtpaamhnA4nPH2I488kquuuoozzjgDgClTphCJRLjuuus455xzOsT7/X78fr97WdcH1XuVDpRtYTftAtsETUcrqkDz+GTmXAghhBBikBjc2einJJNJPJ727zcMwyCRSORoRANLmQmshk+A9OZDhrMQVpJzIYQQQojBYVDNnO/LF77wBX7xi18wZcoUZsyYwYYNG7j++us599xzcz20AaHa9jgvG4Hu9QEaSHIuhBBCCDEoFFRyftVVV6GU4qtf/Srbtm1jzJgxXHDBBfzP//xProc2IFQigt1cC4BeNgK8AafmXNNyPDIhhBBCCNEdBZWcG4bBj3/8Y3784x/neig5Ycej2GEnOTdKRziJuWw+JIQQQggxaBRUzflQ13Z3UKNiNJqmS725EEIIIcQgIsl5AbGjjdjpDYiM8tEAaD6ZORdCCCGEGCwkOS8QSimshp1gpQANo3wUgPQ4F0IIIYQYRCQ5LxRmEqtuGwBaUTl6sBg0A83w5nhgQgghhBCiuyQ5LxDKTGLWOjucGiVVaIZHSlqEEEIIIQYZSc4LhJ1KYDWlNyCSkhYhhBBCiEFJkvNCkQijmvcC4KkYA8jOoEIIIYQQg40k5wXCikewIw0A6BXpTi3S41wIIYQQYlCR5LxAaBrYsSYAjMqxznVefy6HJIQQQgghekiS8wJhx5vBTADgrRyD5vGj6UaORyWEEEIIIXpCkvMCkdrxAQBasBQtUCz15kIIIYQQg5Ak5wXCakx3aimpRtN0Sc6FEEIIIQYhSc4LhKZsoE2nFmmjKIQQQggx6EhyXiDMPZsB0EurAWmjKIQQQggxGElyXigMD1qgBKNsBKCBRzq1CCGEEEIMNp5cD0BkR9ln/x9FR56PnYii+QJompbrIQkhhBBCiB6SmfNCYZlgJtE9Xtl8SAghhBBikJLkvFBoGsoyQfdIvbkQQgghxCAlZS0FwjNsHCoRRZlxSc6FEEIIIQYpmTkvEMq2UWYckDaKQgghhBCDlSTnBaIlMUf3oBne3A5GCCGEEEL0iiTnBUIl07PmUtIihBBCCDFoSXJeIFRKSlqEEEIIIQY7Sc4LhJucy8y5EEIIIcSgJd1aCoSnYjQqGUPzF+V6KEIIIYQQopckOS8Qmjcgs+ZCCCGEEIOclLUIIYQQQgiRJyQ5F0IIIYQQIk9Ici6EEEIIIYa0pUuXomka77zzDgA33ngjEyZMcG9ftWoVF1544YCMRZJzIYQQQggx5JWVlXHvvfcCsGTJkna3zZkzhwceeGBAxiHJuRBCCCGEGPKOPPJIXnnlFV588UUWLFgAwIcffsjhhx/O3LlzOeCAA9rFX3zxxXzzm9/khBNOYPr06Tz33HNZGYd0a+lEMmnh9Vodrtc0Da9XbxeXSX/FAvh8Rq9iUykbpVRex3q9OpqmAWCaNradnViPR0fX8yfWsmwsK3OsYegYRm9iFZZldxGrYRh6j2NtW2GamWN1XcPjyZ9YpRSpVHZi8+F1L+eIVnKOcMg5om+xco4Y3OeIfY25t3Rd57TTTuPyyy/nueee495772Xq1KksW7aMzZs3c/rpp3e4z7hx47jjjjtYuXIlF198MWvXru3zOCQ578Svf/k2Hk/HtoRT9yvjyxdNcy//6qa3M75gx08o4ZLLZriXf/v/rSYaNTuNHT2miK//10z38u2/X0tjQ7LT2OrhQb515Sz38v/d+R57dsc6jS0r9/G9q+a4l//8x3Xs+DjSaWwo5OG//+cg9/KD933Als3NncZ6vTr/77qD3cuP/vVDPlzf2GkswPU3Hup+/4/HN/Leu/UZY//n2nnui/CJf21m9dt7M8b+8Oq5FBV5AXhm8VZWLN+dMfY7PziQigo/AC8s2c5rr3ySMfab3z6A4SNCALz8nx3858UdGWO/9o39GTO2GIDlr+/iuWe2ZYz9yqXTmTipFICVK/aw6MktGWPPv3A/9ptWDsCa1bX86++bMsZ+4bwpzDygEoD319Xz2MMbMsZ+9uyJzD2oGoCNGxp56IH1GWNPPX08hx4+AoAtm5u57573M8aeeNI45h89CoCdOyL8353vZYw99rjRHPeZsQDs3RPjjlvfyRh75FEjWXhyDQCNjUl+9+vVGWMPOWw4p50xAYBo1ORXN72dMfbAuVV87vOTAOdE//OfrswYu//MCs790lT3clexco5wyDmilZwjHHKOcMg5wtHXc8Sa1TszxvbVpZdeyquvvsr48eO7FT91qvN/P3fuXLZsyfya7QkpaxFCCCGEEAIYM2YMd911V4/vp+v/f3v3HdbU2YYB/A4gYQRQEJAhy8FyoOKodVCtExeiBauttuKsuL6qn62tWttaq5+j1g6tq87W2VbqqAOpA3FULRQRGUKKAlVUIkvI+f6gHI2gJAokhvt3Xbkuz3nfnPOc1yfhycl7TgygVD75GxZNSISnfY9QyygUCgQEBOCnvT/A3NysXDu/jqr+vvzKuhS/sn6+vvzKmu8Rmvble0RZX75HaNpXF173te09QqG4j4GDQhAZGQmZTPbU+NUVGRmJJUuWYN++feI6Nzc3pKamAoA4raXsbi5A6Zzzfv36YciQIQAAmUwGhULx3LFwWksFjI0NVRLhaf002aa2+z76wn0R+pa9Mepj39I/ltXRVwJDNTtr0tfAQKJ2rulCX4mkevoCuvFa5ntEKV14LfM9opQuvO75HlH9fXXhdV+njoFGMT+vxMREvPHGGygsLERycjI6dOiArl27YtGiRdW2TxbnRERERFSrBQQEiHdoKVN21jw6OrrC55TddrFMVZw1BzjnnIiIiIhIZ7A4JyIiIiLSESzOiYiIiIh0BItzIiIiIiIdweKciIiIiEhHsDgnIiIiItIRLM6JiIiIiHQEi3MiIiIiIh3B4pyIiIiISEewOCciIiIi0hEszomIiIiIdMQLVZzfu3cP/v7+kEgkWL58ebn2nJwchISEQCaTwc7ODh9++CEEQaj5QImIiIiInoGRtgNQV0FBAQYMGIBGjRrBzMyswj6jRo2CkZERrly5gtu3byM4OBi2trYIDw+v4WiJiIiIiDT3wpw5HzVqFExNTbF582YYGJQPOzU1FQcPHsS6devg7OyMFi1aYMWKFVixYoUWoiUiIiIi0twLc+Z8woQJaNu2LerUqVNh++nTp9GyZUtYWVmJ61555RUkJSUhKysLdnZ2NRUqEREREdEzeWGK865duz61XS6XlyvATU1NYWVlhbS0tAqL88LCQhQWForL9+/fr5pgiYiIiIiewQszraUy+fn5MDQ0BAA0btwYYWFhAAAjIyPk5+dX+JyFCxfCyspKfDg7O9dYvEREREREj9OZ4jwtLQ0ymazCx+eff17p801NTVFSUgIA8PLygouLCwCguLgYpqamFT5n9uzZuHv3rviQy+VVd0BERERERBrSmWktLi4uUCgUz/x8JycnZGdnAwD27dsHoPQOL3fv3hUL9cdJpVJIpVJxuaILTYmIiIiIaoreVKMvvfQSLl26hHv37onrjh07Bg8PD14MSkREREQvhBemOL937x7kcjnkcjkKCwvFaShlU1Hc3d3Rs2dPhIWF4e+//0ZsbCymTp2KKVOmaDlyIiIiIiL1vDDF+dKlS9GwYUM0bNgQ0dHRmDdvnrhcZv369QAAT09PdOvWDSEhIfwBIiIiIiJ6YUgE/r69SKFQICAgAPt/3Qlz84p/hZSIiIiItOf+/Tz06TsEkZGRkMlk2g6nyr0wZ86JiIiIiPSdztytRReUfYlwPy9Py5EQERERUUXK6jR9nfzB4vwRef/+Zw8Z8qaWIyEiIiKip8nLy4OFhYW2w6hynHP+CKVSiezsbJiZmUEikTyxX25uLpydnSGXy/UyKXQVx107OO7awXHXDo57zeOYa8eLPO6CICAvLw+2trZ6+Rs1PHP+CAMDA9jb21faT6lUQqlUwtzcXC8vRNBVHHft4LhrB8ddOzjuNY9jrh0v+ri/aB8oNKF/HzeIiIiIiF5QLM6JiIiIiHQEi/NnIJVKMXfuXEilUm2HUqtw3LWD464dHHft4LjXPI65dnDcdRcvCCUiIiIi0hE8c05EREREpCNYnBMRERER6QgW50REREREOoLFORERERGRjmBxrgFBEDBnzhzY2dlBJpMhNDQUOTk52g5L782bNw8SiaTcg6re0aNHYWpqColEgjt37pRra9GiBUxMTNCyZUtERkZqJUZ99KRxT01NrTD3N2zYoLVY9UVeXh7Cw8Ph6OgIOzs7hIWFITc3V2xnvlePp40787365ObmYvTo0bCxsYG9vT0mTZqEvLw8sZ35rltYnGtg+fLl2LlzJ44cOYIrV66goKAAYWFh2g6rVhg9ejRyc3NVHlS1YmJiEBwcjIULF5ZrS09Px+DBgzFt2jTI5XKEh4dj0KBByMjI0EKk+uVp4w4AJiYm5XJ/xIgRNRyl/pk8eTIuX76MY8eO4cyZM7h+/TqmTp0KgPlenZ427gDzvbq89dZbyMjIQExMDKKionD27FnMnj0bAPNdJwmkNjc3N+HAgQPick5OjiCVSoW0tDQtRqX/5s6dK8yePVvbYeg1uVwu1K9fX9iwYYOQkpIiABBycnLE9nnz5gmhoaEqzxk6dKiwYMGCGo5Uv1Q27ikpKYKDg4P2AtRTJSUlQt++fYVr166J606dOiVYWFgIgsB8ry6VjTvzvfpcuHBBuHXrlri8a9cuwcPDQxAE5rsu4plzNd24cQOpqano0qWLuK5u3brw8/PD6dOntRhZ7VCvXj1th6DXHB0dsWnTJowcObLC9lOnTqnkPgB069YNp06dqonw9FZl4w4w96uDgYEBIiIi0KhRI3FdvXr1kJeXhwcPHjDfq0ll4162TFWvVatWsLa2FpclEglMTEwA8P1dF7E4V5NcLodMJoOpqanK+gYNGiAtLU1LUdUegiAgMDAQrq6uCA4OxvXr17Udkl6RSCTo3bv3E9vlcjns7OxU1jH3n19l4w4A1tbWWLRoEdzc3NC+fXvs3LmzhqKrXaKiotCyZUvUqVOH+V6DHh13gPleE/755x8sXboUkyZNAsD3d13E4lxN+fn5MDQ0BACEhYWhcePGAAAjIyPk5+drMzS9Z2pqivXr12PGjBmIiIiAubk5+vbti+LiYm2HVmuU5X9kZCTMzMwQGRnJ3K8BRkZGiI2NhaGhIX777TdMmDABb775Jk6ePKnt0PRKdnY25s6di3fffRcA872mPD7uzPfqtX//ftjY2MDOzg5+fn6YMGECAOa7LjLSdgAvClNTU5SUlAAAXFxc4OXlBQAoLi4udzadqtasWbMwY8YMGBiUfpZcvXo17O3tcebMGbz88stajq52KMt/S0tLeHl5wdLSEnfu3GHuVzNnZ2fcunVLzP0mTZrg9OnT2LBhA3O/iigUCgwcOBA9e/bEsGHDADDfa0JF4858r16vvPIKLl26hBs3bmDOnDmYNWsWFi1axHzXQTxzriYnJycoFAoUFBTgww8/xL59+wAAmZmZcHFx0XJ0+q/szRoovZrfxcWFV5LXICcnJ2RnZ6N169a4cOECWrduzdyvIY/mPgA0bdqUuV9F8vLy0K9fPzg4OGDt2rXieuZ79XrSuAPM9+pkYmICZ2dntG3bFl9//TX+97//oaCggPmug1icq8nR0RGurq6IiooS1925cwd//PEHOnTooMXI9F90dDTu378vLhcVFUEul8PNzU17QdUyHTt2VMl9oPS+uC+99JKWIqod7t27h7Nnz6qsS05OZu5Xgfz8fPTv3x+2trb44YcfYGT08Itk5nv1edq4M9+rT0JCgsqyoaEhSkpKcP/+fea7LtL27WJeJEuXLhW8vb2F2NhYQS6XC4MHDxaCgoK0HZbe69Gjh9C3b18hPj5eSEtLE8aOHSu0a9dOUCqV2g5Nr9y4cUNIT08XTp8+LQAQ4uLihPT0dOH27dtCWlqaULduXWHjxo3CP//8I6xbt06oW7euIJfLtR32C+9p475lyxahfv36QkREhJCVlSXs3LlTsLCwEC5duqTtsF94PXv2FPr37y/k5OQIubm54qOwsJD5Xo2eNu7M9+qRnp4uyGQyYeXKlUJmZqZw9epVYeDAgUL//v0FQRCY7zqIxbkGSkpKhPfff1+wtbUVzM3NhZCQEOH27dvaDkvv3b17Vxg7dqxga2srmJmZCUOGDBFu3ryp7bD0jqurqwCg3GPkyJGCIAjCkSNHhObNmwvGxsZCixYthGPHjmk1Xn1R2bhv3LhR8Pb2FqRSqeDr6yscPHhQuwHriYrGHIAwd+5cQRCY79WlsnFnvlePU6dOCV26dBHMzc0FBwcHYcyYMSr1C/Ndt0gEQRBq7jw9ERERERE9CeecExERERHpCBbnREREREQ6gsU5EREREZGOYHFORERERKQjWJwTEREREekIFudERERERDqCxTkRERERkY5gcU5EesPNzQ1169ZFQUGBuK5+/fqIjIyssn3MmzcPgwYNqrLtVbf4+Hi4u7tDIpFAIpFg3rx52g5JI6NGjRJjl0gk2g6HiKjasTgnIr2iUCgQERGh7TB0xt69e9GsWTPk5uYiNzcX7733nrZD0si3336L3NxcxMTEaDsUIqIaweKciPRKt27dsGXLFm2HoTMKCwthaGgImUwGmUwGY2NjbYekEalUCplMBlNTU22HQkRUI1icE5Feef3117F//37cvXu3XNuGDRvg5+enss7f3x8bNmwAUDplJSwsDA0bNkSbNm1w6NAhWFtbo1evXuW2NX/+fNStWxcODg5Ys2aNStvly5fRqVMnmJiYoGnTpvj5559V2h+dpnHw4EEMGzYM5ubm6Nevn9rHee3aNfTo0QMmJiZwdnbG0qVLK9zH/Pnz8dNPPz3TtJaMjAwEBQXB2toaMpkMvXr1wsWLF8X2zMxMhISEoG7durC1tcX48eNRWFgotgcEBGDGjBmwtLREeHg4PvvsM1hYWGD+/PkqfRYvXoygoCCYmprC19dX47PkaWlpCAwMhKmpKVxcXMr9fxQXF2P69OlwdHSEiYkJWrVqhZ07d2q0DyKimsLinIj0ipubG9q0afPMxVdaWhqio6NRUFCAPXv24I8//sCFCxeQkJAg9jl79ix8fHyQkJCAJUuWYNKkSbh69SoAID8/H4GBgXjttdeQkpKCr7/+GuPHj8eZM2fE55dNMbGxscHmzZsxcuRIZGRkqB2zUqnEwIED0bFjRyQnJ2Pnzp345ptvsGPHjnL7mD17Nvr16/dM01reeecdWFpa4vLly0hISEC/fv2wePFisX3NmjXw8PBAQkICTpw4gYsXL2LJkiUq2zAxMcHp06exdu1a1K9fH7t378Y333yj0mfv3r14//33ce3aNfTp0wehoaEoKSlRK0ZBEBAUFISWLVvi2rVr2LlzJ5YuXYoff/xR7LNq1SpERkbi8OHDSE9Px/z587Fy5Urk5uaqPRZERDWFxTkR6Z3hw4c/89SWl156CU5OTmjVqhXatWsHV1dXeHp6IisrS+zj6+uLoUOHwt7eHsOHD8fgwYPF/W3duhWtW7fG5MmT4eDggO7du2Pq1Kn46quvxOeXTTEBgPbt26N3796wsrKCiYmJWjEePnwYSqUS8+fPh6OjIzp06IBPPvkEy5YtK7cPY2PjZ57WUnZG2tnZGU5OTggPD1cZ1zlz5mDhwoWwt7eHp6cnQkNDceLECZVtdOvWDb6+vrC2tkb37t3xyiuvqIwlAAQHB8Pf3x9OTk74/PPPUVRUhN9//12tGI8ePYri4mJ8+umncHJyQrt27TB//nysWrVK5Tg6dOgAHx8f2NraYsCAATh+/DgsLCzUHgsioppipO0AiIiq2muvvYZp06YhIyND4+eW3RHEyMhI5d+Pnsk1MzNTeU6TJk2QkpICAIiLi8OhQ4dQv359sb2wsBA+Pj4V7u9J658mPj4ejRs3VlnXtGlTXLlyReNtPc0777yD8ePHY9euXWjWrBnat2+PV199FQYGped1kpOT8d577+H8+fO4c+cO8vPz4e/vr7KNx8fTyMgISqVSpc+j42lgYAAPDw+kpKQgICCg0hjj4uJw5coVlfF+8OCBygedN954Az169EBycjL8/Pzg5+eH/v37w9zcXOMxISKqbizOiUjv2NjYoEePHti2bZtW9h8SEoKPP/5YZd2TzliXFbpVQRCEKtsWALz99tvo06cPoqKiEBsbi5kzZ6Jhw4b45ZdfAJQWvY0aNcLevXthZWWFDRs24PDhw1Uagzo6deqEjRs3qqx7dFz9/PyQmpqKyMhIxMbGYtOmTXjvvfcQExOjUtQTEekCTmshIr1U0dSWevXqITs7W2Vdfn6+xtvOy8tTWU5MTIS7uzuA0ikvycnJcHZ2Fh/5+fnlzrY/Dy8vLyQmJqqsu3r1Kry8vKpsH0DpvHUHBweEhIRgwYIFOHbsGPbt2ydOS7l48SLCw8Ph6+sLZ2fnZ74TzKPjqVQqkZycLI5nZcrG29HRURzvsjP0jx6Hubk5AgMDMWvWLERERMDCwgJHjx59pniJiKoTi3Mi0ksDBgxAYmIi7ty5I65r27Ytbt26hW+++QZZWVn4/vvvkZmZqfG24+LisGPHDmRlZWHr1q3YvXs3Xn/9dQDAsGHDkJSUhAULFuDvv/9GdHQ0AgMDVe7YolAooFAoAJR+OHh0WR09evSAgYEB5s6dixs3biA6Ohpz5szB9OnTxT55eXlQKBQoKipCSUmJuA91L7S8ffs2PD09sWLFCsjlcmRmZmLVqlVwdHSEra0tAKBZs2bYvn07srOzcfz4cWzevBklJSUqPwKlju3bt+PcuXPIyMjAzJkzUadOHXTu3BlA6ZQghUIhfogqO46ioiIApXPara2tMWnSJFy/fh2XL19GcHAwvvvuO3H7gYGBmDhxIq5cuYLbt2/jp59+QnJyMpo3b65RnERENYHFORHpJTMzMwQFBakUo46Ojli/fj0WLlwILy8vZGVlwc3NTeNtt23bFnFxcWjSpAmmTZuGL774Ap6enuJ+Dxw4gN9++w2NGjVCSEgIJk6cKBbvAGBhYQELCwvcunULffv2FZfVZWBggJ9//hmnTp2Cu7s7hgwZgnHjxmHo0KFiHx8fH1hYWGDhwoXYt2+fuA91L7S0trZGREQEDh48CF9fXzRp0gRHjx7Fvn37xHnkq1evxvHjx+Hi4oJZs2Zh3bp1SElJQWhoqNrHApQWzx999BE8PDywf/9+bN++HYaGhgCAcePGwcLCAu3atQPwcOw+/fRTAKVz2vfs2YO0tDR4e3ujZ8+e6N69O2bNmiVuf9euXXjw4AECAgLg5OSEDz74AGvXroW3t7dGcRIR1QSJUNWTFImIiNQUEBCAQYMGYerUqdoOhYhIJ/DMORERERGRjmBxTkRERESkIzithYiIiIhIR/A+50QaKi4uFu8UQURE1cPY2FjllphEtQWznkhNgiDg+vXruHXrlrZDISKqFWxsbODq6ireIYioNmBxTqSmssLcztYKZmZSgH8siIiqhyAgL68QWdmlJ0Oe5ZanRC8qFudEaiguLhYLcxsbS22HQ0Sk90xNpQCArOxbSEy8iq5dA575V2iJXiS8WwuRGsrmmJuZSbUcCRFR7VH2nvvXX3E4dOggr/ehWoHFOZEmOJWFiKjm/Puea2NdH3Fxsbh584aWAyKqfizOiYiISKeZmJqguLgYCoVC26EQVTsW50RUpcxl9rh0OVbbYRCJhg8fDau6TjCX2cPbx79c+7btO2HfwAMpKamVbutFzO+oqJNwdGqi7TDK0TQuCQDwl1moFuAFoUREpLdu3MzE3p/2IfHqRVhaWsLAoPzUNGvremjSpDFMTE21ECERkSoW50REpLeKCgsBAGZmZpDJzCvs06tnd/Tq2b0mwyIieiJOayHSY94+/jCX2cNcZo/vN23DuzPeh4NjY/i37YIHDx7gw7kfo1HjFrBv4IFBQcOQlpZe7vmrVq1G14DesG/ggdDQUcjJuSO2FxUVYfyEKbC1c4Nvs7Y4cPBwuRguXLiIgFf6oJ51QzRv0R7bf9gptm3avB3Dh4+Gf9su8Pbxx6lTZ9CocQt0fPlV3L9/v9rG5UXWu3cQvlz1rbgcFxcPc5k9gNJpAu4ezbB37z54erWGfQMP/Oc/s6FUKsX+3j7+2Pj9VvTuHQRrGxcEvNIHSUkpKvv49tt18PRqDZv6rhgydAQyMh5ehLdp83Yxp7x9/HHhwkW0ax8AC0sH7Nnzi9rHERNzDp279IK1jQtat+6Eg4eOqLQnJaWgX/+hsLZxQZOmfvhi5Tcq7WPHTcbUqbMwctQ42Nm7o1PnnoiN/Uul3VxmDx/ftgAAJ+em5aa19O4dJB5L2Rg+Sp38/jM2Dq/26A9rGxe09HsJEREHVNp79w7CJ58sRv8Br8HO3h19+gQhPV2u0Vikp8sxOHg4bOq7wtOrNdav3/S0oX2iffv2w8u7Dezs3TFt2n9RUlIitmVlZWP48NGwtXODq5sPPpz7sUr72HGTMWPmHHFZobgPc5k9rl9PAwBcv54Gc5k9du36CT6+/mjo4oU5Hywodxy9eg2CtY0Lugb0VmsaEVFtxOKc6DkUFT144qO4uFjtvg8eqNdXU+fPRSHzZjJatmyO/b8eQvt2/oiLPYvfow7i5MloxMcn4NDBn3Dx4mk4Ozli4jvTy20j8vjvWLP6S5w8cRjX09Lx6cIlYtuqr9YgOvos9v+6G4d/+wUXzl9Uea5CcR+Dg4djxPBQxMefx/Lln2P27Hk4d+6C2CfxWhL27tmGxo09sHTZSvwedRBFhUU4dTpG4+N9HoIgQFmYp5WHIFTdRNrcXAVSr6fh+PED2L1rKyJ+PYTNW35Q6RMRcQDLln2Gi3+chLu7GyZOnCa27du3H1+u+hbr1n6F2NgY+LdpjUFBw8RCbVjoEGTeTMbmTd8BAH7csQdbt6zDjYxrGDCgr9oxDh36JkaNHI74v87h448/wJiwSbh9OwcAoFQqERIyEh3at0VcbAy2bP4Oa9duxO7dP6ts5/jxExg39m1cuhQNHx8vhI2ZJLat/GIxMm8m49zZKABA4tWLyLyZjPPnosQ+e/ZsRebNZEQdVy2oy1SW3/n5+QgOHoHBQQMQF3cWy5ctwuQpM3H27HmVfoePHMOCBR/gwvkTqGNsjHdnvK/2WAiCgNBhb6F5cx/8eTkaWzZ/h5Urv8WuXT+pNdYPYy3AlYREREbux94927H/wG/YtGmb2D5mbDjq1rPCHxdOImLfTvz++6lyH4jUERv7F44cicDWLeuwdu1G/PLLr2LblKmzYFXXEufPRWHN6i9x4ED5DztExGktRM9lxRffPbHNw90FwcGB4vJXX23Ag8cK9jINnR0RGjpQXF69ZjPy8wvK9Zvx7gSN4jMzMwMAGBgYwM3dFUOHBoltAQGdERDQWVweM/YtdOsWWG4brw0djKZNGwMAxo8fjW+/XSe2bdu2Ax/MmQV//9YAgP/8JxyfLVoqtv/44y60bNkcYWEjAQAN7O0wefIEfLlqNTasL/3D37Jlczg7O8G/TSsYGhrC0dEBLVo2Q3b2Pxod6/MSivKRMb1Rje6zjOPSJEikZlWyrTp1jDB1ykQApeM9490p2LrlR7z5xjCxz/DXQ+Dt7QkAWPnFEjg39MT162lwdXXBihVf45OP5+LllzsAAP773+nYsWMPTpw4ja5dO8HIyAgymRFMTKTIyLiBWTOnoV69uhrFuGPHbrTxb4XRo98EAPTt2wtnzx6HtXU9AMDRY1FQKpWYM2cmAMDBoQHmfjgbX676FoMHDxC307lzR3Ts2B4AMPu/09GseXvcu5cLS0sLSKVSSKVSmJmVziOvaFqL6b9zzE1MTCqMs/L83g0/v+aYOHFMaZwN7PHOO2Oxes0GtG3bRuwXGNgbfi2bAwCmT5uEEW+EqT0WkZG/o7i4GPPnlRb0jo4OeP/9GVi9ej2Cgx++Z1TGwMAA06dNgoGBgZgX27btxKhRI5CYmISYmHPY8eNfMDY2hrOzE5Ys/gSvhYzEtKnvqL0PABg3fjQa2NvBoYE9AgN748TJaPTv3xe3bt3GoUNHkJz0J+zsbAEAY8e+heNRJzTaPlFtwOKcqJbw8mqqspyXl4f5H32GI0cikZ39D4qLi1FQUP4DgYnJwx9esrOtrzKtJS0tHR6N3MVlqVQKI6OHbytXEhLR+JF2AGjS2AM7duwRlyX/3sf40ecZGRmpfKVO6nu80GzUyB2p/049KGNq9vDCR5nMHPb2dkhNLS3O468kYMLEqZg06T9in7v37uHq1Wvo2rWTynYaNLDXuDAHSvPCw8NNZZ29vZ3474QrV+HRSLW9cZNGuHr1mso66SO5aWtbWvDl5OTA0tJC45gqUll+/xWfgCNHjsPFxVtcV1hUWO61ZqISp+prqLKxiI9PwNWr11T28aD4AaRSzX4QTSo1hoHBwy/LH82LhISrcHZ2Uvn1zcaNG+HmzUzxw466TKSqx3rr1m0AQFq6HDKZuViYA4C5edV8ICXSNyzOiZ7DlMlhT2x7/K4QEyeOemJfyWM/bjR2zIjniqvieFRnsX3++XKcOHEaq778H5ycHJGYmIR+/YdW+X4rUpXTOKqKxNgUjkuTtLZvXbL2u1Vo3txXZZ2VlVW5fo/nlLoEQQCeIQd0MW+Cgwdi7of/VVlXp04dtZ+vzli89FI7rFm9UmXds469pnRxzIn0HeecEz0HY+M6T3w8eoatsr516qjXtypd/jMOQ4YMQvv2beHs7AQLC5nG23BxaYika8nicmFhocpce8+mTXDtsYsNE68li9NkdIlEIoGB1Ewrj8c/nD1N3bpW+Cf7lrj8+Lcdjy8nJaXAzdVFZV1+Xr74b4XiPjIzs+DmVtrH28sTmVnZcHJyFB/Z/9x64p1OnkWTxo2QlJyqsu7RiwObejZB0jXVvLmWmFTjeVNZfvt4eyI15brKWOXnF4jTydRR2Vh4e3siNfU6HBwaiPuQSCQwNDTU6FgKC4tULgx+NC+aNm0CufxvFBUVie3XriXB3t4OVlaWAP7Nu38e5l1+/sMcUodLQ2cx18rcv5+n0TaIagsW50R6LC8vDwrFfSiVShQVFkGhuA+F4j4EQYCPjxcOHTwMufxvxMcnYNmyVQCg0V1SQkOH4ONPPsf583/gxs1MLF++SqX9tdcG4+LFy/juu43IzMzCkaPH8cUXXyN80rgqPc7apOPLHbD9h124/Gcc0tLSsWHDFpX2/PwCLFu+Cjczs3Dq1BksXrICw4YNUemzYeMWxMcnIC0tHeGT30Vb/9Zw/bdQmzJlAhYsWITfDh9DVlY2vvlmLQYODIFCUZoXpb/SeB8FBYUQBEHMqcJ/b1mojtDQIbhw/qKYF8eORaFb937itJXu3brCwMAAH3/8OW7czERMzDl8tOAzhE8ar/Y+iopK8z3v3w8iZa+FR+PMz8//91hKP9CUHUtZAV5Zfg8dGoTklFR89tlSZGTcQEzMOQQPGY6IXyu+wPRZxiIgoDPq1auH6dNnIy0tHX/GxuH14W9j48YtlWxZlVKpxNJlX+JmZhZOn47B4iUrEBoaDABo2rQx2rXzx7Tp/4Vc/jfi4uLx7oz3ER7+cLxf7tgBBw78hpMno3HjZqbKtSfqsLGxRo8e3RA++V2kpKQiMTEJGzQ8BqLagsU5kR5r498F9g08cOnSn5g8ZQbsG3jAvoEH0tLS8Z/p4bC0skTrNp0wZOgIvD36TXTr1hVNPVupvf13Jo6Bv39r9OodhFdf7Yc2/q1VvjGwsJBhz+6t2LxlO7y822Dq1JlYuHCeeIEdaW7smFHo2rUTevUaiMHBw9Hx3ws3y5iZmaKhsxM6deqBQUGh6NunJ0aMCFXp06tnd0yePAMt/ToiJSUVX321TGzr168PZs6YismTZ8Dbxx87du7B3r3bxTPnZb+mOeKNMKSny8WcCp88Q+1jsLS0QETETny/aSu8vNtgytSZWLL4E/HMuIGBAX788XtEnzkLX9+2GD4iDG+//abKxaCVWbx4BewbeMC/bRcAQJOmfuXiDAp6HfYNPNCla28AEI9l2/bS231Wlt9mZmbYu2cbjh49jmbN2+PNkeMwZswohLwWXGVjIZFIsH3beqTL5WjdpjMGDAhBQNfOmD49XO19AICpqQm8PJuga9feGDgoBL16dsebb74utq9ZvRI5t++gVeuX0bdvMDp37ojJjxTnAwb0xVtvvYHQYaPw6qv90LJlM432DwDLl32G27dz0LpNZ4wdF45+gb013gZRbSAROKGMqFJ5eXmIj4+Hm5s9TE2MK38CkRZERZ1E6LBRyPg78Yl9vH388fmij9C/v3q3PSTSpvyCIqSmZiIlJRlXE65g0KDB8PH1rfyJRC8wnjknIqIqc+rUGTg6Nanw8cOPu7Qdnt5JT5c/cbyX/O8LbYdHRM+Ad2shIqIq06aNH87GHK+w7Vluu0hP5+jo8MTxtrComltKElHNYnFORKQnunR5+alTWgAg/q9z1RqDVCqFk5Njte6DHjI0NOR4E+kZTmshIiIiItIRLM6JNMHrp4mIak7Zey7fe6kWYXFOpIayn7XOy1P/Xs5ERPR8yt5zHzx4oOVIiGoO55wTqcHIyAg2NjbI+veXGc3MpIAGv+pIREQaEATk5RUiK/su7uTkQKlUgufOqbZgcU6kJldXVwiCgKzs29oOhYioVriTk4ObN29AqVQCAOoY83cmSP+xOCdSk0Qigbu7O2L/vIzk5CTY2trBWCrVdlhERPpHEPDgwQMolUoolUrI/5bDxsYGNjY22o6MqNrxF0KJNJSfn4/9v0Yg4WoClEolOLmFiKh6WdvYIDCwHxo2dNF2KETVjsU50TMoKCjAjRsZyMvLA19CRETVR2oshU19G1hb86w51Q4szomIiIiIdARvpUhEREREpCNYnBMRERER6QgW50REREREOoLFORERERGRjmBxTkRERESkI/4PSoyxzwGv5NMAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAyYAAAHwCAYAAABTz3spAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9eZx8V1nn/z7nbrX1+l2zkIQkEBbZBCQCg8EFhTGKiMqqBsOMwyDycxBlRnBBCeqMqGyioyIyIOrIzCCgiBIQRWQTkS0kIXu+W6+13e2c8/vjLlXdXdVd1VW9fJPzfr2+r6S6T926VV333POc5/l8HmGMMVgsFovFYrFYLBbLASIP+gQsFovFYrFYLBaLxQYmFovFYrFYLBaL5cCxgYnFYrFYLBaLxWI5cGxgYrFYLBaLxWKxWA4cG5hYLBaLxWKxWCyWA8cGJhaLxWKxWCwWi+XAsYGJxWKxWCwWi8ViOXBsYGKxWCwWi8VisVgOHPegT+D+htaas2fPUqvVEEIc9OlYLBaLxWKxWDZhjKHT6XDs2DGktPv4+4UNTPaZs2fP8u///b8/6NOwWCwWi8VisezA+9//fk6cOHHQp3G/wQYm+0ytVgPgz//8HdTz/7dYLBaLxWKxHB7anQ7PfvYPl+s2y/5gA5N9pijfqtdq1Ov2y26xWCwWi8VyWLFl9/uLLZqzWCwWi8VisVgsB44NTCwWi8VisVgsFsuBYwMTi8VisVgsFovFcuDYwMRisVgsFovFYrEcODYwsVgsFovFYrFYLAeODUwsFovFYrFYLBbLgWMDE4vFYrFYLBaLxXLg2MDEYrFYLBaLxWKxHDg2MLFYLBaLxWKxWCwHjg1MdkGn0+EnfuInuPDCCzl+/DjXX389zWbzoE/LYrFYLBaLxWI5b7GByS542ctexr/+67/ykY98hE9+8pPcfvvtvPzlLz/o07JYLBaLxWKxWM5bbGAyJlpr7r33Xv7gD/6Aq666igc+8IH80i/9En/2Z3920KdmsVgsFovFYrGct7gHfQLnG1JK3v/+92/42cLCAp1OhyRJ8DzvgM7MYrFYLBaLxWI5f7GByRT42Mc+xqMe9aiBQUkURURRVD5ut9v7eWoWi8VisVgsFst5gS3lmpCzZ8/y8z//87ziFa8Y+PsbbriBubm58t/FF1+8z2dosVgsFovFYrEcfmxgMgGtVovv/d7v5WlPexrPfe5zB4551atexdraWvnvrrvu2ueztFgsFovFYrFYDj+2lGuXdDodvvu7v5sLLriA3//93x86LggCgiAoH0tpY0GLxWKxWCwWi2UzdpW8C7rdLtdeey3Hjh3jPe95D65r4zuLxWKxWCwWi2US7Ip6Fzzzmc+kXq/ze7/3e4RhWP7c93183z/AM7NYLBaLxWKxWM5PbMZkF3zoQx/ife97HwsLC8zMzJT/Xve61x30qVksFovFYrFYLOclNmOyC4wxB30KFovFYrFYLBbLfQqbMbFYLBaLxWKxWCwHjg1MLBaLxWKxWCwWy4FjAxOLxWKxWCwWi8Vy4FiNyQERRfFAm2EpBZ7nbRg3DCEEvr+7sXEcM0wqIwQb3MXGG5tsq8EJgt2NTZIEracz1vc9hBAApGmKUnoqYz3PLfvUHIaxSinSVA0d67oOjuMcmrFaa5IkHTrWcWR5zRyGscYY4jiZythxrns7Rwwea+cIO0fYOWL8sXaOGD52u89it7z97W/nXe96F3fccQfPe97z+OAHP8gll1zCG9/4Rn78x3+cu+66C2MMr371q/me7/keAH7wB3+Qpz3taVx//fV8/vOf5/rrr+fjH//4hh559yVsYHJA/MIv/lo52fbz0Ic+mP/w4heWj1/z868fOlldccVlvPQ//1j5+LW//D9otzsDxz7gARfxU//fj5ePX/+rb2RlZXXg2BMnjvGzP/Oy8vFvvOF3OH367MCxCwvzvObV/6V8/KY3/z533nn3wLH1eo1ffu2ryse/+3vv4JZbbhs41vc9fvX1rykf/+Hb/4Qvf/mmgWMB3vAbry3//3+963/z+c9/cejY19/w6nIC+tM/+3986lOfGzr2tb/0szQadQD+z//9IP/wD/88dOyrf+6nWFxcAOADH/gwH7nxH4aOfeUrX8oFJ08A8OEPf4y//tBHho79/17+H7nkkosB+NjH/on3/eVfDx37n1/yIq688oEAfOITn+Z//8VfDh17/fUv4OEPuwqAz3zm87z7T947dOyP/PAP8ehHfwMAX/jCl/mjd7xn6NjnPuf7+KZv+kYAvvLVm/mf//OdQ8d+/7O+myc/+QkA3Hrr7bz5LX8wdOy13/2dfOu3PhmAu+66hzf85tuGjv3Opz2V7/qubwXg9Jmz/NqvvWno2Kde8yS+53u+C4DV1TVe+8u/MXTsk570TTz7+68FoN3u8OrXvH7o2Mc//jE877nPArKb58++6rVDxz7qUQ/nR3/kOeXj7cbaOSLDzhE97ByRYeeIDDtHZEw6R3z2s/86dOwkPOIRj+DXf/3XedGLXsSnP/1pLr74YqSU/Mqv/AoPfehDaTabPOIRjygDk7e97W088YlP5ClPeQoveclLeMc73nGfDUrABiYWi8VisVgsFsu+MDMzw9zcHDMzMwiRZbeEEPzKr/wKt9xyC8YY7rrrrnL8wsICb3rTm3jCE57ADTfcwEMf+tADPPu9RxjrfbuvtFotrrnmGv7Pe99FvV7b8nubgh081pZp2DINW6Yx/lg7R+xurJ0jMuwcMdlYO0ec33NEs9nmmd/3PG688UYajcbQ543D29/+dm677TZ+9Ed/lB/90R/lxhtv5LLLLuP5z38+nufxC7/wCwDMz8+zurpaPu9//+//zcte9jJ+/Md/nFe/+tVTOZfDis2YHBBB4G+4CLYbN84xR2WcDvXjjfV2HrSLsf2T7DTHuq7LAKnPfWKs4zgDywUP61gp5cjf4cMwVgixJ2Nh7657O0eMP/YwXMt2jsg4DNe9nSN63NfniHE+i0lJkoSTJ08C8KUvfYn19fXyd/feey+vfe1r+dznPsfTn/50nva0p/GEJzxh385tv7GuXBaLxWKxWCwWywHx0pe+lHe/+9084QlP4C1veQvPfe5zedGLXoQxhuuuu44bbriB48eP8wd/8Ae86EUvotVqHfQp7xm2lGufKUq5PviBPx9YymWxWCwWi8ViOVja7Q5Pf8azp1rKZdkZmzGxWCwWi8VisVgsB44NTCwWi8VisVgsFsuBYwMTi8VisVgsFovFcuDYwMRisVgsFovFYrEcODYwsVgsFovFYrFYLAeODUwsFovFYrFYLJZ94MMf/jBPetKTePKTn8yzn/1sTp06hTGGn/mZn+EJT3gCT37yk3nd614HwKlTp3jKU57CYx/7WD760Y8C8Jd/+Ze89rWvPci3sKfYBosWi8VisVgsFsses76+zkte8hL+8R//kaNHj/Lxj3+cl7/85TzjGc9gaWmJT37ykwC8+MUv5q/+6q/46le/yktf+lKe9rSncd111/GkJz2JN7zhDbzvfe874Heyd9iMicVisVgsFovFssfcdNNNXHLJJRw9ehSAJz/5yXz84x/nn//5n7nmmmvKcd/6rd/Khz/8YVzXpd1u02q18DyPt771rTzvec+jVrvv9sGzGZMDIo27pJ7Y8nMhJY4bbBg3DCEEjlfZ3dgkhGG9NYXA3eVYlYRs17PT9au7G5tGGK2nMtbxKggh8rExRqspjQ0QIov1tUrQKp3OWNdHSGcXY1O0SoaOla6HlO74Y3WKTreOVVrz9dYKDb/GxbOL244tj+t4SCc7rtEKlcbbjHWRjjf+WKNRSYQxpvxb7jR2GEI6OK6fjzWoJJzKWCPA83rf4W2vZTtHDB5r54hdjN3fOaIc23fdF2N11EEt3wVS4i5ejMi/M/s5R0xj7F7NEWNd93aOGDx2zDliu89it1xxxRV86Utf4uabb+bKK6/k/e9/P6urqzziEY/gve99Lz/4gz8IwPvf/37m5uZ43vOex/Of/3x+93d/lze/+c10u12uvvrqqZ/XYcIGJgfEX7/huwjcrRfTiSufxNXP+63y8V/9j+8YOlkdufQbefKP/G75+G9++1rizurAsfMXPoxvuf4d5eO/e8sP0F27d+DYmWOX863/6U/Lxx/7nz9M8+ytA8dW5y7gaT/ZSyl+/I/+A6v3fGngWL82z9Nf8eHy8Sfe9TKWbv/swLGOV+G7X/Xx8vGn/vSVnL75HwaOBfje13y6/P/Pvvc13PPlvx069t//7N+XE9Dn3/867vz8Xw4d+13/5W8I6gsA/NuH3sBtn/6zoWO/42X/j9r8hQB8+e/ews2f+OOhY5/64+9h9vgVANz093/AVz/2e0PHPuXH/oiFix4OwC2ffDdf+vBvDx37pB/+HY5e9jgAbvvsX/CFD/7a0LFPeM5vcvLBTwbgri98kM/9v18cOvZxz349Fz3s2wG49ys38uk//9mhY098+//HxU98PgBnbv4nPvknLx869hFPfyWXPz6biJfu+Bz/8I4fHzr2Yd/+Mh70xB8GYPXer/Cx3/+RoWOvesqLecg1/xGA5tmv85Hf+aGhY6/85hfy8O/4SQC6a6f4m9/+nqFjL3vcD/CoZ/wMAHFnlb/6H98xdOwDHvXdfOP3/gKQ3Tzf//p/N3Ts/JWP5xu//1eYCbKAbruxdo7IsHNEj/NtjnjM9/w8lzz6WsDOEaPOERc+9Nt4/A/8avnYzhEZezlHfP0LfwccGzp+NywsLPC2t72NF7zgBQRBwFOf+lQe85jH8GM/9mN85Stf4eqrr+ayyy7D932+8Ru/kYWFBT7wgQ/wT//0Txw7dozrrruOMAx5y1vewiMf+cipntthwQYmFotlqmhjiFWK79jpZRzCpF0GJhbL/QGjNWr9zE6D9udkLJZ94tprr+Xaa7PA/IUvfCE/8RM/geu6vOENbwDg3LlzPPGJT+QP/uAPAPjMZz7DO9/5Tmq1Gr/wC7/ApZdeyite8Qre8573HNh72EuE2S4HZpk6rVaLa665hvf9nz+mXt9aI2hTsEPG2jKNXYzd3zKN050mS1EXIV0umzvKjB8cmlKu8O4vY6I2AO7xK5BBbejY/S7TONO6nURHBMEMJ2cuB2yZxq7G2jliF2MPrpRL6JT07O2ouI1WCmf+JM7MUYwx6OZZ1NoZwOAENbzjlyP92sjXvekkqDMtVKeDvHgWUdm6SWJLufKxdo4YOrbVbHHtM1/IjTfeSKPRGPq83fLOd76Td7/73bzvfe9DyuxaT5KEZz7zmbzgBS/guc99LgDf933fx1vf+lZ+9Vd/lR/90R/l0ksv5brrruO9733v1M/pMGC3NA8I169uuAi2GzfOMUce2zcJTHOss1dj+ybZ6Y7192RstuD2DnisWy76pzpWukh/61gVR0id3SAinTJDMHTsIIR0Rv4OjzMWBI5W4GXfC0enOEOeK4Qc/RyEmMpY7Qik9FG6t5Dbs+vezhG7GGvniLHH7nDd6/YKyfJdYDTSq+CfvBRZqfcGBJeiG0dRS3dgVEx66machQtxZo5u+x027QR1bg06KQJwRQXREcjZ7b/34133+z9HDOJQjL2PzxGuP3yTYVLe9KY38YEPfIA/+ZM/KYOStbU1nv/85/Nd3/VdZVBy44038pCHPISTJ0/y4he/mBe84AWkacob3/jGPTu3g8ZmTPaZImPywQ/8+cCMicVyvnLz+hJhmu3UzgcVLq7PHfAZZeiwTXrm5vKxCOp4J648wDPqkaqYe5u3lI8vmnswUjgHeEYWy95hjEGt3I1uLQEgggbu0UsRQwIeo1LU8l3o7hoAsjqHs3jxlvGmFaPPdaGbZ4oEUHWhk4Inca5c2LP3ZLnv0m53ePoznr1nGRPLYGzGxGKxTIWkL0Ueqb3baRoXE7UAEH4NE3cwUQejVVnOcpDEamPpRqoTfOfgz8timTYmjUnP3Y6JOwA4syeQcycGOuUVCMfFPXYZqnkOtXIPuruGOdXFOXIJslIfGJCI+QBxpApSoL+2AonGxArh2+vKYjkfsIGJxWKZGKU1akNgMrzGfb/RubZE1hfQWmHSCBO2ELWDz+gkemOtutIp2PWT5T6G7q6TnrsDjALh4B69BFmdHfn5zsxRRFBDnbsDk0YkX/8qMplDuHNZYCNBzFUQR6sIt689W8WFboppJzYwsVjOE2yDRYvFMjFJLviVQiBE4cx18FkTY0wpepdBHVHJ0vE6bB7kaZXE6caMSb/OxGI53zHGoFZPkZ79OhiF8Gt4Fzx4rKCkQPo1nNolcM7HnIpQS2dQq3fDvIu8YgF5sr4xKAFEI9f8tIcL5i0Wy+HCZkwsFsvExHlg4jsOxhgipYh1euBlSSbuZnajwkH4VWRlBt1awoTtAz2vgiJj4jkBiYpIbWBiuY9gVJqVbuWllLJxBGfhom1LtwYexxho5iVbkcKpHgdRwYhlmDModRciuQThzmx5rmh4mLOZKH5Yg1WLxXK4sIGJxWKZmEJf4ue6jUgpQpXS8EZ3QdkLymxJninJMiYCk4aYNEaM4aI0bZROywxJ1ZshUZHNmFjuE+iwTbp0O6gERNbJXdbHE6AbY2A9Rp/rQJyXiUqBWKzgLSyAuSALfJKQ9OytOLPHkXMnNwQfouKCI0CZTIdSG82tzGKxHBw2MLFYLBNTZkykky8MokMhgDdhLnwPMitSIR1EUMNEbXTYxGkcObBzK7IlrvRwZRYgKWMDE8v5jVo/i1q9FzAIt4J77FLEGJauxhjMWoQ514WkLyA5UkEsVBBOUa5VwT3xINTqPejWEmr9DDps4R65BNG3ISLqHmY9xrRihA1MLJZDjw1MLBbLxCR9gYmTe7KHh0AAXwjfRV+PBFmZQUXtLGg5yMAk15d4TgVXZgumVB/8Z2ax7AajFWrpzp61b20hs/aVo0tZzVqEPtvpBSSOQCxWEQtBX0DSQ8gsG6MrM6RLd2LiDsmpr+EeuRhZm88G1T1YjzFtG/TvN1HaZblzD/PVE1Q9a7drGQ0bmFgslokphO6+4+Dm3aoP2pkr05coEBLh9ZqGicoMrJ1Cd5sHWnfe05dUcPLAROnU1sJbzjtM3M3KqtIIEGUzxLGOkWr0PVmGE0cgjlSzDInc+VqQtTk8v1raEafnbkc2WjjzFyIaPoY2hAqT6i0Cecve0U3WSXVMJ16zgYllZOwVarFYJqYo5fKkQ5A3P9PGlJmUg6DMlgT1jXXnfhWEA0ZlwcsBUfQw8Z0AR7hkXeEMytisieX8QbWWSU7fjEkjhOPjnrhy7KAEgDifKzyJvHIBeaQ6UlBSINz8tWePA6BbS6SnvwZCQ5CbcNisyb5SmHlYUw/LONjAxGKxTESqNdoYIAtMhBAETiGCP7hFds8meONOnRCiFMObA7INNsaQqMzC1HMqCCFwZBbQWQG85XxBt1dQy3eC0cjKLO7JByGD2q6OZfoCk3ECkn6EEDjzF+Aeuxyki0lCdGcVUc8ykraca3/R+SZLqq1ds2V0bGBisVgmosiWuFIi88xEkTU5SAG83iR87+eg+5lkZVwGKWSpL3HzwMTuLlrOF4prTNYXcY8/EOFMUB2eZrqSaTRClNWZ0tjCJGFfYGIXyPtJoZnTRqGN3mG0xZJhAxOLxTIR/cL3gp5t8MFkTEwSgk4zfcmAHVxZyXoemKiDOYBys0T1hO8Fjih0JjYwsZwfmDRb6BcZyIkoLIG9KS1Lcitwk0SZTbAEUoMJbankfqH6zDxs1sQyKjYwsVgsE1EI372+wKSS75welDNXqS/xawOF5MILEG4AmNJSeD9JVK+xYkG/AN5iOS9QeRDtTN4PqCjlEt50mrJm1zeQxllpWNWWc+0n2Txm+h7bz90yGjYwsVgsE5H0dX0vKEu5Dkj8XnR2lwPKuAoOspyrJ3zvZUyKXia2lMtyvlBkTIQ7hf4geSkX/nSWJUUvE6NijNaIhg1M9pPNGyx2XrOMig1MLBbLRPQ7chUUgYnSmlTvf22xKfuXDC8xKcu58iBmPykzJrI/MMk/M9tk0XIeYFRCuSPuTBaYGGN6vUumlTFx3Mx9DyCNEPU8q9NJMNoMf6JlKmyex2wpV48Pf/jDPOlJT+LJT34yz372szl16hS33XYbMzMzXH311eW/L37xi5w6dYqnPOUpPPaxj+WjH/0oAH/5l3/Ja1/72gN+F3uH7WNisVgmYpDGRAqB7zjEShGqlIacvNRjVEwSYVQMCIQ/3CEoC1oEJg0xaYxw9+ccU52gjQIEbl8JTK+UywYmlsOPSbPvqXD8yfvulB3emWqfEeEFmLiDSWNkrZrpVxINnQQa+zcn3R/ZnCFJlZ3XANbX13nJS17CP/7jP3L06FE+/vGP8/KXv5zXv/71PPGJT+Sv//qvN4z/rd/6LV760pfytKc9jeuuu44nPelJvOENb+B973vfAb2DvccGJgeESTsMbFcgJKKvvMOkneEHEQLhVHc3VnX6yz83jQXh1HY5tgtm+G6UcHc7NoRtXD3GGYtTLW+kRkVZE76pjK0g8uaCRseZ+HoqYwNEvvM33tgEtlvkSh+R79KPNzaFvt2vJGkhDHi6hklTkB5CegTSIU4j4ngdI4YECPlYAGMU5JmEwWNdRB7gbDdWdZYxOkFW5xFSYoyGvHRqC67AxDE6bOI0jmw/FkA4iFwXYowBtU0flCFj47QFqovnBAgVZpeWkGVgoo1GJU2kGLJzbOeIIWPtHDH+2N3PESZexegQXJl9r7aZI7Yet++61ymm28LoTu9Yw8aOO0cIjdEhOlxB+B5UEkwUodc1sjbXN3aH637Dcfd+jhg8dpzr/uDnCJVkJbKu9El1TJqsDz/2IZ0jtv0sdslNN93EJZdcwtGjWa+fJz/5yTznOc8BYHFxcct413Vpt9u0Wi08z+Otb30rz3ve86jVdmfLfT5gA5MDovmRR6GCrReIe+zbqD/uneXj9b/7hqGTlbP4zTSe8Be9Y974eEyyPHjs3KNoPPGvemP//lsw3bsGjpWNBzPz7z5aPm7949PRrZsGjhXVi5m95lPl4/Ynvw+19vnBY71FZr/9i72xn34+avkTA8fiVJl72q3lw87nric9+7eDxwJzT7+3N/Zff4L01F8OHTv7HbdAPgF1v/hKkrv/dOjYmW/9AiLIJpDwK79AfMfbh4/9ln9G1B6Qjb3p9cRff+vQsY0n34gzcxUA0S2/TXTz/xg6tv7NH8SdfzQA8W3/k/Crw1O49W/637hHnpiNvfOdhF/6r0PH1h77x3jHvx2A5J6/oPuFlw8f++jfxbvgWgDS0x+k8y//ofzdRfl/w/xf9RG/iX/xDxE4LsnqP+Lc9DLWhxy38rDXEVx6HQBq+ZO0//n7h55D5apXE1z+kmzs2hdof+LpQ8e6x55P5cr/AoBufY3Wx68ZPvbI9+M0fhoaRzDdu2l+9JuGjvUv+VGqD78BABMv0fy7Rwwd6130g9Qe+VvZA9Vl/W+uKH83m/+3+Fzck99N/TG/hxQSbTStDz94m/dm54jshO0cUXDQc0SX7eeIzRRzBEB67kY6n3lh75c3bxw7yRzR+eyQOeIOCNr/hcqDXgHsPEf4D/xPVB/yGoB9myM2U8wRBduOPQRzBLXL4VH/k4pbpxXHBJ+/nvXubQOHHtY5onn7B4BHDR2/G6644gq+9KUvcfPNN3PllVfy/ve/n9XVVQDSNOVZz3oWd9xxB09/+tP5pV/6JZ73vOfx/Oc/n9/93d/lzW9+M91ul6uvvnqq53TYsIGJxWLZEwLHZf/9rnoM6l8yDN1tZjuWB4wr/VIYb7FY9g6jbF+NvcTkqRTfrUCc/cQCCwsLvO1tb+MFL3gBQRDw1Kc+lcc85jEsLi7y+Mc/npe97GUIIXjmM5/Jn/7pn/JDP/RDfOADH+Cf/umfOHbsGNdddx1hGPKWt7yFRz7ykQf9dvYEYQ7D3fh+RKvV4pprruED/+8d1OsDUnGHIAVryzR2O/a+U6ax/dhemcZq3OWedpOa53FZYyEfm5VedNKEW9fO4JHy4LljQ4473VIuoxKSe78COPiXPAYhnW1LL4wxJPfchBAS98SDEH5lz8s0TjVvJdUxR+sXU3FzcX5+3Z9r30U3aTLvz9LwF4Yc184Rg8faOWL8sbufI9Jzt6PDdZz5C3AaRycq5dJ3L2HWY8SxGnKxOnzsmHOE7q6QnrkFHBf/gocCoO5Yg26KuGAOZ3E2H2tLuXY1dpvr/lTzVlLhcLxxKUude1BJk2ONBxA4g9Y9h3OOaLdaPON7fpgbb7yRRmMKvXoG8MIXvpBrr72WH/zBH9zw89/5nd/h9ttv54YbbuAzn/kMf/iHf0itVuN7vud7uPTSS3nFK17Be97znj05p4PGZkwOCOHWNlwE240b55gjjx00OUxlbHXnQbsaW9l50K7GBjsP2s1Y6cOIgu+9G+uBHM0tZ7yxLuQLkCTRGCfF96pbvn8VxwXhkuCiZAVXbi9qFcIpy2d2PIchY020gpAVhF9F5GJ8IeTQ4wrAqS2gu2uYsIkMamOcgxh7rDaaVDjgVPH9xXIhV+AUzlzCG/l6tnNEMdbOEeOPnWSOcBCyggzmt3yv+ueInY/rgqogpIusNHr9RwaNHXOOkJUFhKxki2cZIKSDnAETdREdAYvF2OFzxNbjjjN2/DliVPbsup/SHJEKFzA4wsWVHsqpjDyvHZY5Qrh7m1V75zvfyfLyMs9+9rP553/+Zz796U/zkpe8BGMMN954Iz/wAz8AwC//8i/z1re+lV/91V9lZmaGmZkZ4vi+63Jm7YItFsuu6VkFb51KpBDlz/erA3zZWDEYfXdrP/uZFDbBjnDLIKQf13Z/t5wn9Fy5ptDDJMmzTP50rIILhHTKAMmk2bUn6r1+JrZgZG/ob67oSM/2aBrAm970Jt71rnfx7ne/GyklD3/4w/nMZz7DYx/7WK6++mquuOIKvv/7v58bb7yRhzzkIZw8eZIXv/jFXHfddTzlKU/h5S9/+UG/hT3DZkwsFsuuSfIeJf1Wwf1UHJdEx0RaMbriY/eM0lhxM7IygwJM1MFoVWZa9oIkLwHxhuysl5bBtpeJ5RBjtO6Vi01os220gTQPEKZoFVwgXB8Tp5DG4Neg6oIUoA2EadkR/nzGGDO5ZfMUKZorSuEghOizQr/v7vKPy0tf+lJe+tKXlo/r9Tq///u/v2XcNddcwzXXXAPAwx72MD772c/u1ykeGDZjsguMMfzcz/0cx48fp9Fo8JznPIeVlZWDPi2LZd+J80yIN2QxX3aA34eMiVEpJs0W/uMI34UX5OUjBhPurVy/bKw4pKSguIGn22kELJaDRuULTOFMHsiXPUzEVHuYFAgvu9ZMkmdMhEDU8yzKfaALfBwrTt3bYX398Cz6Vd4Lwc3nM7ec1w7POVoOLzYw2QW/+Zu/yZ//+Z/zt3/7t3zlK18hDEOuv/76gz4ti2VfMcb0MibO4MWJv5+BSVHG5VWyrs9jsF/lXPEOGRNX9kq5bJmJ5bBSlnG5Uyzj8iTLUZfVaBsB+C4oGqeatG9RnDdXNK3zPzBZX4sxBjqdw7OZUZSiOmVgUpRyHZ5ztBxebCnXLvjt3/5tfud3fodHPCLzJ3/729/OyZMnufPOO3nAAx5wwGdnsewPRcf3TEsyvJQLINyHwERHWbZjnGxJgazMoFtLZSnYXpHobNfWH5oxcckk+QZl0lJzYrEcJkyeMRHO5N3TTZzNI6kL97Szzj7NJOai+ixyCuVJwstdr5Kek5aoe5kCIkwxSiOc83OPNooUcZxtDmllSBKN5x38eykyJo7I5v/NGy6HqezMcvg4+G/weca9997LbbfdxlOe8pTyZ/Pz8zz60Y/mE58Y0uTHYrkPEufZkkHC94IgD1hSrVF6bx1OioyJrIxv65hlTAQmDTfurE6RVMUYozNr4m1ck9zCmcsKRS2HlTxjwlQyJtm8kPTtbazFIbeuL08n0zogYyI8B3yZ6bMPUaZhXJrNjXNVFG1jVb2P9DImbvnfwvralnNZdsIGJmNy11130Wg0qFY3WtSdPHmSO+64Y8v4KIpYX18v/zWbe+/8Y7HsBz1HruE15o6UpU1wpPfupmm0wsRZCchuMiZCOoggs7Hcq3KusoxLBtvuGPZ0JjYwsRxOjCocuSbPmBSlXCqv3/DyOSNUKbesL7MeT9ZwVLh5dlKnmL45SNTzgKV9fi6Uo0gRRxoE1HLNTHxIApO0LzAx3SxL0p81sVi2wwYmY9LtdnHyevrrr7+eK6+8EgDXdel2t9bG3nDDDczNzZX/Lr744n09X4tlryiE78McuQr2o5yr1Je4wa7tS2VlJjvWHgngizKuYfqSAnsDtxx2iuzDNDQmJs+YpE4WrFddjytmF6m5HtoY7mitcarT3LXmSkgJ+ZxQCOABRCP/2XmqM2k1s/Ou1VxqtVzLF6tDoU0rXLnEukbfto5Z6lrLYMvI2MBkTKrVKkpluxKXXHIJD3nIQwBI03RLFgXgVa96FWtra+W/u+66a1/P12LZK3YSvhcUzlzxfgQmu8iWFIg8MNHd3S+CtiPOHcOG6UsKetaa52+JieU+Tp4xYRoZk7go5cquOV86eNLhgTMLHKlkWcxzYYfbW6ukuywHLQTwpH1d42teJudKNOaQZBpGJYpUVrYloNHw8DyJkFlT8yTZ25LZUShdudrZuZhWUpZ12VIuy05Y8fuYXHTRRbRaLcIw5DWveU3589OnT3PJJZdsGR8EAUHQ2yGVO3S/tljOF0Yp5YL9sQzW4e6F7wXCr4JwwGRlYUVp17QYNWPiCFvKZTm8GGOmljExSmf9RMg1Jill6acQggtqM1Qdl3s6TVpJzC3rSzygMU9tzNcVboCJ2hszJlJkPU06KaYdI4LRO4gfNGW2pOri5hbLge8QhlnA4k+5UeU4aKMwJgtIRFGFF6Z2XrOMjF0lj8mFF17IpZdeysc+9rHyZ6urq3zuc5/j6quvPsAzs1j2l8KVa6dSrkIAv1elXEbrUl+yG+F7gRCifL6Zss5E6bQszdq5lCsXv9smi5bDSNnVW5QlUrum2N13BKnIAhRXbFyWzAdVLp9ZwHccEq35enOZ5TEthbM+RWwxtih0JpxH/UziuC9bMtP7/INKNs8etAC+CDxEKpA619IZcHN3A1uiatkJG5jsgp/8yZ/k5S9/OV/84he5++67+bEf+zGe8YxnDMyYWCz3RbQxZVnFqBmTRGv0HpRImbgDGITj90o2dsle9TMpsiWu9JBi+8/Lit8th5myh4njTW77WgQmvlNudAyaTyquxxUzi8z6AcZktsJ3t9dHnk9Ky+B0o5C+1Jl0zp++Qc08W1Lty5YAZZYkjjVaH9x70UXX92jjOThx9l2xpVyWnbCByS74yZ/8SZ71rGfx1Kc+lauuugrP8/j93//9gz4ti2Xf6O9h4u5Qnuj2OXPtRdbETKGMq6AUwEedDQ4+k5KkRWPF7fUl0AtMjNFoc37VvlvuBxRd36chfM97mAhX9m10DJ5PHCm5pDHPiWq2ebASdbm1uUysdr5GyiaLyaaMScUFR4DmvLANjmNFFGbZkpmZjZ+/50kcR4Ch7G1yEBRNFN0k/zvmsasTZf+jjbb6Ocu22MBkF0gp+eVf/mXOnDlDq9XiT/7kT1hYWDjo07pfY8IU9dVl9LnpdA2+o7XKzWtLe7LDf1+gWAzsVMZVsJc6E10I3yuTBybCC/KyDzNVd66evmTnwEQKWWZVbNbEctjoZUymYRWcLaCVK8q51t1hTjlWrXPZzDyOlIRpyi3NZVp92pGB5KVcGIXZNAeJer4RcB7YBg/LlhT4QZE1ObgNjaIEtdCXiBk/f6zLhos2MLFshw1MLPcJzGoE2mCWuxOn5BOtWI8jQpXS2aNme+c7pb5kB0eugkJnMu3AxBjTa6w4hYwJ7E05V9HDxN9BX1LgWmcuyyGl7Po+leaKG3uYSCFG6vbe8AKumFmk4roorbmtucqZ7vCNBCFlGUiZTUGMaBT9TA73JkCZLSFz4hpEkAcmxbiDQOkUozVukv0dxWK+GROpPgG8va9ahmMDE8t9gnK3S5mJhYzdNOn7f7swHMSojlwFlT3KmJgo05fgeAhv52zEKPT6mbSncjxjDEm+mBslYwL9lsGHe7FkuR9SlENNKnynV8qV5IHJqBlYyDZFLp9ZZCF30zrTbXN7cwU1zFK47AC/KbuSZ0wIFSY9eKvdYbT6siWeN3jpFgTZz5NEo9TBZPuVTiDSWRDiSUTVAzcLUpzE6kwsO2MDE8t5j0lU6YUPYJqTTXqd/sBE2YXhIOIRHbkK/CIwmXL392lnS6DImAhMGm5x8dkNWRmXQQpZZkJ2ouf5b79/lsNFL2MyhVKutGiumD3cSa+2GSkEF9VnubA+ixDQTGJuaS4Tpluvm0IAz6bARLgSckerw+rOlSSasMiWzAyfQxxH4uZBy0GVcymTYqIUByfT8ACimv3XibJzs/OaZTtsYGI57ylT8DLbjTHr8UTlXO2+m1pnwA3OMn5gUimbLKqp6nZ0ND3he4GQTtnDZBrlXIkaXfhe4AqbMbEcTvpduSY7js5E5/SaK44bmBQsBlUun1nEk5JYKW5trrC6yVJ4mGUw9OtMDuf11sw32ypVZ2i2pCDws98flG1wljHJy7byjvRUss/XzZ257Lxm2Q4bmFjOf1r5jXKxkqWM9e7LuYwxhH1ZklTrkVxf7m8Un8kwB53NuFLi5GOnVc61F/qSgl451+QC+ESN1lixn7KUy/YysRwijFZQOMVNmjHJ9SV4kjTfrBi1NHQQVdfjitkjNDwfbQx3tde5t9MsN6lKy+Ak3PLcop/JYRTAJ4km7Gaf1czMzp/5QfYz0Uahjc4DE6fMlIj8nJy4yJgcvs/ZcniwgYnlvMYYU+5yiYaHmMlvPms7uLQMoatSjMmsKSuum//MLg77UX39SIoSrVGYtgDexF0wGoSTdW2fIiIPTHS3ObGZQk/4PnrGpOxlYr97lsNEkW0QDmKCIALold+6kjTvFO6JyZYkrpRc2pjnWDXbqFgKO6zF2fVXWgYPKs+sudlqKDWY8HDpCsfJlkDez0SASg3pPmtmlE4xsUZogXQcyEu5KEq5UolRmlSn503fGMv+YwMTy/lNmGYZEimg4iJm85tPK8HsoslU4cJVdz1qealC15ZzbaAo43KkHMlBp6Ao55pWL5MyWzJBt/dhCL8KwsnsRePJLKjLjIkco5SrzJjYG7jl8GDyQHkajlwmtwoWvlPOKbst5epHCMGJaoMjlawcsyzHLS2Ddfk++p8jank5V+vwzPfjZksApBRlALPfWROlk1JfQuCWDTiFI8GXuMJDxBowKHO4AkDL4cEGJpbzmjJbUvd6NxdP7rqcq7iJVR2Pan7ztTqTjSRj6ksKil4m8ZQE8NNsrLgZIUQZ8JgJdCapTvImiQJ3jL4Pmfg9r8e2N3DLIaHINkynh0lfKVfZXHHCLEwf1U0bIUKIns5kUN+TQ9jPpHDiqlRGy5YUFLbBcbTPGROTQpziCK8s4yoohPBOYsu5LNtjAxPLeU25u9Xn6140dNpNOVcRhNRcj1oemITK7lr307MKHm/6CJzplnJNs7HiIKbRz6SnL/GRY5apuLJoRmYDY8shocg0eJMHJkXGBFeUgck0MiYFAzO0wyyD6elM6Ka7yrZPmyTRdLvZuW/nxDWIsp/JPjtzpTqFUOEIt8xAlZTOXLllsC1TtQzBBiaW8xajdFbKRc9VBUDM5bti7XisG0ysFKnWCJEJKQPHRYqsI/FedCw/X0nyRcRuMyaRUhMHepm+RIGQCG+6+pKCUgAfdTLR7y4o9CWeHF34XlDqTOzOouWQMNWu7/miOc17XAgB7oQak34Cx0UI0MaUZh09AfyAwCRwsmy7AToHv2hutXrZEt8fb671fZm9d2VIkv3Lmqg0hjjv8L45Y1IEJrkA3hp7WIZhAxPL+UsnzW4ivkR4vYlbVNy8nAsYo6dJoS+pOF6pnSjLuWxgUhLnn8W4gYknnfJznTTQK7MlQb2sY542wgvy0g+za3euZBfC9wK3DEwO7ruXJJqVlWhfFzeWw8u0ur4bY8oeJkVzRVfIqV7LQohyMyQstTFFL5PB94XSNviAdSZpqul2dpctgey9F8HMfupM0k4237men/WH6SdwQYCrXUyqSZXdcLEMxgYmlvOWoha4TMH3UYrgm6OXc/WXcRUUdcpWAN+j7GHijF8PHkyp0WLPJnj6wvd+ynKuaLeByfhWwQWHoft7q5XQ7aQsLYX77vBjOYQU8+CkGZNUZ5tKApQsephMT19SsLmcq9fLZPB9QTQOh21wM9eWBLvIlhQchG1wGmaBiVPbOt8JKSBwsh5NUWqbLFqGYgMTy3lLsaslGlt3lMRsUI4xarQFVUdtDUyK/7eBSY/dlnLB9Jy59B4K3/spy7m64wcm2uiyDGuc5ooFziFospjmmRKtDMvLEfoQ1N5bDgZjzPRcuTZYBRc9TKa/HNkamOSBxyDxO2S2wSI7P5McTP+qNO1pS2Z2kS0p8PNGi3E0eensqOhu9rm61cHltaLq4ggXEylbomoZig1MLOclJlaQ6OwmsllkR17O5Wf1wmaEcq5+HUm1r6NxtU8AP82O5YcF003QdzUxrdFuEonudW7fjYPONATwJglBp5m+JO/QvldkGROBScPB/Q+2ociWOMLNXbbGoxC/H+TOYpElESILUpaXQ2sEcX9FJRRpjom7vheL/j6r4Gk6chVs2QhxfbKbhhncAd6RZe+Ng+oC32omYDIB+26zJZD1M5FSYAzE8d5nO7XRqDD7TN3GEN1fxc0zJqrXjNFi2YQNTCznJeVNo+pmKeIBFCL4UXQmnTTBmGzXznccdNRBd9fxpFPu5N0XbYPNUohpxug7m6jb13ZsLpaUtp67qwevlAL4nQOTNNV0OlvHlfoSv7Zn+pICIZ0y+BnXnavQl+ymjAv6u78fjMZEKY3Jy22OHK0gRGY/urpidzrvj5TC90k7vkO2qQQIr9dccZrC94JKHkDFKttQ2dEymL4M/AHoTNJU0ymyJbOT94rxgzxrsg/uXCqMQBuEFMjK4O+IqLhI4SDjLANnsyaWQdjAxHJ+so2+pKDsAt9OMDvUxxfC96rrYVRKeuYW0rNfR4ftMmtyXyznUklKqDvZLngnRX99DX1Pa2gZQyF83+3upi97vUx22nlfWY5YXYnKsoYCExb6kr0t4yooy7nGFMD39CXjl3FBLzAxRqMOQACfptnfx3EyIe3CYgUEdLsp6+t2QXG/oxArT5gtAcrABM/ZE6vgAlfK8rhbyrmG6UzKfibJvmcHW63pZEsKStvgcO8Dk6SdNaJ1gsrwDaPAAQkOLiTGWqFbBmIDE8t5hzGm11hxgL6kQARONhEadixVKoKOuuujm+cg38VTa/eWpV3d+6Dv+nr3NOfiuwlPmJ5hwFqEvnUVfaa9RZ9T6kt2IXwvnidFXl6wjQA+SXTpBBVuuqmasn/J3grfC0QemOhuc6yFSjxhxkQKiRTZ53wwgUm+YMzddSoVh/n57DvSaia0D6jUxXIwTDNjYuLCvleWDVv3opQLBpRzedsL4Km4IEXWpHeHDPI06c8Q78aJaxBlo8VE77k+THdzR65qb76LVcodrdXy/iqEgCAr5zJWAG8Zgg1MLOcf3TSzAnZE2U12GKUIfocd3sIOuCIlqnmu/LmJ2lTSMH/Z+9YkaowhTrL3lgQKedEM8rLZzH9eZ2Ve+pZV9EpPVzCNevBgBAF8f5akf7fPpHFuWSoQ/t7qSwqEXwXhgFFZ/5QRSXS28NmNVXCBW5ZzHUBZSbIxMAGo1bxy0bS2GhPu48Lt/kqaas6d7bK6Eu1LSc4wSqvgaWRMigy2LzeUh+4FZWCyObBKhlgGC3EgtsFFtsQPZBlQTIrrShxHgNn7cq6ksAruE74vR13W44i72mvlPURUc51JnNpSLstAbGBiOe8osh/9TRWHUWQB2KacK1IpSmukEATdNTAK4VaQM8cA8FtLQJYtSCa0uT1UpJrUJCDAyLzmu+rhXDaHvHgmMw9QBnOqjb51FdOMy/e/G0euglEE8N0+bYnWpryplm5cfhWxRwuZzQghkHl2xoyoM0lVjDEaISSu3P0Oc6/J4kHUu+c2ru7GsozZWZ9qLVvsrSwf7GL5/kBzPSGOs930c2dDzpzu0GolqBHdBqdGsTEzjR4mhdubK0szjb3QmMAAZy4v2yjY1syi0Svn2g+U6mVLZmamoOHpoyznivbu+2KURkXZRozsswou9EORUixH2aaOqLhZKVekbfd3y0BsYGI57yhvFqMEJr5TdqAd5s7Vzm+4FSGzMi7AmTuOM3s8c35KulTirHzovpQ10XGCNgocsaVUSMz4yMvnESfr4AiINfquTCAvwnSyjInsdYAfRBQplDIIsdWLv+xfsk9lXAVlP5MRA5P+ju+TCPQLN6+DqMXeXMrVz/y8TxA4GAPLS5HtcbJHKKXp5lmpSsXJ3NFSw/pazOnTXZaXQrrddF+0EL2MyYQL50JfIiHNe5hIIXCkJL7n/5Cc+ZvJjr+JoZbBaTT0cys3vbppWc6q9N59zoUTl+9PL1tS4Af70M+km2YmHa7A83qBSZENAzgTtlFaQ5kxUaR69D5jlvsPNjCxnFeYVENe2lM0w9oJMdPTTgyiCDaqcQt0inB8RG0e4bg4edak0l4BY+5TzlxpvsOFKwc6PwkhkAsV5BXziKNVjDCodox7Zxv33k5ZJz4uOzlzFWVclapLJQ9MCp2J6ev4vp+UAviogxkha1aUce1WX1LgioPJmGhtUKrImGy9TQghWFgM8DyJ1oalpbAcb5ke7XZaLlgXj1Q4cbLG3LyPl1uhh6FiZTni9Okua2txqcvaC3oak0l7mOTXj7uxjEu1vkb38/+Jzmd+mPCWN072Gn0EjosQmSV8rFQWmAgJmOEd4D0nyxgDtBNSFXPP+s2ca981tfMqUErTLrIls9PNlkAvY5Imes+uUROmKFII3DLLC5Dmc6UUAqU1Z8M2wndwXT/7+HNdisXSjw1MLOcXRbYkcBADFkyDKMu5uunAcq5OGoMxVDqrAMjZY+Uut5w9BtKlYhSiu0Z3l/03DmPvhyTuC0y2EVcLRyKP1VCXzaJmPATgttJMIH+6vaPj2WbKUq4BO5DGGMJudjOr9gUmSaxRcVwKVvc7MBFekNuMmpHcueJclzSJvgTAzXen91v8XmRApBRZjfoApBQsHglwHIFKDcvLoW3AOEWMMXTa2d+9npcWSSmo1z2OHaty7HiVesNDSoFWhnYr4eyZLufOdmm3k6n+LYxWYPKAYsKMSTFfCN8pF66udEhP/3U5JrrpdXS/8stTmTeFEGWWNlQbdSZDBfD0HB9NOyFMO4AhVqNrzEal1Ur3LFsCmaue6+2tbbDp5BmTioMjerrPIvA8Uc0yzktRh1ilOLkORUfqQIw9LIcbG5hYzitKN64RyrgKhNdXzrW+8UaktCZSWdBRAXA8ZH2x91zp4Mwep+I4iPWzdIcIJrej00k4dW+H5gj9VPaTNM53qxyBNjvb9yYOqJM1eOBclq0yYJZzgfxSd+RFhO+4pTPXZs1OFCm0NkgpCAKJ40i8/KYarq8Dhb5kbxx8tqMs54pamDDd1ultWhmTg+r+PkxfshnHyXbyhcyCx9WV4eUxlvHodvNrwRFlgN6P50nm5nxOnKyysBhkZY8ia6a3thpz+lSHlZVoOiU8RWZBupNru4rFsbcxY5KcyQITZ+HqbNjX30z3316BMZOff8XdXM5VOHMNv4ZFn86kCEim3RRQKU0nv6c1pqwt6WevbYNNJysLFhW3r/xUl/qhhaBKw/MxBk51W8ialwUwkRXAW7ZiAxPLeYVpjy5876e0wt3kztVVCRiD31nBkQJn5tiWG69sHMH3KkidYtrLY3UtT9NskWBMJmI9TBaradFgzM0taXdo5FcK36s+ziWzyAfMZHbM2mDOdNC3rA4tl9tMYTe82Zmr2ymyJU6ZtSp0Jp1mLnzf52xJQVnO1W2h72qi72wObEipdFoGEhMHJsVN3uyPjqBgO33JZjxPspj3OAlDxfqaXWhMg3buCFWvu9vqlIQQVKsuR45UOHGiysysh+tmgX+3k7J0LuT06WxjZLeCeaOmVMYFUHQh95xec8VkGbX6GQBqj3oz1W/474AkuetddP7lxzFqMi3CVgH8DpbBADUvaxKfaOJuu/zxNDcJWq00a+zry4HB57QI8kaL0R5kTEykUCoGmW0CFnNW8beVQiCF4GSeNVmPIzquzjvAW8tgy1ZsYGI5bzBhCqnJvrW1cQOTfIHYTTc0D2ynCSJsUjUKhINsLG59rpQ4cycIHAfRPEc7Hv0mWQQlMu9Ov7YWb+nLcVAUgYnId8V3SqlvtgoWDR/5wDnEBXVwBSQafU8LfffOAvFBAnitTWk/W7g+Qd9uXytrBCmD/RW+F2QZE4EOu5gw++wGBSZFtsSVXtmHZLc40kXkbkX7mTUpAxNvtFtEEDgsLGTXWLudZtanll0TxyrTi4jMonlUHEcyM+Nz/ESNI0cr1GqZvkKlhuZ6wulTXZaWwrGzKEVmYWLhOxtLucrNjuWPAgZn9pHI6oX4D3g+tUe/DYRHeuov6Xz2RzBpZ9evuaWXSVHKNaT7O4CQAmoe2mjidq98c1rXoVKmzJbMTKlvyTB8P8umqdRM3ajCdBMUCnwHt89KutefJu+D5HosBlkJ1ynTzbLBieltkFksOTYwsZw3lG5cVS+7aYyBcCXki13Tt6PbSRNE8xwV6eLMHB1aIiQbR6j4VYRK6a6dGuk1O50kWwAIOHK0ki22DayshHsqUh2VNC4Ck+w961EzJn2fkRACOV9BXrGAOFbNrIfX44EL9n62LBTIdtuNAccVG7oe+75EGIWKI5L04DImQjqIoAaRRuci/EEN2JK0aKw4mb6koKjZTvexl4kasZSrn2rVZXYuW/Ctr8UbetFYxqPdygP0qjtU47MTQeAwvxBw4mSN+QUfPxdzR6FiaSkcb4Fa2LpOJWOytZTLWfrb7PAnvrMc5l3w3dQe98fg1EjPfZT2p34IHa/s6iUr+YI5VgptDMLNr83tLIPJMvOJiTF93+V0SpqIdjvJsiWepLJDP65JkVLg55sMU3fnKhy5AmeD8L1Xpteby49XG0ghCNGEZHOMFcBbNmMDE8t5w270Jf2UzRab+W63MXRbK4gkpOL5yJmjw58rBNXFiwAIV0/t6MyklGF9rbcb5nmS+XkfP5AYTe5idHDBiVIKlS82/LxR4U4p9Vht3AHrR0iBPFrrfcbntheJ9gvgC4qFbLW68SYthMAX2d8sNgHC2dub+HbIykxWipI3WjQDFt89fcl0ApOyyeJBZExGNJgoaDQ86vW8x8m09A33M/otgovPchKkFNRqHkdzwbzrZY5e4/xtSkeuSYXv2kDhDOVJUq0QqgvLH89+dPw7N4z3jn4L9cf/KcKbR61+mvYnn4UOT4/9uq6UuPm8FaoU4e1sGQx5YKJDCHullNNodqpyswKAmdm9zZYUbLZenxamk6BMmulLNgjfC2OD3hziSsmxSraxtCYN2hiS7vQNBSznNzYwsZwXGG2gO2FgMuNnNcOhwsQq04qsn0UIQWX2+I4L3urMMYzrE6cx6dqZbceur8VobfA8SSMXUQohWFys4LqZi87SUnRgLkaqyJZIiZ+n13cq5SozJtt8TmIxb17WjDHb3ACLjEkR7Chlyhvm5sAEwBPZzSs201ns7xZRmcHkGRNjDERbTQOKHib+hPqSgl6Txf3JQKSpxhhAsKvd+tk5P6uXN7C8fDiyg+cT/RbB/ZnDaeB5kmp1owX3KJQ9TKZlFSwFwpGkRhOsfxJ0iKhejJx52JanuAuPpf6E9yKCE+jWV2j/0/eiO7eP/dL9WVrheLllMLCdM1fFJZYRaBBR0c9k8sBkP7MlBcV3KZ5io0WjNMR6YMYkHZAxAThSqWX20L5PM41Qoc2YWDZiAxPL+UEnAQ24ArHLiTwr58qdVtYj2u1VRNyh4no4c8d3fH7gusj5k2Cgs3ovZogIPgzTcvd/bt7fIFzNLFYrSEeQJpqV5YNxMSrKuFwvKHe5tivlMsZscNAZhqi4PTeb5eE7YZ50+noLpJm2JL9RewN0DQHZsVJZPdBMk/CrEAswOqtPN0BfAGaMIckXcVMr5drnjEnpyOWIXTWHFEIwvxDg+Vl2cPmAs4PnE4MsgqdNsRCOcwe8kSj6N02qMSnKx3xJorPSzerKjUCWLRn2fXNmHkLj6v+LrF6K7t5O65++F9X8ylgvXQYmRfanEMDvoHFIKtk5V6JK/hYmuw7TVJfZksYea0v68X2ZzbnaTM82OL/Ppa5COLIUvkNP/O6JTWYyQnCi2kBWKzTjiLDbsU5+lg3YwMRyXtAr45rsxtjvztVZuReAyuyxbAdtBGozRzBehShNUOtbsyZaG1ZXs4VpveEN3PF0XcniYoAQWVp9bXX/XYySqJufi99n7zg8MEn6GmXt1PVdHMkyMGYtGtrjpL+3QKQU3c5W0XuB0QqRhnheFhgcaHmQNkiZBxwi2+nr19NkZVwGKWRZgjUp7j53f99tGVc/UmbZQccVKGVYPsDs4PlEt5tuaxE8DTxP4jiZa9coC1RjzNQyJkVTVuHJbEfdKKorH83Oa1MZ12Zk7VLqV/9fZOMhmOg07U9+H+nKZ0Z+7a0d4He2DNZGkwbZOVfibPyk12FhiBIEzsDs8F4hhCi7wMfxdDYKilJWnSeH++e8eEApV8F8UKXWqAOC9U6XJLZZE0sPG5hYzgvKwGTCXcSinEu32oSrSwDUF06O/Pyq46FnjxOqFN08t+Wmtr4eo5XBccW2Tiu+77CwmM3mnU667z1O0rwfi+dXyozJdnbBsR6uL9mMqHlZ3xgDZml41iTIFwrtOC5vlIMWY0W390o1QEj3YF3NQgVBDVyBcfKbaX9goqYrfIf+Uq59DkzyzJXeZR8JxxEcOVJBSkFygNnB84lC9L6TRfCkFE53I11LhfAdMfIGzlCKsj7PIdUav/UFnHQF3Fmcxat3fLqsnKD+hL/AmX8sJlml/akfJDn30ZFeenhgMjxjkqgQqi5SOPiJh1F6opLKTictDVHm5veub8kwpt3PpAhMVJBd10XfJRheylVwwcws0vNppwnt5s5Ojpb7DzYwsRx6TKp75TJj2gRvRjgyEzQ2z6HXU0xtjtoY9rNV14VKg8j1AbMhaxJFqizDmJ8PSovgYVQqPRej5npCp7N/LkZpki2gHT9AjpAxKbQg/oiNDeXRPGuyGmZ1yAMoBPDreW8aP5ADd+nLwGQmE01GA3Qd+4UJU6Rfg0BiiDBaYfpu8omaTmPFftyiyeIOrmnTopcxETSjZe5eu4lOvL6rY7muZPHIwWYHzxd2axE8Lqe7LVZ0Zr07ygK1FL67U1hIF1btXlbKVWZLjn0bYsQMo/QXqD/+T3GPfguoDp1Pv5Dk1F/u+LzAcfvKR9VIlsFx2kU4Er9Sx8HFdFLA7KpbudaG9byP1syMN1FGcrcEZcZkSnNoNzMF0PlXo8i+G2PKwGRQxgSg5nrMzGS9oe5dWZ78XCz3GWxgYjn0lB22K06mE5mUmiHqrCHbGn/uBM4YnYyr+Y5hVD+K0gbdWsYkUV7Cld3gajW3vAHsRKPhlbXkq6v752JUakz6MibbdX+PRxC+9yMaft58EczK4Bt/kTFp5tmwYWUNOsx6CASNGaQUGD29UoSxiRTC9ZG1KlQEurO2wbGnJ3yfXsZEljd7vasF0bj0ur5Lukm2k1l0vt4Ne5kdnFaAaoxhtXuGMG3vPHiPmIZF8E6kWnO226ZFRKIVSpkdzQnKjMKk2RLAxH09TIwu9SXu8aeNdRzh1qh94x/hnbwWTELnc/+R+M53b/+cvvLRUCVlxmQ7y+Dieg4aDYQQuPlHsZvsZZFNd11RGqLsN54nsznUTD6HmjAFbVAyBU8CogxMCj2iEMMzJgDH5hYQQKfVpDlGfzDLfRsbmFgOP2UZ13RS30qtERsFTo2qqI71XEfKbKc/qBF5VcCg1k7TaiWoNKsNL7IgozK3zy5GxpiylMv3K/nNJG+yOGRXfpxSrgJZaE2Wu5mr2iYqjotKNN04AcFAdxqjNSa35pWVRq8U4YB0JoWeRB49jvAkOlzFKFVm9MqMiZxiYCJkr9xujwMTrQ1a9QKTojRt0tetVNyydGUazRfDNOHrzRW+tHqGU50mSk92zXSSNZrREkvtu9Fm/4PeaVsEDyMsOrgLQeHsGu7Qcwg1zYxJr5RLtW7BC7+OES7esW8d+1DCCag++q14Fz8P0HT/7aeIbn3rts+puH3OXIX4XcWYId+fIiAPZmcBkHl8Pq7OJI572fS5+WBPy/R2YlpzaDEXKj/7Pg0Svrti+/tFtVGn4fnoMOJUt2lLPS2ADUws5wGT9i/ZcKw0xoSrhIFB1+apdcefCKu5ADTMu8RH68u0VrJd/bk5f8cSrkFscDFaDlFq7yZopRNQGoHA8bPFxk4C+GIHbNRSLgBm/WwnTRnM2tbdMF86JJHGGIPjiYG7xCbuAAbh+AjXL734D0JnYrQp7U7l4pGsSZun0Z1VTJiS6iTXYwjcKXTI7qd05trjJotFGZd0BMrE5SJ9GmVktZqbNeDU7NqlS2nNqU6TW5rLtJNMRHwu7PC19SVWot1ndTpxlhnSRtGOdtfEbxL20iK4n07a+/6I/Cu6UzlXr+v7hMJ3paHYoPAk4tyHs/+ffwLCm93VMYVwqH7Dfye4/KUAhF/9JcKvvm7oAnejZbALIv+sB+hMtFFlZsSr10EKHONiYjVWYGKMKUsYq2Nk0/cKP8iWffGkmzt56bHO92DcvsCk18Nk+/fqVmvMeAEYRdRNJrqGLfcdbGBiOdSYMM0ackkyQfWEqObZrLHibBW8gEp7/AVSLb9Bh9JFVOdYaxpUc4lKdfcuKxtcjFLD8nK4Zy5GSRqBMplQMRc472QZ3MuYjH5TFUL0HLqWulsWC0IIdJwFI04w+L2avIyr6PZe3NTTRI/XuXoaxCqzB3YE0ndx5o4jAolur2A6cZ++xEfusFM4LkXguNcC+H59SX/51jQyNUL0gs+iXGwcVqMuX1tf4lzYwRiY9QMurs/iO5mQ+u72OresL29YfI+CNmpDCVczWt7XrMl+WAQXdPsDEy8vP0z0tnONmVbX9yJb4giEFHhLfweAHLOMazNCCCpX/TcqD/5vAES3vpHwiz+DGWDaUAQmUSGA94Y7cxVlXK70cB0PUXdxhYvpJKRjbBC02ylJopFSMDu7/4L3zZQ6kx3+7jth8r5iRWAi+5orpiNYy0M2VzoVj4YnEZHidNieOPtpOf+xgYnlUGNavWzJpOlvo1J0a5lIp6THj+M4El/LcoIdlSJj0kkTQvcISQrELWYqk+1AOU4WnEgpSGLN6sreuBiV+hLHRzh5YLJNxkQbU94sxsqYAGIuAEdki5L1jTf/KFK4SBAC4w1+nzoXvou8W7DjCHxfls/fT0pb4PzGLusLiHoNjEafO1MuZDw5PeF7wX51f+/XlxTvB7bvcTMOheB3nKAyTBNuXV/mrvZ65uTkOFzamOeSxjzzQZUHzR7hZK2BFIJuOXat3LXd8fhJGzC40sORHsqktOPVXby73VFYBDt7aBFcvlZf7yUtM73Djl3gS/H7hN/rwprYd9DROdzmvwDgHZssMCkIrngp1W/4dUAQ3/nHdD//nzF645wTlIGJQhvTc+YaIICP0ywwLx32Gj4OLnTSkQP1NNU0C8H7rLdn2qFxcF2Jk//dd9vPxKRZY0UAlc/d/VbByYgbWY70IJDUHBc/TlFaczY8OJ2X5XBgAxPLocbkjk1M2L8EQDfPgtGE0oNqg2A271K+Np4Yt5K7uySJZqVtkNU5ZhoCWqcnPkfPk5lQWGTlSuvr01+IplG+E+j1PtPtLIPjfDEjhRjLKABASFF2g9ebrIO73RRfOviBJB6wS2aMyUu5QOYZE6As55qW5eXI5IFJf4NP51hmNa1WlonjLLszTeF7+Tr7ZBnc38MkTvsDEz2VLEIZmIygo1Jac29ettVJE6QQHK/WuXL2CDN+b5EshOBopc6D5o4wH2Sf/WoU8rW1Jc522zsG950kcxyrerPMBkcAaIZL+1bvXojea3tsERwrVe5kF4+D/Lu8XWlk2cNk0lKu/G8uPEly5sMINHHtKvz6JRMdtx//AS+g9ui3gfBI7v2/dD7zo5i+zJ8nndIlaoPOZEApVyl8d7Ksr6h7WZY5UqQ7NGUsWF/Lyg19X1KfQinytJjYNrjYpPEkSmbHcDYEJqNlTKSQOEGmuVnQ2TktRZ3ynmO5f2IDE8uhxWhTdpadVF9itEI1s74lYW0egMp8ttg1zfHcQIQQVByPTjOlm6ZUF49Sq0hM2CwdpCYhCBzm57MbZruVTEUs3E+SWwW7fm8B7WzTxK/Ulzi7280VC5VspolU6bBmjCHsqiwwqciyt0A/JupkggTHQ3i9c+0Xb+6nWLKwBd4QmCwcQfgBaEW0dDcwXavggl7GZG9v2EXGxHHEhowJgJ7Ca7tuXsq1g4ZqJS/bWuor27py9gjHq1lmZBCedLi4Psfls4tUXQ9tDKe7Lb62vjTU8UcbXZZx1bxZ6v48jnD3LWuyXxbB0BO+F59frFWZoYnCwdeSUWl2DcLkrlx9VsHxmb/OzmnhqWNvduyEd8G11B77R+BUSc99hPDLv7Dh9xt0JoVl8DaBiedmc4/wHNxKdm2nnZ21EN1umgV8IhO8HybKOXSXzlxF/xJR88psqiPGF78DeLVadk5K0XA9jIFT3cnvo5bzFxuYWA4vnSSr6fckYkJBqG4ugVEIr0LHy3bAKvM1kAJSg+mMt/gXsSCNNbFWzB9tIHMhvFq9d6LzLKjVXGZms4XA+lpMtzu9BWmx2+f17TpvV8pVWgWPWcZVIByJmM+zJueyG3oUKbQ2BK6D64uy5rufon9Jf7YEMvtZmXeujqL9qUc2xkCUn+Mm9zDnyHG00UQrZzFaTbW5YvkaYu9LuYwxZcbEyJjNHeynIYDfqZSrKNu6u69s67KZrGxr1MC45npcMbvIRfVZXCmJleL21iq3N1e2fM+itI0xGkd6+G4FIQQzlSxrsh7tfdZkPyyCCwrtzWx+3WelTAYhMze2QW6ARbYE6SImDSDy4xsnQedNEZMjT53smEPwjj2V2jf+IQDxne8gOfuR8ncbdCZDur8rnZbXWn8G1G1k9w7VjrbNIGptWM8z8Y2Gh+cdrqVWYbCQJnpXRhTl/bLqlg0nnQGlXDuJ3wGcwAcpSFXCCZl9vutxRDuxPY/urxyuq8Vi6aPUl0woCDVao5pnAVD1I6RaIwTUPT/rBA+Y9dGzJkpp0na2YBFVk9Xszp0AITFxB93dXTO6zczM+JmTEbC6Eu26HngzvR4mfYHJdqVcEwYmQCaCF2QNuToJ3U52zLlGlsbXxmzRBOgwc0oSmwITgMp+2wbHGjTZjOlvnDblwgLKk1kNfWd9g23mtCgDR5PumTBbKQMm6z2gTNGPpbqjY9s4FBkTlZoNi/6ibOvm9V7Z1olqgwfNHqHh7W63eSHXnxyt1BACmknMzetLG+yFiz4tVa/XZLXuzyOFg9IJnWRtt291R/bLIrig0JfUXL8ssUm03r4L/BSbK5p8/lLtT4DukvonoPHwiY87DO/ot+Bf+mMAdL/wU+g4c1srdCbdNClLuVAJpm/+6QnffaTozXvOTBWBgG667SZBs5mglME5wJ4l2+E4ogyWxt3cMcb0SrkqTjkvbLALLjWJI2RMnAB8iTIpQSpYCLLgxGZN7r/YwMRyaCn0JWJCfYluL4NOEW5A18/Txo6LFAIxWwQm8ci7o2urMYF0cTwJQWZ3KxwPZ+YoML2sCcDcvE8QOBgDy0vRxE5UqU4y4SLg9C34tuv+nkwjMHFlJoQH1Llu2TuhVvPKDvD9u9lGJZgouzHJysyW4/V0JvtUi1wK37fqAETFJa3VIda43U7PxWiKONJF5GUR0yipGkTx3XJcSaILh7FK6bYzjYyJ40iKj68oG1uJutyUl21Br2zrWLU+sebCkZKTtZlMl+L5G+yFl8NOGZjU+uxqpZCl1mQ9PLdnWZP9sgguKBy5qo5bNkrdXM61GTPNHib59ytdyWyCu/Pfgjdiw9bdUrnqvyLrV2CiU4Rfyly7qv2lXNKBooFpXznX0EapNRfHcUEZ0u7GUsfyubGinVvcz80Fu7KP3w/83W7uRCrfpBF5x/e8/LPstaTRphDE7/y9dqUHgZM5nYUpx6v10shi1doH3y+xgYnlUGISle1SC6C2+5uXMQa9nmVL5MxRwnyRXS9utHUvc41SpmzkuB1F3bDnOMzMeYAodyLlzDEQDiYJ0Z3VXZ9zP0IIFhYDXE+itWF5aTIb4VTHoDSO8JBe307gNt3fYzW+VfAgxGK2ExYvdzGhwnEFvu9scMop0O3V7DlBvber2UcQOCCyxe1+2AabqBC+D/gMKi7K88B4uMJBrZ/Zk3Mo/kbjWJWOQ8+Rq2cVHLjTzZhkx89uO60wKsu2lNYEuyjbGpXAcbl0ZoFL82OnWnPb+mnuaK0Sa4PvbGy0Wg+yrEmqk1IcP0320yIYsqBfG4MUgorjlpsMsVYEQd6te0BZT1niNKnwPc0yjsZo0qU8MFm4ZqyGrbtBODWqj3wjCIfk3vcS3/v/CHLzEm0MsVK9+aWvnKtw5PLdjd8LIQRuNftZ0uxseT1jDGtrMRioVJ09d1mbhNI2eMzApNCXUHHKzQpH9DZsio0sKcRQPVg/rvQReWBiuimedDiWuzCe7rbKIAd23//Icn5hAxPLoaRoqkjFLS1td4Nur2R10o6HrC/Szm8+xa6ZEKJXztXcvqZVqV6jrEbDY7aSPa/YiRSOizN7LBu7enpqO61SCo4cCZCOIM17nOz22KlKIDW4woP+wGSb7u9lKdeEi0UROIgZn26oEKth2fOlWCT1Z0x0exkAmRsVbEbK/bUNLoTvm/UlkL2vhAhZncNLPXRzaU+yJnttGVw4ZUmn18Hed6o79rgZF+HA2W6bW1ZXNpRtXTlB2daozPhBaS+cqjaRSjkTKu7urG8oJZTCoRFkurFmtDT189hPi2DozVHZolyU11yiVVbWk19LW8q5ppUxyYXvWn8RE53BOHWi2ceVDll7iTv/GILLXwZA+MWfxURnCGRPZzLIMjgZljEBnEaWdU9bWwOTTicliTVCZs12DzO+L0Fk97WxNncGCd/79CWF8H3UDHtmGeyiTIIJU4w2HKnU8KQk0brMpBpjOHc25OyZ7v73sLLsKzYwsRxOpqAv6c+WODPHMKInsq713WjFbH5jam5fzrW+HqN15v0/M+Nt6GdSIGeOgnQxaVgurqeB40iOHKkgJMSRZmU52lV3+CQNQRs84ZfNFcvXGLAznval5SfNmADo+SC7cbdiKrneoN8lB8DEXUwSAmJoYAJsXxs/bQqr4CFdmxMvRXpVfDEDGNTa5NbRm+lZBu9tKZcRWfDtCBdHulPLmCRasRx2uKO7ynoSopSZatnWqBT2wierLjOeT+A2Snvh9bhXnjMTLCCFJFFRWfI1LcaxCE51wnLnHlrRyq43JHr6kuw7VGwyFNnQYeVc0+r6XvS8SDs3Zg/n/x1IfypzyigEV74cOfsITLJC999eQZC/blclfc5c2XtVOs03Z8RAIwuvngvgwzDrZp+jlGY971kyO+vjTLChth/sdnOn6Pslqm5pX96vLyms30cNOh3hIlwHHJF97lFablYAnA3bJFoRhgqlDEqZQ1seZ5kOh/vKsdwvMcaUGZNJbIJNdw2ThiAcZOMInTTBmGzC3LD7X3PB3b6cKwwV3U52c59fyATbxU2+27c7LqSDM3scAL12Zqr16Z4nWViolD1Ozp7plrXMo6LifNHp+IhNk/ugnfGeu4ocKS2/E5EQmIqL6wjc/CZelnLpQhybiVRlbQ6xTQ16Jc9exLnD115hEpV9NwQQbD2fVMUYXyIQ+EHW10S3lgd2k54EZ68zJnkplxb5bnFexrKdMcJ2aGNoJRGnOk1uXlviq6vnuKfTBGHwpMMFwcyelG2NQpR2EBhO1ma5auGiDfbCBf1Zk/Xw3PReOxrdItgYw3LnbtrxGivdU5xq3kInHr+0rNOnLwE2lHLBRgvu/mtpWl3fTVJc21m393DxW7LDjmAnOw2E9Kk98o0gA9KzH6Z29i+y8+jvZZLbqBdljJ7jIwecn1sJwBNZoN7pXRNrazFGg+fL0rTksDNuP5P+xopU3CHC9/FKf4UQG3QmRanYfFAtr8sz3TbtfLOyVndtYHIfxwYmlsNHmII2mZXvgNKZUSlq/Z3ZYwgpy3KG2qabbFbOld+c1rcuJrU2rK1maf563S2FqpV8F3Fz4zLZOAKOh1ExujXdMpBKxeHIkUqpOVlbjTl7tjuyY1caFz1MtpbMDNoZj8e8yexEt5NiFioEFRezFmJSXQYmSmsSpUp9znbZEsgCNSe3DZ6WY9lAit1E39kSzEEulPUdPBkgqSCCBmCmrjVxt+k1MylKmXJBqvOMSbFbvJ0xwmYilbIUdritucJXVs9yW3OVc2GnzIZVXJcLZ2d5QH0On4NbvBUZkIrboO75XNqYBzKdk+q7lhv+AkJIYhXSTabjElRoS2ojWAQ3oyWitIsQstS8LHXu5nTztrL/yk4YY8pMcZHlLQKTIiPab8Ed5wtPY0yvlMuZtJRLo5M70OHXQDi05p4E7NyAb5o4M1dRefDPAuDe/Dqc8O7cMnhjxqQnfK8OPo70oOqRmrTsyxSGirCbOw3O+fuW/ZuUXj+TEXtCFSYgvkS4spyLXNFXyjVmxiQbmwUmyiRlqRjAySJr0mrT6sYg9sfBznKw2MDEcujoz5bsdoLX3XVM3AUhs0AB6OQ3ns2BCdBz52rGWWPHPprrcWb96AhmZns36P7MS7ghayLLrIlaO40Z0NV8EoLA4dixCrNzPkJCEmvOnQ1ZXd25vCvOdwW9QYHJgJ3xaThyFaSpzhY9NY9gzs/EsCshUoje59hZzRZD0kVUZ7c/IPvTBd7sVMalI0Tg4go/K0OYPQHkWZMRO0SPwl52fy9EpY4jSHXR8ToLTLYzRlBasxaH3N1e56urZ/na2hL3dpq0khhtDK6UzAcVLq7P8pD5Y1mTxHpWtqW12dNM13Z0CjcuP/uOuVJu6Ahe4EiXhj8PTCdr0m8RXNthgRWnIWv5ay5UT3DB7BXMVo7mgVKXs607ONu6gzgd7A5VEPYJ34tNAKcvA1p02S4tuIvFZ5HxE3LbzOUomFiVZVxy4QloJ/vc96uUq8C/7MU4C1eDarN466uJ0hhTNETVKUalPeH7kH5ErvAQ1VwT0U6yDaK1fOOq4e2Lw9q08DyJkFkPzUF9bDZTNlasFr2N8qadfRmTZBebWa70Eb6TBXt9Tot1z2fWD4g6inNRh2rFPfQlcpbJsX/hXfBnf/ZnPOIRj6DRaPDN3/zNfOpTnzroU7pPUfQvYQJ9SbFbLRtHyptqZ4C+pEDUvExzoTeWc2XWj9nz5ua3Wj9Wna06k/J13QB0im5OrwykPF+R+eMfP14tReSddlqWdw3a/VI6LUsqBmVMBu2M9xy5Jp8qCi2IH0i845mA1CyHGG3Kmu9oPfusZH1+pKC01JnspQC+9OwfvDiL0xA8ge8EoEHKKqKSa02mmDUpdiWnYdu7mUJfIh1dBj5FxqTfGCHVCe0k5nS3xS3ry3x59Sx3ttZYibokeX+ghudzstbgytlFHjJ/jIvrc8wH1XLhL6VA5pmCSUSsurNGcubWsY0G4jRE6QQhJIHb65FT3aR1KpgJjpTBQDhh1mRUi2BtNMvdewBD1Zspe6vMVY5xwcwVNIIFQBCmbU63vs5S+25SNbh0cFimuNSZFOVclY3XkplWtgQg0ahu1uRQHPsOIAuO9juzIIRD7ZG/BU6dSvOzzJz6X0RGl65jJo1Hy5hUXJCg4oTWUheV5htXM4evZ8l2CCEI/NFtg8vGirWN9wq3v7liLn73xijT22AZHOsN2p1jfp0k0tn3uGJF7/cHbGAyJh/72Me4/vrrueGGG7jlllt47nOfyzOe8QxWVlYO+tTuExile0LjXepLdNjOu4aL0iUrUikqXzhVh+z+bW62aIxhdSX7/2rNHeieU+pMNgUmQois6SJZkGT03iycHUeysBhw5OjG8q5zZ8Mt5U2pjiHVmdjQ2/peej70fYFZ6cg1efq80+l1uWbGLwNBsxJmO7laEZX6koWRjlnYBqt0cOfqaVA4cokhgUmiI4QQeLnFpekmOHO51qS9MrWsSZExMUZPzbq3oKcvyRa3rvTK0r5YKVppyqlOky+tnOLrzRXOdtt9Tk8ORys1LpuZ56Hzx7lsZoGjlTqVbXQJRaPFSQITtX4GEzbRrfHm3m5alHHVN2gIivPdHJg40qXuzwGwHu1+k0Hr0S2C18OzJCpCCoeF6skt57NQPckFM5eX/Vc6yTr3Nm9lpXtqy3ejEL5XNl3DA3UmfddSqZGaVF9iDCZaQYWfzR4f/fbssGQL20RFRGkW9HXi9dIRbq+QtUuoPvQXAZi7842Ea18qBfBp3EQbRSZ8H+wQJ4TAdbLgJEoi2mezDMvsnH9g2od2Em8oQRwHv7QN3v75/Y0Vi7lwcNf3XZRyOT7CkSgn/+72lXMloWHOy+5v55L2nvUVshwebGAyJl/96lf5uZ/7Ob77u7+bEydO8LKXvYzFxUX+9m//9qBP7b5BJ9tRxJcDF8/DMMaUO71qPXNEko3F0k2mJ/4cXh5WlnO1snKuZjMhTTMHkNnZwbuGpTOX2rpQFLV5hFcBo9B71NuiYEt5V5KXd630yruyHia5VbA7QNQp966UK0l0ZkcrMtG6EAJxNNuRNMtdAukgwiaxShFuBRnURjqulOPt+I2LURqKgKevlMuYrAxJ6V4HaL+Wn3OokEENWZllmlkTIURf8DjlwCR/j1r0bIIBlsMON62dYykMaacJqc7sfWf9gAvrszx47igPmjvKydoMDS8Y2SCh6GVSBES7oQj4sk2I0SnE41VvY+POYsOiOyADMxMcAQRR2iVKt9rEjkIYjmYRHKZtmlHm6LdYu3CDsLgf1/E5Ur+IE40HUnHrgKEVrXBv8xbWwnP5AnubjElpGZxnyzZfS2XGZHhgYozJA4sO3aRFO16jGS2zFp5jtXua5c69LK3fycr6/wUUunY5d0ZdzrVuZqVzK/esf41TzVs507qNs+07WerczZnW7Xu++PQufh5q8RqESRBf+inIF9FRmAWtvlPZNpuT6Uxc1psdaCUEFafMXO83K1GXrzdXuLe7O+e4sp9JvIOJSF9jRVEK3zc2VzTGlAHSOKVcTpEN9rLjFZtBWhva7YSFoEqt4RIpxYptunifx6qIxuTFL37xlp8tLCzQbE7XTvL+yk7d3pVOSXVMomJSHZX/LYKSuqzSCJuAwJk5Vj6vM+Tm3I+o5uVciSZZCWnlO0hz8/5QkWolb9altCZW6YbMQpY1OUl67jZU8xxy5ujktpvbUJR3VasO6+sJ3U5Kp5M1hJyZ9UhkDKnCEbWBQd/AUq4yMJlsD6Ob74AFgVN+lmIuwJztQGrw2xrRWSPRClkfLVtSEFQcokgRhYrGtJvVFdoVLxN7Qs9PP1Wa2cWiw7GHrPqY1aSskZbzJ9Cn1tHtZczssSxInRBHeiiV5rXdkx+voMhcFBmTor5+JTdLqHoBLoIL6zMcrR2buASnF5jsbpfXqATyhbceIzBJVJQF6AiqXmPD7yplo88UY8yG9+hKj4Y/TyteYT08x7HGJWOf8ygWwdooljv3AlD357ec4yB8t8KxxiWEaZu17hliFbIenqUVLdMIjtBNE4QQ5SZK+byi+3vfpkpxLYVhSiX/LpR2unkQEquQWHVJVEisIorF6TBMN6Xa/XsAkoVvJtGFHXU2B0khEcLBEQ6JjtFGEaVtKiO8990ihEA89PWoT34nTutLJKf+CHfuWURxE7zKUH1JgSNdIiFIk4SGSZk9oBIuYwxnw+z7vzlrPyqeJ5GOQKssUxYM0dKVjRWrG+8TG5srZtezEONmTPLAJADd1jhhAlTpdtPM6cxzuGh2hlPdFqfDNnN+BWcfjRMs+4sNTCZkZWWFL3zhCzzucY8b+PsoioiiXmq63R5vd+/+hmll+oi0qtFJs1xIFAGINtsvZLqrd9OggazNb+gYPmzXcDNi1scshazf3YIjtR13wrJOyh7dNKG7KTCB3PLWr2HiDrq5hDN/csiRpofjSBYWAmo1l7W1mDTRrK3GtFUTGSlc39vSwwS2ipxToyk2LicVqRaBSb+NphACsVjFnOngnW0jkjYK0NVZxnm1fmcZrafrcV8K3/t2uFutpCwb60bZ7rnnVBC+my3R8i7x0q8hq3Po7hpq7Qzu0fEXs5txpAtqugJ4YwxpnlVThAgyq+BU6/K6ubi+SJyu4ztiKrqAXinX7nbGTdKnpzAKE3cR/mBNQD89N646Umz8lvmOixQCnbtYbS5Fm6kcoRWvEqZtorRL4O78egWFRbDYwSJ4tXsapRNc6TFfPTHy8Yv3VJl5IJ14nbXwDKlOON26m5Vul9nKMTy58XibS7kgc/1bX8vOt0uTJG2iYh/d7AwNQmTuGCaFmwcZxeMs4CBsQ/x5AGYuejZd7xJwIo7XZrigNrfhWMude2nHq3TT1p4GJgDV2oXcfdl/4+jNryS56/eR3sOJgxNQr+C72wcmwrh0Ik3NFdRqHm6k4ABE7+tJVOoAkwlMVoLAodtJiSI1NDApGytWN2bWnQHC93FtoLPvi4MJHFQrQXazcygsgut1j3rFZSXuIoVEGY1jC37us9jAZEJ++qd/mic/+ck84hGPGPj7G264gV/8xV8sH0specxjHrNfp3eoyWwsO6QqIdURcdglbi2hSBBqFtEevABypYcrfVzHx5MBbi7OPLN6M3FnGWqNUlsCWTYj3GSXOQwxG5Ce7ZCuRjBfHal7b9Vxs8AkTZjzt97QZH0BFXdKn/z9oijvardTms2YsB2h1hLqVVBCbLn4eyJngzIpsSoaK04mUo1jhUoNQrDlpifmA8y5Lqyv4xlDPN8gFpJx9h89T+K4ApUaokhNt6SiKA/La6qTRNNs9oKCKAnByYXigZMVx2owkUIEDs7cCXR3Dd1ZwcTHRlo8b4dbOnNNr0dKmhowWf8aIfMyDKdCM1/8VxyXiusQp9MrISsyJmq3GZNNTlQ6auOMEZhsLuMqqLoe7SSmOyAwcaVH3Z+lHa/lWZMHjHy+Rb+h6jYWwZ14nXa8BmQlXIN6aIxCzZ+l6s3QjldZX78TbVKS5Bynm4K5yrFywV8EJpFKiZIuiQ6JVchqskKURDTjU/hOjGOqyPwykELiO1U8J8sq+E6lnH+HEbc+Rdd0EO5xKovfBK01HKkJBjyv6jVox6uZycBkl8qOBI5LePRptFc+Qn3pg8R3/zrxhf8Vh+MDGyv2021nZUamIagGDqYdlxrF/eRstw3GILprGK2IXInneCAdkHlgKLN/283hQSDpdrYvhy2E72VgUjZX3Nr1fTcbWa70UH5KahK8NKDbiklTg5DZhpYQgstmFvbdyc2y/9jAZBN33HEHD3vYwwb+7jWveQ2vfOUry8e/8Ru/wQc/+EE++clPDj3eq171Kn7qp36qfNxut7n22mund8LnMefad27w4tfNCEwCFQfHcXBlkAUhToCXByKuHNz0yhiTCY3RmKC+YQFY1Iz7jrPjpCYqLgkCDHhJWi6gtqPqehB1tzhzlcd0iwZeeyvqHPjafeVdq90EBSSpw9lzXWZn/XLCL3Cki9JJJkrN14yTCt+LxpSVytbGWMKRiIUAc3qdIIHowjkiragPOtA2VAKHdppOPTDpWQVnx1xbizZsGodJF98B38mabhK42c5imELgIPwqsjaP7qyi1s/gHr10ovPpNVmcnsak7Pgus++n5wRIIWnlgUnD83GEmurrOo4AAcZkrz/KddZP71rKAmkTdWBwrFGS6qR0XBpWIlVxXNpJvEUAXzATHKEdrxGmLeI03HFnHTKL4MKRbphFsNIpK91T5WsE7kaNlekm4EjEiLvyQggawQIzFWirU1RkVoJ1tn0ngVuj6s0QpyGr3XtIVUSN+dJ5T7gpJjYksWK2UaVaPUEQzI4UhAwiXf4bANyFb0MIua1rU+aSJkh1QqKioQL0aSCEIJAuK5e9inrzs5j4LirLf0Zy4r/hyeGvG0WKvMKR2jEP0RQ9J8l9pBlHhGmCs3I3MmqhtSZS3eHWzkIipJvpaaTTF7RIXCPRLUXkOKTVECeobig9NWmf1q5aCN/zwEQMyJjsoszKkR5ChqS+BgWdcyF4DrWaV943bFBy/8AGJpu45JJLaLV2toR885vfzK//+q/zd3/3d1x88cVDxwVBQBD0Jjlp6yKBrFt2EZRU3EbWZTeNcHyBf2Qeb26HVcZmVIIMO2hA5c3SCtp9wvdRSPJFqD+imLrW5+azuTYd6HUWTqOBv98PhDTUKwKv4VIRVRINa6sxnXbK3LxfWpc6wkWRoE1KrIubwe6/s8YYunnjseqQbsimbjA6xk8d0NWyGdw4BBWHdjudaj8Tow0UzmYVh04nIY6ycpxKxc0eJxF+xSt3WEXFxXQzL34xl/3dndnj6M5q9i8+hvRHE/YPwt2D7u/9+hJJT/jezBf/Dc/HIXs9PSWr4szZSJCmhjQ1uOPeifJzk9VZdHdtJAF8Nxe9B25tqKC80JkMq9f3nICaN0snWWc9OsdRd/jcXzCKRfBy5160UfhOhbnKsQ2/06sh5t78/UkBFQdRcTNnpKq7bbASakXNX+QB9QZGt2hGK0RppxTwi7wPhTIw49bxnAoN16OpNKItOBpIvMZFu56zjDGka5kxjHv0acD2DfikkFTcGmHapps09zQwgTxr4s4SP+QG/H99EdX1jyBX/z1i8eEDxxuTNdt1pEel6iAbElpAosss6X5xNmwjV+9hXseE0qEbNEi9GsLzQCmMUaBV1qQEwGiMiiGf0jYX5YmuJlXQMYJKIPEuelgvyOlvrJj3EdEDSrmKv+1uzFJcmQW9yjekTU28HsORqm2oeD/E/sV3wdve9jZe97rX8ZGPfISHPOQhB3065yXtJCtZqLh1jjUekGU8kmWQIGfHz+Hr7jqudFGOi3Y3TorFIqM+ou1llN9cvERhlC4n4mEEfbXpoUq3lIsJ16fsYpXG4O3tzXYQqUowqSHwfRYXa4TzPuvrceneVa+7zMz6pYYhy5hkn8MkjlxRpEvdRxAM/hxNtIqYcXFlgLOWEi2Mv/j1fSczIcgFnN4ADc3YxCq7ezsCLSXreRO1xky2g7fejrP3JmTPxz/Xopg+u8ssa7KA7qyg184gj12261Mq3GumqTEpdB5FxsR3KoRpQqo1Ughqrt/ToEwxU+O6kjRVeWA03nfMpHlgUl/ImqmqGJPGpVB7EIVN8LAyLhjey6SfmcoROsk63aRJrMJthdKjWAS3ohXCtAUIFmoXbAgCjDFZqWN5QAOdFNNJewvLzcFKxUUEDqnWpf6g7lVxZZ1GsEgzXCLVCZ4TcETXibTkSOMIi0G1fM3u8jKJhli7+BNspKj1z2PSMyCquEeflLsnbl/uU/VmCNM2YdpilqO7fu1RqLouazF0574ZZ+G7cFb+Cv/rv4Z5wLUIb2uD11Yrc2r0XI964KFR6KqD7KisnCvY4/qznHYS0z13B7K7xmxjAdU4Slt6pNU6XnVjNtAYkwUoughWdPb/Ou39v1FUVEKnnRAlHSqBwSRRGZiUZVx9+qh0QCnXbqyCC8pNF19nWXYpqFSdsbOplvMfG5iMybve9S5e85rX8IEPfICLL764zK5IKanVdr8Ten+jqKWu5f0B6KSZFaEjhvaL2A6TRrjCI3adDfX3xpieVfAIgYlSGiUl0pN4rszKcho7ly/UXI9WEtNNk4GvI1wfk4SYNNogyt8vMqtgnXUt9h3qdY9KxWV9PabbSbNsQ6yhktf+m5Q432ibJH1eiN4r1cE1zsYYdGcN5l0CMYfopETtaMeynM1IKfADhyjMHIU8b/J6b9PXWHF9PQtCXE/SaHhEkSLVIUqZDfXoolII4Ddmbpy541lg0l1Dx51dZ02K3UltFNroXesQ+ikyJkpEOAh8p8p63sOi5npIIcrXVWZwVnA3OK4E1Ng6E2NM2WNDBDWEX8HEXUzUHhqYKJ0S5R29twtMgtxlTxuzxWWvwHcqVL0ZukmTZrjEkfpFQ4+3k0VwqmJWw8xOer5ybEuQY9airITGFcjL57Od+TArFTShyowWhgQrXVfhpCFuzcOpGwiyxd9CrWfA0dHrLEfdsgQH8hInR5MAcTrZEiE5/dcAONUnIyr1kVybKl4DuhClXZROh2a3pkG/E5t74Y9QaX4GJz5D98uvzhox9pGmPX3Z/FyN5cTBGI2pCejkjYEX9ycwOXf6FmR7hRk/oHr8MtrChW57oABeCAGOC47LdldtrZISLUcka3cCEfRtfmx25II+V64Ju74XFIFJ7Ch0pBBCUN9lLzPL+Y0NRcfkQx/6EGfOnOFxj3scMzMz5b9huhTLVsK0jdIJUshykdCzCd7lRJTEuNJDuB5JXwfkSKVoY3L3rJ1vcFFuEezMZs2yyk63O9DrZzJEZ5LX65ZNy/aZJG+umPUwycu2HMHCQsDikayjfZpoVpczi2Gl09JGdLcZE60N4QA3rn5Mdx10iqgE+MeOZM9b6u6qWVix8JtaP5M8MElETyczP+8jhMg+Lx2hjdlYblIK4A2m7zyEV0HWFwHQq6d3fUqOdBF5MDKtcq401aQ6RkpD0ViuX18CbHCwKvpjTMqunbnS3B1KSITjIYJMkbSdbXAheved6oYu1ZvJFuVFP5PhWZPZINvJ7yTrQzuuw/YWwcYYljr3YIwmcGvMVI5s+X2RLRFHqpkeq+Ii5yvIkw2cy+aQD15EPnAOcUEdsRBkC8f8+xc2Q+RqRO1Mgr51FfXVZdRta+jTbUy7p7sDysxKge9l11+sJwsK0jwwcevXIFxZiqO3c21ypVdeU1kmae8o/tZhmhLLgNaxHwEkyd1/SnL6gxvGrq3GYDIDj1rN7fUUquV/106SlX/uMZ2lu+isZHqkIyevRNbmy0AgnqCRb2FMorSD0gaTf/83NFas9q6dwpXLFVvF7+O6ckGvlKud3yNdB/yD6VdpOWBsYDImb3/727MbxqZ/t91220Gf2nlDJ8+WVL3Zcse3uFGyy8DEpDGe8MDxSXVPZN6fLRlllzfOF5P+bK4L6YxWulJzBneALyh7AeyzM1eB6gtMxKYyp0rF5djxKkEls2xstxLOLbWI06Lr++4CkyhSGJMFQMNq63XZ6X0e71gdV0hkKyEMxw/geo3C9PaNwkbEhJn98HoerNbqbk+L40gSHaGVwRW9wKQUwEOvLjvHmT0OCHS4jo5216QP6GuyOHlgopTBaEh0mGWdnAqG3nUzk2f39qK54257mRTC9yLzKPPAZDudSc+Na2cL2uoO1zJkvUMqbnasYd3gd7IIXo+WiFVmf7pYu3DL78tsiSMQ84PLxYQQQ4OV8FiAnvMJGn4ZrNBNMcsh+s51TKIGWgYD+DIPyrWDUrtzTtOdO9GtLwMSd+6p+fEKcfT2c0rx2XaTvQ1MPOngSInSMZEU6MqDcY8/J3vtf/tpdP63jSKVbXiIrK8V9Hb4tacz+3UDjLiRtVtU8xxLZ28HoH7sEqpzx4E+6+dd6PMKpBR4vgTHIYqB4lj9jRXzOTazlC8acw7KmOxO/G6MoRumpL7JTEy605lrLOcXNjCx7CvaaDr5IqGel3GZVJeN7MQIZVODMCrGlS7CcUl1WnYOLjIYO/UvyY4REa9+AXflvciVXyde+0NMNxmpC3HFLUoC1ODd/gN05oK8lCvVuMIf3MPEERw5UmFhvoYQ0A5D1pYSkkjtupSryDIMFb2rFN3NBMlOfQFRcfHygDA6O/6CxHVltgtvJs+aGGMgSul2U1Ina0A2O9v7bjqOIDXZ39IRG0vzip4nZlNgIrygbB6p1k7t+tx6lsGT37R7wvcoC0zcCp00zjJBUpY7ysCGcq5pUGRMlDJjBZJlYJI7YhUZE5OEmAE7xkqnhLnYuzZAN7CZal95z3bMVrKsSTteH6j52c4iOE5D1sNs0TtfPbkli7MlWzJGb54iWGnXBep4lerlRzZkVvCzRbRpJUMDE8ckeF7W9T3cpaFEcibLlsjgG5F5NqinL9l+6VFk0qO0vedd4KuOS6pDEmTm/nj0eciZh2HiJbpf/OnM1j6fT6oVtwyonb7rUOT6ob1051KtZcJzd9BKYvTsMY719UUqNo+y3lO7/7yCwEFIlzjJm5gyuIyr+L4X/Wqyn03W90oIQZpItDKYanYuxgYm90usxsSyr3STdYzRuNLrWWIW2ZLAKbtrj0PWBVrjCC/PTBhSHeM5Qa/je58jlzEGE51BNb+Ibn4Ztf5FVPPL6PbNBPmiSwMxIL1LcbrPhG2aokE2EXtSkmhNV6U05MYAq7RePKBSrlQloA2O68E2n/FMvcr8QsDSaozRhmjdsFKJmJvzx2pcqJQhLG7mQ+x7dWcVMAivUto7e0cbdNe6JCsdzEV67O9DUHFJWwlROKFtcKxJY00nTMGTW95/qhOE1AgjEGbTd6PiAtGWwARyh672CiZsosM2sjKuMXKfZbCZfBFUWgX3dXxvlmVcGwMuOeWMiePI0hNCqdEbYxbC9yJjIhwP4QaZ613URlQ3Bh9ZOVBWcjeK3W3Rv2S7Ui6AwK1SceuEaZtmuLRBu5GmPYvgzaJ3bTRLnbsBQ9WbKTdoNrAe97IlCztbEm8mVopUZ9marMxUo9Ud6OirpO0vIsI53NoPlu6HSmuU1mU3baNiKr6gI12iUO2q1j858yEA3NpTwcsWqqNqEHynghRO1gVedai4418no1JxXFIVEQuJLwOEcKl+w2/Q/qdrSU//Fck9f0bsZxb/fp+Bh9PnkCfqs5iVCNOKYWyz853RnVXU8p2sxiG6cYT64kUbtIyezMw/jMk+491avAeBA45L3DG9jEkpfN9eX5Lmf1tngr5XUTf7fL15ieiIgXOo5b6PDUwsY6Ga5xBBbdfi3Z7ofb78WVHGtVt9SdEFWrg+vhMQq5BUxwjhEScdvO7X8dr30m19OQtA1r+ISZYHH8uZxVQfgucJ1MoniVfejNt5Bs4OgQlkC4AkjuimSVmbX1CWcqkYozViH22jtdGkaQyarNxtG8cqR2Y7gpVZ0B2JTCTdTkocKxYWgqElWZsJw8wi1fXkUIessowr114ABDMVTOAQK4VZ7iKOj3eTD4KsFC2cVGcSprSaMcZzCKruliAnURFSCITwwGyyhy4E8AN2moUXIBuL6NYSau0UsnLF2KfmTNEyOE2zUlQtIsDFd6o0u1lGc/N3eNoZE8iyXEmsSdPRndTKwKRP6C6CehmYsCkwKcqBthO991No0VKtSfT2GcPZylHCVptWvMps5Wj5GXU6PYvgze8r68oe4wiXherJLcc0xqDP5Xa+i+NlS4zRmO5ddFf+lZmVL1AJb6Ud3YZu3Qx6Yxmp0WepXPyzeSmTJtaKahGYpAmBTxaYRGpswwOTrKGWPwEUgUl23GTEjIkQIm+2uEY3ae5pYBI4blb+KxS+n31HZOUKggf9NNFNr6P7pZ8jedBjwLtwQ4NYV/aVVNbcrKVOojGxGrnfzCjo7jrpuTtItWbNq2LmTnB0wIaGLx0ipYi13nUTes+TedUBdDoRs/QyJv2mNGVg0qcvKf+2uzTkiCIFKguw/FkHOkA0PbMNy/mDDUwsI6PDNmrl7kzIe8FVYz8/1Unpn9+/Szip8L1YqBjTxl39PKx/kTi8m7h9Mxe3b0Gg2FpAJZH1y3FmHoacfRjOzMNo6yvppMdozPrUKm2aH/kmdPJV0tMfwDn6AzueR831WI+jsqFjP8JxQbqg00y8O2EH8HHIHLkMQkikt1GEa5Im6fIncBYej/QXyu7vymiCBsw7VZwo66p+7lxIo+ExM7OzXqdw46pWB98hTRJh4uy7IOvz5c8D6aAWA+JTYbYDmYt+RyUIZOaqpAxxrEYOpDbTXg5JEoOou8zNbd1lj1WIdATCBCi1qXQicLJFijYDFynO7HF0axkTtdBhC1nZWffQT6+UazoZk9TESDfrIWFwiXIhdMMdHJjoaVoGO5IEPZbOpCyH7MvoiKAG7eWsA3zfWG102S9p1MBECkHgZIu8SKXbBiaBWyNwq0Rpl/XoHAvVk5kTYGewRXCYtGhFWUC+ULtgsONUM4ZYZzX9C4Md/IwxmPBuVOur6OZNqNZX0K2volpfA5VdV/PFZ1C+sQqycSUyOEl69sPEK29E3noR/olr6RaBCR5Ga9ApnitwHQ9tMlOQQa5iw0jO/h2YFOlfifQuKa+BccTRWff6tT3vAl+RDqmOUIDvL0DcxaQRweUvIT3zIdTqpwnu/BmSK9+xwbrW6bsOhSOzUqdOimnFiCm5c+mwRXrudsCw5gbo6iJV19uyaQBZ1iQLTHa/KSOloDEbsLoMq6sJlW6Ks6mxIvSytf0liGXjzF1uurVbCY70CDwHguz7n335VJ6FttxfsH9ty8iUAUCyu0aBRbYkcGvlhGbCFFKTqZ1GyEoMJI1QrX8hvv2/4qI3fKkFYNw53NmH48w8FGfm4cjZh+I0rkI4G28e0ekOCIPvS6S/gP+AHyO+/beI7/1t/Ic9K+uUuw2FaHZ4B3gfE6eZZfA+BiZKJ5BqPOFvKePqfvk1JHf/CcgA78Qz8B/wfBz3GInSOFJRq3gcmauythrT7aa0mglRlGVPhvnLp6kmzgXjQ8u48myJqMwg+srsAsfFNDxSN0SlCrESIY6O/lkJIQgChzDMxKq7CUyUMrSWs/r++tHKwPeZqBDHETg62GJ3K4TIbqTdNPu36RyE6yNnjqCb5/KsyZVjnd80myymqSbRXRxH4jkVWnmpYdX1yrKeglL8Ps2MiSegO7ozl1FpFtzT05hAJoBXgIk6G+amMGmVpaPb9RvZTMXxiJSim6ZbSto2Mxsc5Wx6J+14jdngKGki0HlpWv9iXhvFct7dveEvDBXi60Jbslgpg/J05TOo1U+jWjehm19BtW4CNUSHJXzS6gOJqg+kOvdwGvPfgGxchaxdUs5h3c++lvj0Wwhv/q/UvDrd2X/Xc+YqXMaEpFIL6HRSojAdKzBJc32JU7sm+4FX6BBGE78Deanv3neBF6S5ja4Et5oFJkmEEA7VR/4WrY9/O07rE8jV/wUX/MfyeYUbVXE9iLqfmaW0p2MbrKMO6dmvZ40RgwYr+ffl+JDyz0IvlEwQmADMzFXpeBAnitV72yxog6y6GzaIiozJIOH7KH/bzRSlj47w8KputulSbUA7yZrV2sDkfoX9a1tGp6y5NqAS2KaZ2SA68SqwOVuSL66q3lglC/2YNCY99yeAhsqFJPWrEDNX0ak+ilZwOScWrqRR2b70LE01KjUgKBezwZU/TnznH6KTm0nu/L/4lzxr22Nkzl+Ujc02u1kJr4KJO/sugE9VjElNpsHpKysxOiE5/YHsgY5I7n0vyb3vpVq5iLn5b6V9/PvxnRNIKVhYDAg6DmtrEUmsOXumy+ycP7D2vKit9305NHgpAhMnF4MXuFLiSomeN0RLN6JvX8ef/2HkiM0xIesCH4aKKFTMjNkPBWB9LYauwnEF9SE71omKsu7lMkANEG6LirOlA3w/zuxxdHMJE7XR3SayOvqJOlMSv2ttUKkh1RFVN7PSXe/r9r71daerMYHxnblK4bvjbyiHFF6lzEiaqIPIF289N66dRe/9VByXNRiY/dwy1mvgO1Vi1aUZLUE4n/28srF3z0rnFEonuNJjrnp88PtrxtkOsRSIxSyQiu/4Y7pffOXWwcJF1q/AaVyFbFyFM/PgPAB5IF9eW0YbwxWzi3gDrp3gwT+Dbp8hbf051a/8F4KHvIUk+HfZOeQbK8LxCSoOnU5KGCkGKGEGvwcdZxkTwK1kblybS7n8EXbVpXDKLvBh0tqzwCTVEZ50MMInFjJLzuQBulO/nPSin8W98+cRd9yAesC34jQelJ1ffj0Yo1E6RTY8zNmsGaHRZtf3MwATd0nP3ApGI4IGK41j6KhLxXGZ8Qd/DsOsn8dFOB7zs4KlFUO6HtKONLOLG4P6YlPEHdD1vT9jolo3E371lwke+B9xF7956Gu2c9OAWrVC6sosC1VxsvVBN+2l/yz3C2xgYhkZ099wKYm27bK8mSjtZJONkBsWCZPqSwDU+hfR7X8BHILHvYd1lSCFQ1PPo42hPkKzvTjORZmeLEW40p/HP3Id8dnfIrrlf+A94Hu3zZrIvAdCmKZ0VbI1MCmcuSYUwK9GXRwhh96gNpPqBFKFK6plDxMgqwFP1xH+UWqPfQfJXe8mvue9yPBujp/6Y8ypdyGOfRvJJS/EPXoNtZqL70tWVyPiSLO2GhOFirn5YIPr0E5uXDpsY1QMwkFUe8sd3bmT5OyHOXLvB3FX/xltIiJAf/5fqX7jb46coeu3DVbKbHFE2o4wVHTXY6QyzCz6iMrW72XWvTrBcQSuHlDKBdsK4CG7+W/ImowTmIjiczUTNaArzjs1IVJKPBnQCrOF/8yALIHci4xJHpioUTMmedZ20KaIDOro7lqmM6nU0UbTTcfTlxRU3Z07wPczWznKufadNKMVZLeCwN3w/e/E63SSdUCwWLtoaGPMUluyECAciUlWCW+6AQD3yFNwFh6XBSGNq5D1ByLk1s9hlN5Nou4RHHs1Ri+jOn/H0ZteTit4B9S/Obs2AVwvu5ZE9vdJktF0QOnyJyBtIvxjyOARWZDlZDoWnds2jbqrXvEahGmbbtpkhiM7P2EXxKqLLx2UqBDKLDApAmClDNH88xArH8Jp/QPdf3059W/+f4jcjcoRLspkfZ+cSgVckVUAdJKRGvMOwiQRydmvg1EIv4Y8ehnLzUwTeXSbDbZp9DKB3Brc9ZibSWiejghTiWfMBkn/oK7vg7Jh4VdfS3rmQ6TL/0jj6vfhzGwtAde6V/o426ixHOeBT54lsc5c9z+sXbBldPpu0uUCYURK0bs30+tdog1088Bkl5M4QHL6TwBwj38XfuOBAHTSiFSnOJssT4dRNFbsFzcC+BdfB3IOHd5Kcs9f7Hic7XogCG/yXibLUZe72uvc0V4deWcs0RGkJis96FtYFHae7vGn4c4/huo3/Bqz3/ovqAf/PK3qVQgU5uyH6HzmhTRv/CbCm34NGd/NkSMVZmY9ENlC/uzZbpklSRJNkmgQWX+UQeh2dpMV1Tpq9ZN0v/LLNP/+W2h+9JsIv/Rf8Vf+HmkijHcB4JCc+VOim1438mfkuhI3f5/j2AZrbVhbiyBWVKsOXt0fuOuZ6hgwOE62MNEDApOy9GAbq1Vn9jgIiYk7pW3yKPT3FJlEZ5KmOhNL545cSnjlgrY64JrZi4xJETRqbQYHeFtOeqMjVz9iUz+TKO1gjMYRLoE7XmlNJb+O42H235uoeg18p0Icp7SjVaQj8P2iEWbKSvdeAGYrR4aei2nF2fdFUmoUwpt/A5OsIBtXUXvc/6LyoJ/Gv+B7cGauGhiUQG/uybrYDw7KhRDImSqVo78O9cchVYv6F/8DunMHlBkTL7OQ9se7ltLCjWvx27JmoPnzC32JFAI54iZDNe9nEqXhVL93/cQqJHAdXCcgyjeeTJqVK8exAiFIH/hr4M6i1j5LfNv/LJ+72SGvuI+VlQBjYtI4y5SoBOFVcI9fzmoSobTGk5I5f3g54rRKuSDTRPoe1GV2rPU4C0wLtCnE7/2lXBuzYap9S/ldIG3S/swPl31h+ul0UkxulFKvBb0GskE+H0RqXxpXWg4PNjCxjEz/Tv84gYk2mm6SLbxq/daYnSRTZrq9xk3jorr3otZuBMB/4I8jhYMj3GzXUCfURrRNLBsrbtIDyMYC/ux1AEQ3/wZmh5tjdRurUTFhL5N2EnNvJ/scjYHlEZv0pbnGxBVeab9rjCE5/VcAeMe/s+8c66iTz+Rrl/8Kt171e/iX/QeEt4CJ7iW65Q00P/oEOp96DpXWX3NkUeC6WT398lLI2mpU7nwFgTMwU6HCc8R3/znxnTfQ+dx30f7ks4i//mZ06yYQDs7C1ejLX8m9j/hz1h711wRHfh6A6NY3EX39d0f+rMou8HlgEKuUs9024TZN81qtBJUaZKqo1b2hdc1FMODnu/ZKm629AzYJ4AchHA/ZyHaBx+1r4jqT60wyfUmEdARSOIR5I72G5w9c0G7O1EwDKUX5PRmlnKvXXHHrAm1zB/hizqn649fzFSWFMHrWZCY4Qhgq2ukKQUD5GS537kEbje9Uyo7xgyi1JfMVhCtR7VuIb/9DACoP+QXEiJmxYu7ZqXeTaPgIGRCc+G3i2oNxknO0P/UcdHg6+30+XxUbDOEI1q3984o7+23ZccoyrvGb77mOn5dwmdLEYJpoo0lUhC8dPFkhQpArE0ElZTAWNC6i+pDXABDe9Hp0J2tyWATrxZxQZP4z2+DxMColPfN1jIoRbhaUICTnwux9H6vUt80aFxmTtC8ztWscD2JD1Td4FQfjOawsh2ht0Eah8yDTGSB+L4wN4tt+Lxuz+ERk9VJM9w46n/sxjOrd/4wxZRlXvZ59lqWGTqZZBgq2NKu13LexgYlldPpv0MnoE283aaKNxpHeBtvHsoxrgmxJfNsfgEmQtYfhLT4OyBZt3TRB6WSD1/sw0jQr+cn0JZsuiaqLN/s8hFxEd24juefPtz1WEQh10wGNGfMbPUZlIt4xiJXijvYaxvTsTJej7o67ucaYbPGq9IaMiW5+ERPeA7KCe/TfbXiOyu1vVe1Sqg/9RWae+jmqj/4d3CNPAQzp0sfo/Mt/IPr442ks/Ro1cRsA7XZa3mQK0bsxBrX+b4Q3/yatT1xL6yOPJLn711DrH83KyLwFvAu/n+qjf4fZb/s3Gle/F+/y/0xau5LIF3iLz8af/0kAwq/8PPEIWSvoZb7WOiF3tFa5aW2J090W93YHC4aTRNPKz33Wz8v5hgTLWcYEArdSrmE2NwjMOsDnz9/mptrLmnTRnbWR3hv0bDonCkwSQ6JDXFdkNsFD+pcUCJEFMLBH5VwjdBjvNVcckDHxq2SNURQ66oxtE7yZIms0amBScWfQiZNpDpxM29KKVgjTNiLv7j5sYWlacVZLL7OGigDhV34JTIp77Nvxjl0z8nkX5huDsl4baGRZT0/PsnTFG0mDC9GdrxN+9ScxqoPI584iyI9jvWMjTL3+b+W84lRzTUHZw6TQIIy3CVV0gQ/3oAt8orLsddUNkNIl0hpTWLsnURmY+IGDd/HzcBafBDqk82+vwBiz1Yiinn2mxBqTjJ65MFqRnrkFk4YIx8c9/kCE47EahyR5f5n5YPusnytlmYmaNGsiHC/L3mnF7Ika0hGkqWFtNe4J34Usqx+0MeW9yJUOOl4mvus9AFSu/Clqj/0jcGdQK/9M94uvLO+NYajKHkbFPcPNM4GpThBVW851f8QGJpaRMX1C0HF0Ep28jGuD6F2bTOjJBDbBqkty9/8CwD3xnPLnrgyIVEqqY2oj6GAG6UsKhCMR1Rm8uRcBeWmFHv7eA8dFCoE2ZkvnaCElwund9EZFG8Md7VWU1lRcl8tnFwkcB20Mq/H2ZWHFIlqofMe72L08nZdxHf2WLe5kOg9MHJHdaIQT4F/wvdS/6T3MfMs/EVzxk4jgJCZZJrn9bYjPfzuN25+Lt/oXoLsI3cFZ/xs6//YKmh95LK1/+A6ir/0qavXTgEFUrsC76HrqV7+PmW/7ArVHvQn/gu9FePNAL/CKlcLM+Hhz1+Md+REAuv/6kyRnP7LjZxaRcE9nnTubayy3u+XPB5XYAaytRmAy4Xyx5B2aMclr8F3Hx5G97uWbKW+q2wQmwnFxZrJddNVa2v5N9VEK4CdospimmlSHOI7ElUH52Wy2Cd74utO3DHbcImOy/aLXGLOluWI/QghE3l+p2zmHNgopHAJndz2Xeo0WR/uMo0hRc4/gOILIrBGnIavhGQDmKse2FW+X2ZK5LFuSnvv7rAxGuFTynfpRMH3zzk6bMqXFLeCmRzj7kLeCdwTd+Srxnb+EEbkexJXZ38jsXM5VNlU8+i0Inb++39vJB8pM1KgU7mVh2pp6F/g4D0xqXqN0oYvz4DuNwlL7FASZkUH1G/47yApq6eMkd717g2Uw5J9poY0YsQu80Zr0zK1Zia/j4R6/vNRvFtmSo0FtpPK3opxrcgG8iwkz22in4bGwEIDIbODXW9l3dZC+RAqBKyXxne8EHSJnvgFn8Yk4M1dRe/TbAEly958S3/pmgHIzqFZ3y3tvLwsVQ6HxsxmT+xU2MLGMRLbD37spFDW4O5HqpEzB172+wGSpm3U29uSuRYLJPX+BSVYQ3nHco9/eOzYOqTEYkh3LGWC4vqRA1Fy8mR9CuMcw3TtJ8p2ggWOFKBcEnUE7rV4hgB9dZ3JXe40wzfQyl9TnkUJwJMgWW0u5PeowUp1glMYh/xzy3enkTF7GdeK7tjxHleaZW48ra5dSefDPMnPNp6h94x/hHv9OEA5m7VP4d7yS+pe/mdoXH0/4uReR3Pn/s/fecZIc9d3/u6rTpE23l3VJCUkgCbAAg8DkaMAYB8AEk8E44AAYTDDBGB6DMWCMHz8GY7Lx88PGGPBjEQVYJAkQQqCM7k46Xb5NEzpV1e+P6u6Z2Z2ZndnbPZ3Qfl6ve0l329PTO9NdVd/6fsInMNFBcMq4mx9H6Z5vp3SPj1M6+/2UL3gd7tT9epoJuFK2FwlVmyLsj78Cd+uvgklp/vBFpLM/XPI6YwwzUYub546zvzFH6iibfG18zh63IY7amCW7iY1GQhzblOzxmmvvS4A+9qhpdIzyjW9G/OC5SG31Mv0F8Mvv9uUBkyZc6Cr+B6G9U7vyCdtSuaztcWzs5x04zhLThk6siWVw7syVLNMxSa22ByH7Gm/IjM7VbB4FbLdkpeFso3ZMWq2UkjNGpVxGG8WRxj6M0ZTcKmPBhr6vK5yHBIiNZYxRtK63FEZ/13MLF6hhEHYI34fR1uXd6qCpSUu7Uff+J5BldONqwutfjTH2WSllY2M4QDMF3eOKibONjUVUrmEyTDrhO+UsBV4TqeHoq8MiTu0i23NKxfcdZYv7sJn9zG9vWDnVPZTu8WoAWte/GScL6u18DgsGQGP5zTujNenRW22mk3TxNp1ZFN3zcUikFFIINizTLclROHOdrM7E8SDUoBWi5BIEDuPj9veamW2QJLqnvsSVEqNj4n0fAiA48yXF8+dtegSle74VgPDGv6R1++dJYqtHzGlc9hwdHZNsDF7vmNy9sF6YrGM45Asm4Vi6BKawVByEZpFdUsbNuwWRsoUJILdUV2SraIwh2ms1B86GpyC99q5oYvKFtR5ql6mfviSHKHsIWcbb8GIAwlve08WTXYxyB51rybnyBdWQHacjrTrzcYQQsKs6UUw8k0EZR0pipVgY0H1JdVzoS3AFQgh063b0/LWAxN306KWvKTomPbQT+e8hXbwtj6V6yYcZe/hVBPd4DaK8y2YrmAhR3oW/+4VU7vdJxh/1U6qXfBh3w5MQ3kaEX+mpEehEkO/8eYAnEUZSPvMduBsfBqpJ86pnoeo3A6C05ljY4Ia5YxxozBOqFCkEW8er7KxOssGpUHY9guyzizp2E5XSzM/b72Js3MfNd+092TPYUS3cgHv18/GOfx3mr8Y98LbsPCsTwIPd/c93+oelc51s+rtSGqUVqYltYaLtZ7NcZsedaRncK/F9MXKdSatpRbYrpXFBu3MXqXTZTRitDVGoEEKwcdxaARujkUIyVdk2+LW5E9dkgHAlyW2fRC9ch/AmCc75k5GuuTVktySHGLOfpR8bUIaodC7+zjeAcEkPf57wp2/AGEOQ3cuDOia6dSAbV4QdV/JC0+sOV/RHpHLlKfCw+nSuvGMSOKV2pzbbLImbGWVzsSHKnhfjTNwX0nnU9W+GnC6bX28WqmkaPei8HTDGoI7tw0R1EBJ305ld+VZHQ3tfbMjG+mGwagJ4bd3FjFZFV61W8whKDtooFhZiBJ2FSbvoTA5+FhMdRgRb8LY9peu0we7n4+/KNJs/eTmy9RPKZRenY6zNCxOlk3aoY6IxI4SwruOujfXCZB1DIddECNcrFgbD0LnablyTxb/pQ3W78VnziolxVKTHLreCaVnGnXp812Il0fa29sTyA9lAfUmOzPbTK/+6pTCFdxDf/sm+58y7NL2dueyCfBgq13wccqRlu03bKuNdtsedu2jHwv67iHnquyf9Ntc7o1s4U/dD9hDj5h0TV0i0WX6Ck6WtlM7+Q8Ye9m2qD/p/1H7p64w97DuU7/lWvE2PQGTBdrkbl1yUXdILpY7dapHt1FGHyn3/CWfiPphkhsaVz+DQzE3cMHeMQ806qda4UrKlXOO8iY3snJrAkw5JrFFKFzvInRS7+bkEoy2Nr1p1C9qV6NEtSQ5/kfq3n4QMb0f7GwGBPPYZ5MIVvbn3Qwjgi88w+0zyfJflsFh0OyrSLL/EcQSu4xfdvbFlrLXXxjI4o3Kp/oUwDBa+5xBBhVjFpCpEaNWlaRsVfkbLNGb5rkkYZs5CrmCyOlV0tCbLW7vSsRfDNBNoZt2S6TImWSC86R0ABOf8CdLv32nphdaw+pIMwnfAl7jCQTRTkiTEqf0C/s4/AwTx/n8muuU9BIFECNDKFNTXxegcV4SzwaZ2w5IMk1GpXNDWmeS5NKsBbVRBdfWcUnt8KDom9n5bXJgI4VC+6G9AeOijX8Y9/nWUaRevouRa0bbGfrc9YIxBHb8NHc4XRYkM2ptr9SSmlSZIIdjYJ1CxF1bLMpg429BzdNcGjaV0pajU0Fhoz6950ekJWZiU+Ltf0NM5rnTBW3CmH4bQLYK9L6HidVNY3YIeF9v3zp0k1+lcdxusFybrGAoFxcTxOvI4Bi+uo7RlBxchqWTOOGYusoO1BLFl5YuGuOiWPAHhVNvCciBjZhFIZ9md3XyS9XvoS3IIz7E76CIg2Pn79j1u+VuMavU8Pt+tzGkVXeca8rML04TbG9ZVaLpU6dnK3xCUEcKKXfulzacqwSxy5EozfYm3eSmNC+wCQgoHT8qRdsaFkLiT98Gp3WMJfcbELUzcAgSyMrnsufJFQqxVUbyaRgyygnvfD6PLezDhAZwfvQCTzBE4Dtur45w3sZFN5SqOlDbNvMM2ON9NzAuTMFS0MorAxGTmRJXvCHfoS4wxhLe8l+YPngeqTjp+b5r3/iD+brvzFxx4Aypeei8MK4AHkJWJ7HMaLoAzn7w7HXJGQZpq4izxHeGRaEtlW6zJ0q0DhDf+FSaZBdbQMjg3QhpgGZzbbPcSvucQ0qHlZM5wWq6YxpWj81kehFYrozyVrUXvptpuNtd2d+nqeqGtLQkQnkP0s7/FxMeQ1bPxdz1v5OvNC5NhKKw5RM3HExLZSIizz9jd+NiCdhPd9A6S2z5eLND7dU3ytHdv8+Mg3912RdERP5lk8JJXhY4U+NVA3i1xpIcj3WIzpGWs0FslCWB6Zrc4Y+cTnG1NOUq3/i0imevumlSzMauPO5eaPYhuzgACd+NuZKnW9fNcWzLpl0Yq5PxVK0yy/3rdY4uUgtq4BAFJLAqNSF50BvNXoheuBaeMv/M5PU8tpIs6+33o4GxkcpjkR8/HdFD0nGJs02ijhtLqrePnC+uFyTqGg2p72wtvuMV1TuMquzWkcDBKo4/YAVdMl+1u3UouZeEG0mOXAwJ36sn2fNmCShtDpFOkcCm5ns3wGIBcX+IvY1ecD47uxK8hSmdgokPE+z/W81hPOsVksrhrIjocX/rtDqdas78xV4RDbi3Xeh7nSafwtT/ep2uSU7mczJHLJPOkJ75lf5ctj1tyvNIapTVSuLhCFv78JwvdnAVAlscRQ+zmtmlXKaJsr70VJ9x+5Bg3t+DQee8n9Tbht25mx81/wjm1alaodS9Eg1KbG9/ZhSkyS7D85pzG1+6YZJOhatL60cuIbvxfgEHueBbNC96JG2ymdO5rwN+KjPdjbvvbnr9HcZ5lJlXheIjSWNdnNQgyC3iDldG50kQXHZO8w1h1/SXUx9aP/4TolvcQ3vTXQFtjolexYyKE6KBzDShMsg5tL+F7JyKZCZb1yU9vw+hMlDLFYr3tLOQRuINF96aVQCMptCW6ua/YbS6d/0bEgE5LL+RjH7RzWIaBGPPxHIlspCRRVvw5PsHuFxCc/UcAtH7yGry67Yj00pmYZJ70eDaubH4c5F2VrEtrjEHlu+or6JjkKfCwenSuXF/iZx3dkuParpDj0ogADL6j+25YBWf/AbJ2PjKdJdj7911GFIVtcI88Ex030QtWA+Vu3IUsj3f9vJUm1JMYIRipW2J/l9URvxeFScnqYDohXU216uEIj/n5mDhWbSvoAx+213HG05F+78641oZmXCHc84/gTqHmr6F5zR9iipwb2c5pUh10rnWdyd0G64XJOoaCKQoTt0hdHrSzq42mmXS7cZmjLZuK68nCEnMliPZZf3R302OR/jYQTrHYtTa91srVk7JwUOqH5fQlBSq5O4hD6Zw/stfxs/dh0t4FQaWfo4/rU2wP96DCGWO4rTFHrBS+47CzOjFw1zcXwc8n4ZLJKE8oL8IVXUly9KtgUmT1XJzqWUvOV0wwjo8csWPSD8YYVEZRGobGBXTQrhRzcchtosmB5jz1E3ZRUh07i+CSj4M7DnNX0bz6d3pmzBR5Jh0dk1ClRWaJ4wjGMqqY0aa9oAocdOt26t95CsnBz4JwKd/rHXDun4F0caSH8MbwzvsL+3sd+kfUwvVLf5Fit28ISlzWSdKN2aE+o5PRmaSpKYTvUbaAry2ican5n5Ie/wYAyaHPYYxak44JgDtElkk79b1/YRKrEOW6CCTBkGnygxAM0IvlCMMUjKUDDpOMnsPk3ZJx2y1p3fBWMDHu9EN7ar+WQz72uVIONDBYgrKL67qWctgIUdoUVsHBuX+Kt/NZgEZf/3Jk/bsFNbITybHLrW179Wyc2jmYpFv4nhpNvg8zqvg9RynTmbTSVSpMso5JXpgIIQiy+7uhMjqwHOCoJ33KF/0NBol/7EskR77S/mHuNBmpJbbB6sQBAGRlqmf3+GjWLZnwS6N9j7SpXJ32vaPCGAOxNZkgkG19aQalEyoVl0o5AAMzJyLiVOG29iKPfxUAf8+L+p6/1UoxGmR1D9VLPgTCIz30eaKb3lkck+c0pTpe75jcDbFemKxjOOQ7hh1UrkEC7jCpF9klgVvFhClmxk4EcuvgoKhB0NExkgM2S8Q747cBikR1aHv41zIxfDrA2ncofUkGUezaJLjbn4Yo78LEx4j3f6Tn8XkC/GKKlRCig8619NoONhdoJDFSCHZVJ5Zt45ddj6rn9wxctDoAA6nBwUV4sk236NEtgTYFwM8D/FZhZ9yEdTu5CQexaHewHzzpFLv3t9XnaJRtOTcZO5wztoFdtUlqUxdTveQjIEukR77Y5Y9fnCej6BkNMltsJLFidt4ucscn/PaOaGQXmDgCtXAV9W89Hj1/LcKfpvqA/w9/13MKTUcu0PS3/jLp+KMRpLSu/dNi1y9HWwC//Odo6VwCk4YZ7W0w8iyTdAVFQpzEKJ10OXIttgmO9v5D8f8mOoI68d0OV66TT5fuhJsvYPsUJkardtd2QMeklSwg/DIlp4RIY/u6k8AwHZOcDlgqD7+INGFa2MmKjWXSE98hPfR5QFK64E0rGh/zTZBRaFxgxyRnLMAVEmc+IjHKujJlPyvf83/hbnk86IjS3pciWz9dQudK81DFPKw1X4zn32uHvmTFLmlFCnxrKO3bcigKE7e9SRY4LsYYmom9Rt8Z/Gy5k/fF7PgtAPT1b8RkGhjhtq2YO7smqn7COnAJiTO11BQhUinzsR2bNgaDO269kNv1wknQucIUNAjPRfiyK3PL0qvsdzm9oYrjCpQyzM5EjB3KrPs3Pxanenbf09eLQEUPd8MDKV9oC5LolvcQZ3N7e2yLIXDt4J+akbJhTld8+MMf5rGPfSznn38+b3nLW3jQgx7E05/+dADe9a53cemll3LppZfypje9qXjNF77wBS699FIe9KAH8bjHPY4jR44UP6vVarzuda/jAQ94AI961KOYmxs+D+t0xXAKuVOI+fn5oY8dHx9ukXM6IkpbuOnSAVoK2eV3H6X9FyhCiGK3Z9Rj4zTE9LCDBRAIfLf72CRewKgIhxQhNKmKQMXopEXgtQf2WIXWtrV1mERFBG7V7mLeMQdaUZoYL+wU82P7IeiYMBIVWbvIfR8iVjHOxMWkpXPR4UGkKOVmuLRUQqpjao4kURGNeJ6y132f+E4JIQRRZMWPrmcsnaXHmig/VpRcUhJUqpAtH3nm79P6yatJbvk7zPbfQLg1PCco6DWetOFd81FMVOpeSClpkEZnO8BjpDpB6ZSZsMnhLABwZ3UcQUqUprZ7kXvrZ8d2YtwRzIYhh5sR00EJL1tUREmDREWINCV2bKZx48hXwAi86YejdNq1A57qhHrcIFEhEk2iElpJnZJbw8142J3H9sPiY6OFQ2gVIWsbMCrse6w2iqSjw+WJlHomAJ0aKzE9OUZJ+8jQoN3s2PF74170tzSvfhnxbZ8idScIzv1THOniSs/e975gvtGk3koRJMzNhfguTNVKSE+SahuUZiKr12jVP010y9ttZ2nsXlTu+79RpR2otFVYX3uObztSJqS+9U8pL3wbMXMVZu+H8Hc+CwBHODiBDVwzqSZs1a1eqQfy516Wx9GtOVoLh3Amtg48NteZtJKFvhkZvcYIrQ0L4QyJjoiRJCrOwtkUZE+Sbt1B48BnwAiciYtQcz+GA/+OP37vguOf54TAiONJj+dei4RYxRBJJgmWHKujJkpF4Hg2RyjXkS0aI+bCo6RGUXLLxCpCNY8hS+M9jx2kzcmf+8Bx0SYhUYp6tIC3iIaolCYKjV3Al11SFQ8s2vIxwhxrkpoEXZMIEdL86Z+jjMDf8QzS8h7StNU1nvR67rvP69NK7c89YQbOBZ3jSf4sm3KKISadX6AxVcYTCpm2iuezcu//zfz3nkEy8z3Ez17AfPAJHN/aGBud0DjyVRwD3ubH2uuNElIdIhyJTCWNOCRRIa7w7Ny3gvHEdXykcInSBnOto1R66Hfy5x6WjiedUDolTls40sV3SkUCvCQhjFpok1IyEVrNEaVji86ru3Qu6e4Xo498FRkeYv76v6B6z7fiOj6i5qGbCfHcPLJmHa7S43tBp8jJbRiT4ijTdqs0hjsax0hUxLjvF+N/jqHXBiYh1YpYK8rZ8zzK2iCsL2B0iCoZhIpQyQLS7aaNCiFxHZfaRMzRoy1a9Ttwj/wnsRF4O59HlLZ6riPCMKEVRQgJji/s77f1VxAL12P2/gOtH78CWdmN8beRqIhWUidwqygvhlAj6wuIsaDrWV7JOmLYYwd9bieDiy66iHe+85284AUv4KqrrmLHjh18+ctf5tZbb+WKK65ACMFLXvISPvvZz/KUpzyFLVu28JWvfIVyucw//uM/8u53v5u3v/3tAIRhyMte9jL+8i//kj/4gz/ggx/8IK94xSvW5LpPFU67wmRycnLoHRV1sjzKOxFv+uITcIKlD9MFmx/MSx74nuLvf37ZY4udncU4e/oX+P0H/5/i73/x5V+hEc/2PHbn5AX8yUM/Wvz9f33tacy0DvY8dsvYmbzmEf+3+PvffPO3Obxwa89jp27eyp8/5nPF3//uipdw2+x1PY+tOhP8xeO+WPz9H7/zh9xy/Ac9j/WdEn/1xG8Wf//nK1/NdUeuyP52Bhw/Ad/8teLn7/6VKwFopAlfv+Fd7D1+Bf3wv375GwRumTjSfHH/u/jJ8cv6HvsXj/sitcDSj/5z5gN869h/wi35T8+AFPjiLwPwhkd/lg2V7QBcftMH+PrPPtH3vH983pvZnmwC4Ms3/jOX3fiB/sf+0ofZNXUvAL7xs0/xuZ/21jMAPPt+7+GS7Q8G4Dv7P8vnr/u79g9vAZiwf771R7zoF9/NvbY8BIDv3/7/+Jer39L3vM+939u5z3ZLL/nxocv5yFV/1vfY37rPn/OAXVb7c/3hb/HBK/sPkr9+0at4yJlPA+Bnx6/m/d/6nb7HPmnn7/Dw0q9i5iNuT/fz7m8+r+On2e7jTZ+Hmz7P4+7xYh5//ksAmFO38bdXP6vveR9x9rP5lXv9IabV4sjRN/LXc1cCW+wPZ+bgq88sjr3P9sfwyHOegyt9GvEsb7jssdlPpuyfH/8f+we4/84n8sz7vgkCh7jZ4HVfekLfa7j3tkfxvPv/L2R1Et2a43VXPK3vsfkYkS/s3nn5b/XVUq10jIj2fYj3JxuZw7XPGmfA3q/D3ocDMF05g1c/4l+RGdVk4BhR3safP+Y/i78PGiPK7gRv++UvF3/vOUZcbf+zeIz40PdexfVHv93zvNAeIwA+8YM38qODX+l7bD5GCCH49s3v5/rDX+577O9d/B9MVDfgupJPX/Nurtj76b7HvuHRn2VKbsYsJPy/Yx/m6zf/W/H72M/4G7D3oQD86cM/xbZxu/M8zBgRSnvP/uj2/+CyG/6+//Ve+g+cs/ESAL6979/5tx+/s/uA67M/UIwRwilx/dZn8qmjB+yY98MXQleU0BhPC3weOHU/AK49/g0+dvtbO8bKbnSNEUe/wwe/+8d9r7dzjDha38dHvt9/7HnyPV/OI8+xouvbZ69fNEZ044G7fpWHnvUMpHA4OH8L77j8GUsPusP+Jx8jAGZbh/iLLz9l0YEOcAbc+jUeFL6Gp93/bxBVj4aa400/egb8qPc1FGME0Igb/O3lT+57vfkYkeM1//XQvsfumLofz73/Xxd/H2Ud8ZdXPo1Gmu26H+g+9oyJ83j6vV9XdE7f9c1ndKwj7HzGd/4UGHEdUd7GK7Y8nvTwf9P8wfP5sLwnB3odewtU/Une+vgvFf+08nXEUiweI36w96vAUufKk8XY2BgTExOMjdmcJc/z+O///m++9KUv8aAHPQiAZrPJnj17eMpTnsLc3BxPfOITabVanDhxojgGoFQqsWPHDgDue9/7cvXVV6/69Z5qnHaFya23tm/GK6+8kq9+9au88pWvpFq1IrB6vc773vc+nvCE/pP8Ok4hRkniFRTOUGuBWKWozF1oGETLWLguwQjXPkx+Sk7lUitwVeqH+UxUL4RYVUvXlUJHjdU7WWZQYOoJZhmWg1poL3yXo+kB6Pg4rRtfQNL4PkWR0wM5VcuV/tDuQKLkwpC5cKI0brOChoAzojh6WJi0Tnzbx4DBH7IyKR79aVUrhdamr+B4uetZCwyTIZGL3odBoS1ZoflHLyhjCo3ZSux4h4FwBusC5fi924GpK9Q3LIdO2tWqnK+jU7BaUMevwKgWolwGZ/j7+Hi8yuGRK924HTSlZ/P9IAvsFZ0XqFz8furffQp6/lqM3jf6+e/iMMbw+te/nuc8Z6mb2fOe9zwuv/xyzj77bP7jP/6D//iP/+h5Dikleo2evVMJYYaJ776TcNFFF/Ff//Vf7Ny5s+vf9+/fz5Oe9CSuueaaO+nKVo56vc7DH/5w/uM/P0a1unTiPx2pXFFcJznwUwDcHRfaRe/x/ejmHM7UdsqTO9rnVSGHFn5GqmImS5spz3iYuRgCidw9QakjCHGUFmychix8+4nohesIzn0lwZkvIz14AyaNcTadSbm2iZmoxYHGPJ4w7Bmb4I75GzHGsKW2B7fjM/WdEkoZjhxukZqYTZuDvguhnNIBkNQbJPtmwRU4Z09hjKLxrcejGz8jOPuPqN3jlV3Ui9vqJ5iNQqZLZbaU20FvOmwgjt+G45Zwtp/PTbOHaaYRJddlT21qSVGzHJULrNjxxrljCOGyZ2wD436Jwwt7qS8cY+xomVppiuaBJ2PCg1Tu+wHcTY/sSaf42fwJQpWyrRzQjA4hhcO28XNWTOUKD91I2ppFTmzByYLn+h07iHoBlqYhblmwBgo7KqSL1ijGGKIb3kK8/6NI4TB+v4/ibXoE2mgOHp4liTX1NOZE2mTzxjJnZmnwNG4m+uELMa3b0FTw7vk3eGc8dsn7pyriSGM/vhNwxsR5GGOIVcjMiZAwVIy7t6B+9BtgFJX7fpBg86NxHR89E6IP1onLCmdnb/pp53OfHr+NcP4gsrYBZ+qMvsdGaZMj9X1oo9g61pvT3WuMWFiIufXIDTi+Ji1P4TklzpvYiOs4+E6J6NZ/JLz+jaSVs6he+kWEkIQ/fT3x7f+Cd8bTqO/5HeI0ZMvYmYWxxclSuQAOH2qitWH71qnCjCI/Nh9v5OQ2nLH2DmbnGHFg9kYi1WSytIWKLJEeugkQuDvuZWlZK6ByARxpznKgMceY57Gz1jZvUKnmyJEWniyxdVsFx5HLUrncxIG9Voegd1do7X830c/+DlneSfXSyxAd49QoVK5IG/bXF/Adh7PGJpalfS2mcgHM3n6EE9dcgzcWsPOXfsleb4/nfvbgDYifPguhZnA2PAjd2o9pHWDsF/6R0tYnYVJNcuMxUpMg7zGFEII7mnPMRhGby1U2lqonRQ3dP/tTjNFsqu7EX+R8NiyV63jzAHHaYrp6BmPBhoKeZYzhezffgUpiLghmqPke7o4LcR2vP5VLRRyu70WoBmM//n1EdIjq2b9P6bzXoW6fJ5pbQOsjUEuQ5XGcjbvb1yscXMcn1ZobZo8Sq5DdtQmqPXRUw64NZqIWh1oNJoMae8amBh4L3WOEMYbWT7M20eYYXT+KrE7hbLBzfD06QTOZp+pPsKGynTgNmd//r5jr/4zU3Uh0j/8mKJeZ2mDv3c7n/sixOZrNhFLZYWqquyDMxwjduoP6t3+ZODxMPHl/wnu8ie0T50Ok0PvmQQqcc6dOGZVroV7nV3/lOVx++eXUar3dMUfFhz/8Yfbu3cvznve8ouDYs2cP//AP/8C73/1uPv/5z+N5Hn/8x3/MS1/6Us4//3y2b9/OT3/6UyYnJ3nNa17DoUOH+PCHPwxYjUm9Xi/OfdVVV/F3f/d3A67g9Mdp1zHpxC233EKjsXTHtdFocPPNN98JV7R6CNxy10Mw6LhRzjksOgeM5eAh7YQpXfyssFDBOCoKkYufcWMHGc8pMcEGWGiALCG3jyO87l2WUXar5Nz3ces/BbdMbffzEU4JYSQ4AV7JLo5y55yJoErglql448QqREp3yWcTRXbirgQlyv5wn5tbqSCdEDRI7SN8B3mPV9G6+ncw+/8JcdZLIAuSdKXHhD9GIwWN1/X+puyRiAMYFXP7wgyJEZS8CmePbVjWhcWVXt/dqi2VKY6FTY6FTcb9EgaNZzyqzhiu2YcX3QFumcrmRy7Z/XSkiyNdjPDwHJfxYIIktU5anYu0zmOXg0ljZNzCdwK8sa0D8yfAWoIudw/rsQAzEyIWFMHY0okiuNfbaKXzJAc/Q/OHL6L6gE/jTt6X8WqNBZVQxSOtCkx2TySHvkDzmpeDaiLcnVS3vg9v1wN60km1SbPP33LC88VuyZfoJMWt3ZfymS8hvvXvUdf/Oc6mhwE+ouTYYxMPZ4hnVFYm8RsnIIrwFn32ncg7JlJ039/6oA0wldt7fD5umXmV4ggXIzVlb5yKF1DxbUfa6JQoywgaO/N38D37784ZvwYHPok4ehmls/4Q4xh0x+J3lPGk33NfDsgcn8ySYxMNxglwSxPIHp9hqhM0Cs8JmChvwpEusVcFneIqgyx1L2D7aXJ6oeZX8cKIFNn1OS+0YnwH/EAWydWu4w+cVPXhBQwgxjwccRyz7wP4wlC54A14wWTf1w167gHmMm1aOVtAD7uj3fksVyeqLAgfGfv4BEu62/mx4xsvZO6sD1H62bMQM9/CAXBKBBsfaQ+MldVX+R5ONl8IEeI5gopXXfKMDzue5MeOB9M0k3mUSQeOFwPHE2MKfYk91n63UaSouFVCGeC6TXzHs/Nfx+eZH5vDcwJ7PzkB4xe+jdYPXkB06//G2/pk5Nh5eEdPoFoxcrKCt/GsrjDgHMejJgYYC2psKE8O9Vn0+91qxsGNkq7096HXBokmkCVri1QuoVrzSFzc7PXN2M5P+djjOQHugY8ghCHZ/iwCfwKTQhK6jHWEJyulSWMX33HZMFHCd/to7crbqVzyYcx3noo3dyXu7R/C3fBunGoZ7VptmVR+18p1lHXEKM+95wQE7qmTCzz+8Y/n6quv5oEPfCDGGB760Idy7rlWx/WOd7yDhzzkIYyPj/OiF72Iz372s3z605/mN37jN07Z9Z1KnNauXI95zGN40YtexPe//31mZ2eZnZ3lyiuv5EUvehGPfvTodorrWCHy1PdO4WcfZ6lGFsRWdmtwOPPEnwwQlZOjnUS3Wg5s4Y+ubPgViMJBJnfAykPR8sEz7UG5iYfML+mEkKII3jNN+17e1icja+dDOl9kEOTIr2OJM5fjgnA4EbWYby0gBOyqToxsDbkY06VKV+BiqhNMZhWsGtbG0d348L6UjFTrIhAycHJbY1bsgJPb3oqgumz2xLDIU+DNQtxzl0wISfni9+BOPxRUk+ZVz0LVb6ZcdvE8yfRUGdeTKJXSvPGdNH/4IlBNnIkHU9n2KZyx8/sWArn19GIKlZPRNZQylM55BaK8ExMeKBK8C1cZNZyrjCjVQLqgU0zYP+k653mDKXbIzUKMmY0wc1HfcLdW5vilhIMQsssmODn0eUx4AOFP453RnvScDQ9EBJsxySzO3FX29atMnWpnmSzd0SwyTPoUt3kieOCWi0WuDLJi6yTphHn+Tap112IvbHVnlywHEynMfPZ7bKwQ3vA20CHO1ANxtzyx7+t01CS543pU/XjfY3LXsLK78r1G3wHjCRSy770DNgldVy8k3P33kLknudO/hMi7F5lVMB3WyYUN+SrQzMqe7T63VphnonRa3LveokVtFCkC6eB6gjiz3l0u8FQKWXSg2PgIvG1PAaNo/vgV6ECj549BpJGVjT2LEqV1kUO1acTckl7wT8aVK//uXInI5lXT0c3KO1uFO9+JKxD169CyBDt+i4lJ+3wuzCddeTeNRmap7ctlrfndiftQufh9AAQH/41o/0eysNps7m2tTrbWnYXnPe95vOlNb2LPnj1cfvnlAOzduxeA17zmNXz/+9/nBz/4Ae95z3twsjXBs5/9bK699lq+9a1v8YIXvIDrrruuKErybkl+7rt6twRO88Lkox/9KPe+97151KMexfT0NNPT0zz2sY/lPve5Dx/5SG+b1nWsPtoZJu1BtVggdAzaxhiasXVVKzcDm6LtCMSm0W0PO6Eat5AetWK33B+9c6EihEBpXUzOuV1mvjuS9LAMzvUlwQiFCXTaBmfFmpCUzn2lPefeD6DjE8WxJcdFCmGDzxbZjTYQzIQtRBqzrTJO1Vs6YY0KTzqMe3aiPdKcxxiNUAZHeKQLVujr5XaePRDrNkfdkRKng+6xEugRs0uGQtkFV4A2NpyuB4T0qfzCP+FM3BuTzNC48hnI9DCbNpcZH/MJiJi+6VUkt/wNAP7uF1E+658QzgSi1P9+yCflxbtueWGilUG4Fcr3sgLVeO8HUXM/sgVtkQA/RGEiBLI6ac85INNECNEuvrNr00fbPHV9orfYNYwbGAw6W3jkNsHGGOJb/zcA/q4XdBWwQjh4W58EgDxqheCrnmXiZlkmSXfBadIYjAZEkaG0GK0kG3c6HPjEKhUmUogi8DPMXJKSRJMkGgSUSkMWJsczbUnNQ4XXkBz8DCAoX/DmgYYvauYAJo3Qc0f6HlNsyowQrLgYjk4xVYlxXOL5/tQfKQW+L9FjD0ae/37k2L0IzmybVuTFd6cDXZ4M7q0g9X0x2inw8bI5Vb0QK/u7dVLlip9FCs9x8QJJlI1/vWzdFyPvUCmdUrrgrQhvCr1wLfHN78J4CuH4SDnZ87UzcQttDIHjML4KGziedBDCykGSEYuTYuPEc8DJQ2Y77YLt/+fjTr5h2Nj4K7jBBptvUrGvm52JUErbQMWGfV2tNtz96W17EunulwKQXv8m0mPfbM+963kmP/c4rQuTiYkJ3v/+9zM7O8uxY8c4duwYMzMzvP/972dqahUXO+sYjCLDpD0B59khRrV3rsO0bi1EtSQ4YSdasbly0oL3eO8HAXA3PabwR8/D1vIdqNzD35OymPxyys3iLJMk0egsv2SUQDSg6PzkHRMAd8sTkGMXgqoXCzuwC8d8t7WzaxKmCYcSe01TjsOGYPUEnRszyspsvECiNY5yMOogunUdIHE39+805pNYHkRY8LpXsDOu4yYmDQHRM0RspRBCIMbaXZO+x7k1Kpd8HFk5CxMeoHHlMzHJLLq5n+kfP4fKzFcwwqd80bsp3/MvIM4WhgMWmbnz1WKaTE7jyUPnvE2PxNv2q4Cmee2rMDodOgE+h6zY8U235pYkL3fCLbj3CWY+spsBuV6qkWAW502kmlhF9t5wPKQQRSGvTnwbNX8NyBL+rt9e8l7e1l+x/3P0q6DjteuYLArvy3es802IxVA6LTj0+W46tAuT1TBgyJPU882PPLskCJyiMB0EEyv7/QBMlwiv+3MAvDOejjNxcd/X6eaczb3AjrU6XPq7JFoVOSHlETNMuq5RJTg1F6RLPB8N5O3nxVhcewxjD/ky7vSlnRdk/5uZTmhjik7sSsMVO9FJ0co7ZaOgHazYPe5qbYgTnXVMJGF2rSbpXeB3ojPsVAYbKV1gHQ7j2/8R49+BHNsIjaXPizGGY1m3ZLq08nyvTgghis95ZAF82g7GzDsmdBQmRcdEuqj6TaRHv4xBUN/6rGLeHZ/w8TyJ1oaZExGtVorWNsy2NGDjZzHk7pcSb3w0GEXjhy9GGyuIHyasdh13bZzWhUknpqamimJEa803vvGNO/mK7j5od0zak55wvLZ7UFYkNGJrMVie9RBGQNlFTp6c64mOZ4gP/CsAwZkvbV9T3qnJCqTZ2E4enZ2HojBZtKsWx3nauxzd/SfftYk1Jh/EO7sm+/4JHR0rDi8S4LPCJNWaffVZtONRdj02nQT1ovfl2cDFVCXMxyGOdkibXwPAmbo/0p/u+9p8EssnGJm361ewM150SyoTiFXYJe2EGMtohH3oXDlksJHq/T+FCLag69dT/97TqH/r8TjNG1HeNOG9P4q/I7MIzQoGMaAwWRyumKOTypWjdMFbwJ1Az/+YeN8/tSmArSELk6BiO5RGY8L+2U6dQWR5t0RMlxDZzqSZ6d75zhPfE1I8p0zN84vFUHSrDVT0z3gaMlhqkelM3R8RbANVx529cg06Jr2pXMUmRJ/d5JzS4zulrqJR+GWbXm3UUIGVg5BTpPINkDD7HoemcR1vWeZp1SOd/QJq9vvgVCjd4zX9X2MMavaQ/Uu20NTNmSXH5WNL3qFdKUwa45U98DxSpaDZ//vNO81RrNB6UYcrdzvMv89sw0MKMZTD2TDIwxZXkgIfZ0XsYm1CHGswUPZcXE+gHY9E6aE6JvkmTtFV3f7rOOMPspki9b9HBBVMI1kyXs3EIanWeFIy5a+eQ5ifbYiNTOfqpOEVuh+DUWkWrmjP5wiXeK+1r46nHk5a3l3Q9KQUTG0IENJ+pnNz9vOr1ryRCi/X8QnPfiVm/GJI52hd/0KMmoUwHTjur+Ouj7tMYdKJVqvFIx7xiDv7Mu4+6NExgY6uSRKhdEorqWOaCZVWJijcevJ82eS2T4BqIcfuhbOhY1eug8qVas1cVphs6EjL9TLqmTJpl04i15eMSuOy7yeLncDOlrK7+bE4E/cG1SK69f3Fvxc6E2Unpf31WRKt8YIyW8q1oqhbTUwHZZSOmYtDZOqgssLE2/L4ga9rp77nHac8/X00Tq8xpqAgrSqNK0fFtTacqj+dK4es7KR6v0+CO46e/zEmmcGMXcjhe32SVs3uVJtE2XMJLNG+B7TRRbjY4sIkL26NoVikyWAT5fNfD0B40zswZAvMEWgIw9C5CirXXBNibamTUyXEBrsbbOYiTEcHohW1MEaTGIMjfWrZYl/Vb8zokgL/zJf0fC8hJN42m7PgHftaQetYLeQFntHt7hO0d6z7FyY5jWus69+FEAjfjgcn2zUpdSTAx7EiTQ1CMNQOsEkUZi4rrqYE4Q1vBSA46/eRpS19X6cbJ2zXUbq409aZUjfnlizKFmvrVgyV4EmJGiuRaDWwI+l5EscVYFiSAp8vbnM75Ligca3eciP/rleSAt+vY5L/HqWSSyBdjBvYLvIwVC7R7pgAmHABd8vLQJbRrWtJ6p+y9NOO5992S+x9uXGVuiU58q736FSuDo2JEO3iRCWF2YUQEpHOER/4/wCY3/Zs+5KObpjrSiYzvQkGhKCgeA0LR3ogfaLz344o70C39hIe+xMoGzter+PnFnfJwgRYr5hPIUzWcRCL+MuiQwDfTKymwZ0xeDKwi6NluNdRpKjXl+4iFe+rE6J9HwIg2POSroG7k8p1ImpijJ2YKx2TsxROIdJLVXsBGxUdk5Xt5PeicwkhCM59FQDxvg+jw8NAm/MdqZQDzXmaWZL5ronNOFIMtRs3Ksb9Eo7QGGMIW3Oo0IqV3QH6ElhK5ZJyZR0TEy6ATkG6iNLY8i8YEUKILhH8cnDG70n1ko8gyjvxdvwW/v3/HRVsKWg55Asr37F6kB7I6YBSyCUOQlKKfEO7q2vi7XgmztQDQDUJb3mDtdMdUgAPFBQ43ZrH9FlguNLDGENy3FJaxIYywpGIqmd1LRrMbLv4bcVNex2OixCi0JfkXHF3y+MKumQveNtssJw78y102hxovTkqpBR2sYvt7OQouqM9hO/aKMLUdooWFybQKYDvnxFhVIv4to/T+N7Taf309V0dzxw5lStWikb23AclZ6iOa9EtqbjEh/8JE96BKG3v0mUseY3WqDk7hjjjmxHlib6GCIXw3Vl599UYYzsmQqLHS6RaDxTAA5TyrkkHtcYYU9CB8iI/LbRrq9c5dR0/2yAwhMnwRWeq4qyQEUu0YnE2DviBQ+C44HhEWlm68jLZEE7HJo7RGjVzB9LfTLDbhjLGM+9Bp3dg6u05Yz6JiJXCkZKpVaTzQrsIHLljEnfrg0SHziSnbjrCId7/MdAhcvwiwtovZO/Z/f2Wyy7Vqn19peqNzE4oGA9ujeolHwOnhmp9j2j+7SPlw6zjrofTzi74kY985LLHpGm6qrsL6xiMQvzm9itMIpoiwcxFVPQ4+AKxafmBdnY2QmU7j9Xq0t2+5NDnMNFBhL+pWBAV15Qv6B2PE03bzp/uMbi7jodKUxId4VMq9CViBfqSAmUXZiPMIqqDu/GROJOXoGa/T/Sz91G+51vxHQdHSpTWzEZ2p25ndYLA9UjALjRU2u14tgoYcx3qTYNufgdIkbV74FTPHPiauHDOyTQmK6RytUXvk2v2nIqxADMTWTrXVrPs+7gbHsj4w79nr88YaDRRWpNqjRyCxtWvW5LDcSSptla3uSu2EJLyhe+k/j+PJj36ZVzvK7j+o60A3lt+kSb8MsIrYZIQ3ZzFqS2l4TnSw9QTVKKhLBAb2nQQsaGEOdjAzISYDdZ2uBU3CdMUt1wmcBx8x0FHR0nu+DcAgj39F8sAzsR9EeWd0LoNd/a76KkLlwiITwauI1GpIk11u6M5wJHL0rgMrvR7WoEOEsDr8CDx/g8T7/8YJskoUse/QXz7vxKc/QcEe15cGAC4UuJJSaI1c/UIX7hD0bhMqtuF4dg80VXWbah03usHBhbq+nFQiRVN16YLQwS9cAzdmEWW2yL/VemY6BQwuI6LGSuRnGhBojFh2ve5CEoujUZK2NkxSXVhlphrC9M8lHQV7xOAsldjITpBK1mg4vfOB1qMdrekW6+klLFmBkAQSEqxy5zjEuWFdxrBAFv5tglFil44ajfOHA//3N8jnf0aaua7RMfeRKn2T8jMDOZoy96T00H5pCh4vdDumIy4cZB2ULnAOl4mIUYlpI79mYMh3v/P9v93vxiE6EvTm5gMKFfcFc21rtPOoxG186jc5x9ofv+3SW7/JP7O5+BO3mfkc67jroHTrjC5/PLLede73oXv93cpiqKIK6644hRe1d0XxpgOu+BFE1+22xpHC0RKw1xExRtDbq4inMEDUZpqVLYrWq8nVCpud0fEGOIsT8Hf/byu4DGj0sylB+a0IdUaV0omenB0XRkQ0Sp2vHN9ibcSfUkGUfFslFyYYrQpdtmFEJTO/VMaVz6d+LaPE5z5u9aX3XFZyN5/S7nGmG9/F+H4djcujVe9MKm4DlIZgvg7wGA3LrCfdz/x+yiUHaMVumm1RmtC48rRSedqptCjsO0HKUSxyIxUSjmnVwyg9uU6pf6FiSBNcgpS+zxO7R4EZ/0+0S3vJjryNpztv4gJy4WAf9lrrUyh5g6iG70LEykcmA1RRiKmy10dHzEeYA43LbWmkUDNJ4xbhCql5pcKGle8759BRzgTv2A7PAMghMDb+ivEt74f79jXULufu7IU6D5wXUEUtTsmRut2x7YHlSsXP/dbmIqgAoj2c+b6pHNXE9/6jySHPgfZvS3KO/F3PIP08GWo+WuIbnw78f6PULrHa/C2/7rVkTkurSiklaQEgTsUFdQcy7olZZfo9r+x1tSTl2TmCH1eo1XRLZETWxA5d78yZQuTzBBBSEmkUrQxyA6jjZXAZMWN7/ngSKJSRqurJ/0Lk0AihHWji2NlO9BxmwqUI1kDKhdAKStMwrSBMctvTkDbkWsxjSufF1xX4Diy0BTFhTNXZDVLfZA/A2nSJG00EYA7tR3puJQvehf1/3kUKvwW6bF/x9n5POo6IVQpUogu+vFqId9citUIY3deVNoTAHbONwAqRWXfo3v0q5joCCLYhtr0BGg0Bn63K2UmSOEghUQbTapj/M2PonTPv0QGm9eLkp9znHaFiRCCl770pVQq/R/WRqPBq171qlN4VXdjZDtpQIcYzkJk1rSN8AQmDihRxakGiInlLQ/ziQBApYZWS3VxUNXM91BzP7IOQTu7HYIKq2DHZ6bQlpR7TkzeIgF8ziNeib4kh/Ada1mbZpzhjowWZ/qXcKZ+0e6Q/ex9lO/1dsa8gIUkZsIvsancobtxfVCx5dCv4uRkOxyacSEoJVfat1qWxqUxGRc4n2RW0jHRzVnAILwS0l/9CTdH7s5lZiPMQmSpSyOg5LgkOiZSKaWMijKoY5JbTrtOn8IkKwgWC4EBgrNfTnLoP9GNW4hm3kN5/C1DX6esTqLmDmKiOkYlSzYHnAUNqUE7GjPZfW1CCsRkgDkRoo+3oOwSpyGhSpn2ytRcH6OaxPs/bK/zzJcNtbjztz2F+Nb3485+F5XMwgjBrsvB9boF8NbZDUsLXLTw1kYTpnbXuez2pgwK6SD8EjqqE9/+7ySHPomaubL4uTP1QII9L8bd8jiEcDBn/xHJHZ8hvPFtmPAOWte8nGjvByif/yZKlYuJwyaolFLJXXZjw6QaM2ev35RuJrnOmniUzh9sD6znj4BR9hnqKO5lUEG4ASaNMK05RHWqEL4Hjnty3cm88M7GdFVxSVsKtx7Dxt7frxCCIHAIQ0UY2sKkoCl2LEaTRZ3Y1ULgVLKFqyJWLQJ3+fEm75j0yi+B9rwQ5OJx6aINmGQwrc1u4gj0wjEUE3jlyYKK6VTPpnTOKwlv/EuiE3+FPP5oDmd5JRuCMu4qF2zQ1gnacX24oo38u3NFcXxB5dIJyjhgDPLAJ+177H4+IbkecXW/2xyu9IlVaDvWTolg9/PW5H3WcXrhtNOY7Nq1C7nMgyqlZNeuXafoiu7eyB25cJY6agjXxxhDY+4YphFTdceRW5emTfdClAnQ88m9Xu8WMefp094Zv77UISjTl0RC0kwThKAvRzdfSBYdkzxYcYW7ODlEOdeZdC/a864JQHzbJ9Ct25gKypwzvoGdtYnuY/Md4FUWwOfOMBvDm5A0UM40ce3Cga/pXDzk33OnXfCwmq62G9fa23kXtsHzg925eiFfeERJ2naiGZhhkndMehdAuTZCpUuvQzglyvf6K3uehf9LOnPV0NcpXL9te5t1onIYYxDHY4SQMBmgWVpAFtSuZkpzYYFYK4wQeJ5P1fOJb/+/mGQGUd6Fu/UJQ12THL8QU96F0BHpkS8P/bsMg8J6OaeU5FbBPbolYVK3ujbp9U2eN8kc6fF/J7rp+YTX/bEtSoSHd8ZvUrv0MmoP/Aze1l9GZDvjQkj8M36dsYf+D8E9XgtODT3/Yxrf+3VK1/4OYv5nRFpRrgzRLTneshqfkkO4962Awdv2VNypS/q/RiWoBatxcSa2LhlzC91RZojQWpTdtFLkC2/pBnhSoquu7XS00sJ9sBfK2WZSo55YfVUhfG/P4bmV8WovwIUQlHJ3riHDFpOcyrXofunUl4AdBx0pMa5PotNC0zgIMonR4QLKKNyp7V0/88/8HWTlXqDnmbvhtYQqxZWS6dLabN540inoYUML4AtHro57u8MyWOkUZ/6HiMaN4JTxdz676IatNk2vePtFOU3ruHvgtCtMbr31VkqlwbZ55XKZW2+99RRd0d0cvVLfMwjHJVQRaiZCak154zRiyE5EPhFMTPoICWmii2wA3dxHevj/ARDsfvGS1+Zi2NlswB33Sn1343LqTaJjqy/RVl/i+yd56+fdnR4ptO70pTjTDwGTEN7y3mwCXbpwyDtOqy2AzxfR5QWrqQgrD+F4NNiLf7G+BGinGTNc+ruJWwWXX9ZOQc5Q1bOZHTmdawTkhUnYzG2n5UD6YdsquHc3MC+wVY+OCYA7/WC87U8DDNGRN6Hj4YvR9mK02yrWzEaQaBzXQ9T8QgfTCeE5iLHMsvroDJFK8b0SFddHoAu6ZHDmS4vF+XIQQsCmx9prOPJfQ/8ew6AIWVSmEGRDP32JpXH1Er2rxi20fvJa5r/2C8T734tJjoA7SXDOnzD28CupXPy3A/NDhFOmdPYfMPawb+Pver61Rj/2Fc69/bfYdPTtuOZE39dCri2xz5wWX0fNfAdkidJ5rx34OjV3GIxGBFVkZWLJzwuntnABo9KOYMWTIz8UdDnXs1azniTxczpX//GpXLb6AWOyzaXCKnjtOyZg6VwwXJ5JoiK00dZdruM5TlNdUAc7O+klxwXHJ1Jq2cLEGINYsPeEqY4voX0J6VI6/50YHPzGV6jMfIU9tclV+UyMTtHxUhvpUQXwuSOX6NCD5FbvJitM/DusE5d/xjOQ/lShH1ptml6Ofllk6/j5xmlXmPTCvn37uOyyy4jj9ZvzVKPIMOmzU9ycr4MylJ0KctNw9sBpakXCCDsR5ML3vGsS7f0gYHA3Phxn7Lyl15TGpFozny0CB+062YFNYIymFdrJxfPlSYuy8xTaxR2THKVzbK5Jcvu/opv7ep8jT9weIsBrFKQ6AWNw6t8CoDX+MOaTcODO2WJ9CWTJ4kPSuYwxpCduB0CWJ5bqkdYA3WGLo3Wd8sIkyQqTQYnv3VbBfTomRcjigFC6C94IzhQ6uYn45r8f+lptYSIwcbMoyo02mGPWacrbMIaQgrTPdySm7CIpPDFPGEf4Xpkxzyc9fBm6eSvCm8Q/4xlDXw+A2PLL9jqOX4FJ5pY5eni4rtUtYOxn2RmuuBh54GXgZgJ3Y0iPfYPGVc+h/o2HWIGuaiJr5+Nt/2NK536U4Ow/GWjRuxgy2Ej5Xm+j9pDLMVOPRqCYnv80jW8+mPCWv8Wo3vko5kTWLfEV0d632+s882XI8o6+72WSEF23i1tnYlvPY4RXyha9BtWYJcoduU7WKjhtd8YL4XQlWx4s4841ljnkNRoJaW4k0dkxWSPxO1gB/LAp8P2E7/10h2XHxbi+7TIus3mkF44hlQLpYmoblvzcGMPByh4a5WcCMH3r/yIwg93EjArRzdtIZ64iOfQFon3/THjj22le88c0rnwmC//zaOa/chHzl+1i4Sv3pP69p6Gjo8Xr8+8xHlYA35lhkqOjY6LrN+HNfhcQ+HtelL1k7YpO6NDuqPWOyd0Jp53GpBNzc3M885nP5Jvf/CatVot9+/Zx5MgRnvnMZ/Jf//Vf7Nmz586+xJ9/FBPW0ltFhTHhQhZsuHGyr9XqYhQTgWcngmrVpVFPSGJN2Jghvv1fAPD3vLTn600aMZ9EmEptiUXwYgghcKVLqhMarRYQnJS+pEDJtWW9Nj2da9wNv4i78WGkx75OePO7qVz8nqXX1mG3vJpQOkY2bkKkR0GUkRsejDFwPGyytdKbi9/umHQvHhzpojqsIvtB14/bhGrh4CyiMawlxLhvszoWYsyWIbnUQJBNpKqVoEyAOzBYsb9VcI48g0MPKEykv4HS9tcS3vYqov3vxdv9VJzqnmWvVTguolTDhAvWnWtii92NTw14EneiSpTM9s2bya2DW0mTNImpTQbUXL8dqLjrtxFD8PO7ft+xC4jLu3Fa+0gOX4a/42kjvX7guV1JmmjSVOOk/TNMihRqo4hv+wTR3g+g6zdkPxW4mx9DsOfFOBseTHrwBqvNiBqIcm+h/CDI6tm0dv8DJ8pfZdPMuwla1/UUyEOWHXPcXncafwrd2ocIthCc9XsD38MK3g2yNI4s9d/kkZUpVNwiXDiGLk8hhSgK7ZWi3THx8TPdQFyRUKcIBuz3bJVKDn4giSNNczZmrOIWi9s0067B2uyq5ynwUdqkldYZc5YWBTly4ftSfUnvXKvAccG1HRNUgtGqZ1isUQlq7hCudHHKG9EsLQTuaC4wn8S4G19A7eA3IdlL69pX4279ZUx4GB0dwUSHsv8exkRHMMnsSJ+FOv5N6lc8hsp9/xF36gGjC+DTbOOqg8qVMyV0GuMe/b8AOJsfg1M9C1g7Y4McK83SWsddG6d1x+QP//AP2bNnDzMzM0xOTgJwn/vch1//9V/nd3/3d+/ci7uboOiYuEtFv/UDBzHSwS2X8CvD79gtnggcRxZc5eatnwDVQNbOw934sN7XlETMxxHG8XpaBC9GTr9phdmO2UnqSyCjsyyT5h1kWpPkwP+Havysx4XZbg5muHThYZGoGG/Gdkuc8oOZHreT9YmoZa1yeyBPffcXTbzDpL+bJELNHrTvN7m1572yZsjpXKmBIVPVAZzM/lVEmlirIa2C+5s6FIWJNj0F8Dncbb+GU3ogmIjwJ68eWhvTqS0w2lj9AiA2lgtbzUE7xmbKZyFu4tRjqn4Fd+FHqNkrQfj4u14w1DV0wpEuybQNuU0OfXbk1w+C25FlYvpoTJROMck8wf4PEX7jQbSufaUtSpwK/u4XUnvo/1C95CO40w+xnbUBtsHDIIqUNQKceCCHL/w40fl/jShtLwTy9W89nvT4tzDzEfqg1TuYWp3o9r8DoHSP1yLc/sWGjpuZcYR9hgYhp3iFrXlIk5PvltB25RKuXwinY09Ykw/NskGm4+M+aEPYSKxxgdcd8OfIk+9S90OeAh8uozNJlglWXDwvlBwXpEOUPaP96Fxq9hAYjevXkJXxJXqIQ80FZiL7vG7fvI3yxrcAguTQf9K6+ncIr38j8a3vJ7nj31DHv4mu39guSoSPKO/AmbwEd8sv4+96PsG5r6Z84d9Qud/HqT34S4w98hpqD7kcWT0XEx2m8d1fJ9r7AfxVoHLlHZM0Pop39Iv2c+nI31mLjJpOtKlc64XJ3Qmndcfk3//937n++utxnO6b/vd///c555xz7qSrupuhT+q7mYto1mcQnkd1ojzSwjruMRHUah7NRog49GEAmyHQYyIzWrEQ2QwK1y/1tAheDNfxSENNoiLK7iroSzKIimepXM0EpnpYFU/+Au4mm2ER3fwuKvd+f/frhchcdkJMEq3agj7VMeUT1k7brTwCv1zGb4bESjEbtdjQg/pWULkWfc+dAvi+7zdzoODFO2Mb+x63FijcueYizHxchF8Og0A4RLEilorqgC5aouyCZJAtrpQCISjS3/s5NsmyRzD95zTveCrp8W+Q3PFv+Gf8xrLXKisTqJkDmDREHZlBZN0SMRHgZIv3QbuKSUXTUilSOUwRFN0S74xfH4nalMMRLunGh8PtHyY99g10fALp99+tHgWuKwFFEsX4RgNiSbhioiIqN7wBd/5HNjajvINg9wvxd/wWwluqzRBBBRon0FGDlSyhWk37fIxVfOalpj79BDbt+jWivR8kuuVvC4G8U3k4weSf4Gy6gPjEX0G6gDN+Md4y37GasYW9rG4YaEsLuSFCjbDVQLTmKNeW/r6jwGgFuYbM8fCzXfBYK0StbJ3v6jGi1n988n2HwBUkBhqtlMBtd0xg7XbUIdOZhEcI0ybaqC5tXA5jDHH2HPsdHZM814oeukPrdAba8UmUxk0iWOQ0qMMGumHpd/70LoiPdT2HR1sNjoWWcnlGdZwx6aOP/wL+5B+SJp9H+NPIYAsi2IwsbbX/DbYgsn8T3pBZUMEmapf+P1rXvoLk4GcJr/tzvOPfRex6LYkeckzsSH3PIaQDQqJmvoAwMap6Hs7UA4vPdC1petAWvxujrfi+T8d6HT9fOK07JpVKhWPHlqbw3nrrrdRqw7k/rePkYLKdik7NgFGa6NAMsQ4RUzWqpdpQriXQrS/pnAhcV1JufQWZHMC4G/C2/1qfE8TMJRFGOmwo14YatD0ZEMeZF7rvrNrOXaEzGbBTXzo305rc8RlU/cal5/DaIZWrAW0UpnUAp3kLIHGrD0V6DtOZHfGxHgnYNsOk9wKiKEz67Fip+oksiVrgbujPn19LtFPgR/sMS2nmWiN0kXTcC4XwvY9VcI68azJIZ0LJRXq78CfsrmN43RvR8WAhNdgFgiyPY7RB32555GJjOaMqtsPd+iFMW7QCiSsCxmf3kx62ovWgD11yOTjSRZd3oSpng0kLs4rVQNExyTqcwvWXPLPJ4f+yRYkMqNznA4w99NsEZ/5Oz6IEuhPgR3Vw09oQZtqJyZp9XkOVdgnkve3PBRxU83KadzyV8OifEd/2CQBKF7y5oHn1PH9rARPVAYEzMVyRKKuTRCpFtOZO2pErD7BEOAjpFF3TVGtMLVsY1pffsR4rZ0nwuk3XTXJx9BotXAE8J8iegf4p8ImOMEYjhewK4syv0++RayWFIJAuuB5JD52JMQY1k+nqqhvwAksRzMfKE2GTwy3bxdlaqTEVlO04Ezj4ky+idp8vU3vgf1C57/+hfM+/IDjr9/DP+E3cjQ/FGTsP6U+NNFcJt0r53v+b0gVvBeHCkS+w5dpno3vMO4thtLEmItCtMQEQBj1jxwu947eKa0rN2tL0INM5rjtz3e1wWhcmL33pS3nxi1/Mj370IwBmZma4/PLLeeELX8jLXvayO/nq7h4wPTom5miLZjwHnqCyebMVSKsEM4TIrpgIvKUTgXvkQwAkG55JqnvTZpphgyhNEZ7f1yJ4MVzHt84rJsYPVvGWz5OfE93XUtOZuDfulscDhtZPX4cxi47LBfCrVJikKiloXDL4BYRvQ/mmsnThWCnm426xfd4tscGD3Qt0R2Qc3x6LXqMS1Mwd9riJrYXL2ClHB53LNIefvPysMImWWde1rYIHFyayKEz6PwdCCggcvInnISvnYZIThNf/xVDXKyuTMJdiGgtFtwTau4pK97d1XggbRBWB7wS4xz8OGNxNj+xpLjHUtWS70snGjM518D9XdJ5ecLMd26QoTLrHAqNj1M1/bf+y4zl4256EWGYnVXilLIfJYHoU54MQRQpjbOE5Vg6QQqCNKbj7Qk0QlF5FZftncMceCSiSOz4NaNytT8Ld8MCB51dzWbdkbHr4rmlpnNhoRBIRjBCi1wttuq69jxwpC6vZOBB2lZClwA+CayAoOeBKFhbsOZM1pvrkyJ3ZwrQ3nStOh8svWYzAcTFuQNSjMNH149a4RDg4k9uK51AbzYmwzh1N6xS2qVxlY4dmKM9cGqbYGxVCCII9L6T6i/+OCLbihbey8cfPJLrjM4NfmHdLpFjiTqjmLkeoWbQ3jdjUzsPqtIFeK5qePX9emKybH91dcFoXJm9+85t55jOfyZOf/GSOHz/ORRddxHOf+1xe+tKX8oY3vOHOvryfe9jU9+6OiQlT9IkWDTWPmK5QK0+3gxeHWFzn+hJ/0USQzv4APfd9jPBJp5+1JNckx0yW5VArjQ3tBOJKnyTWaJOuGo0LsAN47uY0YEFcOu/1IEuo4/9DvO9D3efIOybJKhUmOsbtoHHlu182YdgWcsejbiehfsJ3GJz+rmbusEFwfhk5vmlVrn8lEEIg8p3d+eEnryD7ysLlCpNlUt9zDOPMBTbIUQiP0u63AoLkwKdIj39r+Qv2qpg5bbuY47TzZoQNdwPT19b5RGMO40gqY6Aa/wFYl6iVIndsS6YfDkB6/H/Q0dLu9kqQFyYqia1eZ5G+JN7/UURrP9qbQu55ydDnlSvUmeQ25uWKDTHMheYtlWJaCfq2BdAgp86j8uCPU33Av+FM/AKidAbl8wbPU7o5i4lbICTO+PCUutAYTFDDkRI3Gi7Dox96WTIXAX3ogh45yDbYHqyoVq3wPQoVUaROCZULOm2D6z2L87a+ZHF+SW/he3HeQgCfdrknGpVabQmZrs5xkUIihUMzibktc1ebLlXYUu5md+SUONNYu4W2O3V/ag/+EuH4A5C6Rfij36X109dj+i3u83DFRd0SYwxJJnqPNj4BpyNMda0duXKs60zufjitCxOwAvj9+/czNzfH3Nwc+/bt4+Uvf/maVujryFDskgtrg2gM+lCDSDfRFYlT8Sl7Y23b2yEKk176EqDIU3C3/irG20SrlRbpzzkSrZhvzgMwVR3eWccoB2Pswk04J7e7uBj9ghY74VTPpnT+nwMQ3vCXXZQukQd9rZL4PYmO4szbDqNbeUQXRWlDUEEIaCRxkRgNbTvJxcJ36J/+rptzmVhX4GzYcac/j2I8K/CWWzx1wI/tAiZ1QfXp9mmjC32NtxpULiiKWce5GH/XbwPQ+smfYtQyttFzMdKvgifQTnsxaukO9nvqtauodMpcxnPf4n8VTIj0L0COP2jw+y0DR7qY0nbE+EWAJjn0hZM6Xw4pBVIKTJqgdLfw3SSzRDf/DQDRzufj+cPn5axEAG9pXHbMKmXfWykvTBohev8CaAMVF7ljzFLrpi+ldukXGH/EVchK/yBgY0x7cTu+uWdWVD+EKsWUJwikU4jmV4zcirWDElZYBmsNuSX3cjv8sbZGJhm1cmE+XnNxdI7FKfBLLi37t07hexyrItfKW0xfylByXIzjEeu0q2OiZg/aTRmvhKxNF/8eaTjUqqN0yoRfYlsvF8RK5uiYmmW7UCcDGWxk4cIPML/dmlvE+/6Jxnd/Ax0eXHJsT+E71unLtG7BCJ948lFFVwhOjX4IOjvC6x2TuwtO+8Ikx9jYGGNjva1O17E2MB1WwUII63rUSmmYOmK6RMWbKATc0E4P7od++hLdup3k0OcBKJ/1Ert7ZZamwc9ELUgTAtelHAyXmQK2Xe8KH89zlrW9HRWikutMBk/a/q7nWZcxHdK65uVt7Y7XLupG5b73gj72dQQaE5yF9HZ17YD5jsN4Rrc63kFnySkpvXa+eqW/G62s4B1wxjch/aVi+lOOqtemnCzzXYBdFMpE4wqJLjmEfegwbatgp6eothPDWAYDhQOYCVPr1hRsQTduofXjP+lbnBilMcdDRHkcscHDtOa77he3KEyW/u6JCmkmMQ6Gyuy/AuCNPxfmTm6izx3b2Px4+z6r6M7lugLSmDTtKN6B8Jb3YpIZVHkPyeYnDDQkWIy8MNEjFCZhmIKx15NvppQdF2JFsm/WFiXlrCgZ0i49h64ft5s50kWOaBrRTBNMUCPwPEwaoUekp3WicOTqKLzbGRiqLXpfJgXeZLvutakAISCONY3sWVxLjQlkFKbM9WxxCnw/4Xsct7v3fa2QXRfcgERptEoxKrUOapng3Zlqb8q00oQjrRYGKDuCHX02z7ocHdewMAHwHZ+5nS9HXfR/wB1HzV5J/YrHkB7/n+4D+3RMor3/x/547JfQolRsVEG7075Wwvcc7rrG5G6Hu0xh0ok4jnnBC0a3uFzHiFhM44oV2ihCv4VwJBXfCk2HFXD305dE+z4ERuFMPwRn/F7UsqTqZjMt+PrGGE5ELUhjJrygZ+Ba3/eNFI708HxBqlaHMlUgd4EKFWaQtkAIyhe9G9wJ1NyPiG55r/13x7Op0jAUFW45mGNfBUDWMqtlt/sR35g5cs3F7cDFXPjuO0sX3r3S39XMHaAShBsgR6CfrCWEFG2KxDB0rliDBt/NqCd9LDWHpXHBKB2TnPpoQNQo3+uvAEly8DM0vvur6NbtS15iToSgDaJWQ0yUQaeZ6UD23oUWaOnkPRctkKaGbdF3EMkxhL8Nt/o4zEzrpIrhvGg1mx5j3/vEd9DhoRWfr+vcjtU+pKpdvOvmPuK9lgoZ7X4pCGeo7yWH8MsgJBhl6VNDoNWy90VuZw4QaIl3e5M4TqHkIHeOLeHlLwejNWr+CADOxJae+RgDr0slICXlbLdeN5cmfw99LR2p7zlyd75YpQhXFnq6gR3JbNfdKblUMh1FrjVZ61116K8zsa56BimcLgOLKBysLwG7WeO4LsZxSbKuiTphN2VkZarIm4lUyt76LAiHsuuytVwZ2EUWOWMg6T9nrAbyAjPa8Ahql16GHLsXJj5O43tPJ7zlfW3NY+HI1f4s1MINpEe/CgjCiUeCUt0dkyL1fZ3KtY7VxV2yMEmShI985CN39mX83MMsKkyIFS1dx7h2sAgyvumwVK5e+hKTNgr3mtwhKAgcPF+CgUbD7ijNxSGpUrhGUfOCYrEyDOJYFx2TZJXbwcKV7V2mZXI0ZGkb5XvZFOjolveQzv7QniPvmpykzsSoCDnzbftelUdk5+5+xPNAyjxwETo1JksnmMXp7zqst3cLN+xAnIIFx7Ao6FwLQ3zH2U6lX/ZBiCJBezHawvfld+bzYlsNyDGBTACfdwzDFG/L46je/18Q3hRq7kfUr3gc6fEriuNNqm1hAjibq0WOhW7MFsd0CuAX40RrDqMUZ9StQN0/88X2nksNDPNZ9UGhP/I34UzeDzBF5/Nk4WLHHqVlMf6EN7wNTIzc8BDSyQfgSm801yIhEFl3b5iuiVKmEEeX8h3uROEfaILSJJ5AnVEduSgBmxSOShCO30UFGgap1kXuUHnMart0Y3blRWbRGe/dMQEKDVe/FHijdJerU63mZV0TRRyqNadyAZSyjkmioq5FbJvG1e6WGGOKjbLlAnetziQgUgo1dygLkpU4U9uy8yv2LsygtKbildhaqvXU5HUhp9jGw2WMrBRtSp7Cqe6h9qDP4Z3xdEAT3fg2mj94ASaZa1O5OpgM0b4PAOBMP4rU3Ygxadc42Cl+X0sUIYs6WRVWwTpOf5w+q4oMn/rUp/jSl74EwDe+8Y2ef775zW/eyVd5N8FiR65Y01Dz4DpU/Q5bzqJjMniR00tfEt/+KUjnkdWzcTc9svj3saxr0qgnaG2sYFsljPsBQsou++JBSBKN1gbX8XFdsSbOHsPYBufwtz8Vb9tTwCha1/wBRjULqsrJFibJ8SsQqon2pvHci+0/uksf8bxrMhOH1l0ozzDps3go9AsqRp1o22PK0mlm2T0CnSunUHgVuxjrX5jkVsHLd+hy8btWZtkJVCyicrgbH2p3NMcvxCQnaFz5dKJb/w/GGMyJlqUMlRzEmI+sWF2Fbs0VTniD6A4zzQU2RD+ilOwDd4xg57MRk/ae0yeW0bUM+n1Fm+bnbfsVYPXcuZy8MBHZbunMVSSH/hMQiHNeCUKM1C3J0WkbvBxyGpfnSTxPYlKN3jePTA1e4JGeUSHqkfK9HIxK292Sya0j67PCbMPIdxy8yrg1H9EpJhxdBG+MWeLKBb0Kk1ywnVhr2cXId9wd6+rkOIKgYp+HsKFwToEGzZFusVnWStrdxDgXvrud+hJrdSul6KsvyVFyXIzrEWtVdCmdia0Ix9oI763PkGhN4DjsqW1ESrlsUnleAJg17pi009+z79EpU77o3ZQv/GuQAemRy6hf8ThU4yf5CwDQ0TGSA/8GgLvr+RgM6O6MmFMlfnekW9ht97OtX8fPF067tJqXvOQlnH/++TzmMY/h4Q9/OBs3blyvku8kLO6YJHFos0u8ClV/sjiuoFWpBKNVT1pCL32JMYp43wcB8He/uMvrv1Rycb2ENNEcm2vRMglCxYx7wUhBhPmOZzkokQoxMB17xah4MB8PbVVbuufbSU98B924hfCGt+Gf8QfAyVsGJ1mWRDp1Ka7JHu0ek+6YF+A7DrFSnMjCKqF/YZJrCdL5g7hpBI6HM7X9pK51LSCkQFR9zEKMWYgLY4JeMLlNaDUAmgMKk+XDFXM4jsjNsVDKFHkcPVF2YT4uOjcAsrKT2gP/k9a1f0pyx6cJr38T6eyPCEqvRVBGbrQFpQwqWTBnhGnNIapT7V3FRQuiOI1pxC3ObVphur/zWQhvDKa0TY9vpZgwLQqlUdDOuEnxtj6Z8Lo3omavRLcOIMtnjHy+rnObdmFijCG8/s0AeDueQVw5E6LjKypMRhHA525cpbKTFSVzdgHuSbytk2BiQpUyxvC0UsAWJblwujq8eD9HM+twlB3bMZKVCXT9OLo5iyyPqMNUCdiIyq7NHk/KIjA0Vgq/ZCmPJNo6EC4OW8wX2B3jjVeWCCmQWtJsplSrJ59QvxzK7hhR2iJM6owFNvCzV8ekoBUPYR9fclxwfKLsnhFuCTm2EaU1+xZmiZXCk5LdtSmMsfPLoEyh7GKyC1njjonTXWCC7Rz6O5+FM34hjR++GN3aR+u2ZxJseAOB93x7/G0fBR3ijF+MmbwEZi9HarqK6H7ZV2sBV3pZJyxeNk9qHXd9nHYdk6uvvprPfrYtoty7dy9Hjx7t+nPrrbfeiVd4N8Kijkmc7TL6QaUrgVVIp7AM7re4zguETn1JeuRL6OZehDeJf8ZvLnlNLaMPHJxZwBjDuJDWM31EfQlApWwnJWXSvpaqK0XeMSHsnyPRCelPUb7IOgvF+/4JtXAVcHKFiTGG9KjtNJqpX8reiJ40EyFEEbh4pGUnWykETp8JxpEuOgmJ5w8D4E6dMTIn/lShCFtcTmeSFQRBxd5LidY9nblSlXPkh7vnhtWZtDsm3feicMqUL/7bIiQtPfQZWgeejZZ3IMbaE7KsTAJtOpfTQXfoxEw0R7lxC1PxT0G4BLtfZN/HlcX5zAq7JrKjYyJLW3GmfhGA5NDnVnS+rnObGCEA6RLf8TnU7FXglCmd+6cj0esWwxYmAqPigR1epXRhJVvyJfq2eatLcgVy1zjlsv3sWmq0HVyTxpbGBTiT20a+fqAwaii79vMvOmjN2aGypLqvJ++WdC/2REem0WI6Vy+qZC5873QB1MJQqjg4QlBfsJ3vtUZuG5ynwGujSbLNqE5HrmH0JcU5M8vg/HNwprZjgH31WUKV4krJmWNT+I7TQTtaZi7ICzhlBmoTTxb5d6iNKahXOZyJe1O79DLc6UeCiYiOv57W9X+KSeaJ9/0zAP6ZL8XI3JZcFrlm2hh09vuttfgd1nUmdzecdoXJWWedxbZtgwdsIcRp0UX57ne/ixCC+9znPnf2pawJClGk42GUJs0mcs9fGqRXWHr2mew7HVCMTolv+xdaP3mN/bedz0a4S52dymUHIw0LcUTU1Ezmi+xROibZjlS55BfUk3TExcRyECXXBvxpunbAB8Hb9Ej8Xc8FILzx9RhVPykql56/BqLDGFlC1h5g/7EHjSvHpF8qguKgt/A9hxQOev6IXYBWJguNw2mJmr9sIJxJlOXDC3BKXsGRXiyA10YVLm7ukNRBJ5vEl12E5QuiHuGceUha5ZJ/RTgb0MkNNPf/JsnRy4tjZHXSvk+4gFFpR96M7iq8Z8N5ts5Z3YfY9OSuTobYkFEI56OBbkv9f9duK2lv21Psr3RwFdy50ggpAQnRjW8DIDjzd5GlrUXxNQy9bjGElIhs/BrUNclF754D8mADQgWOQO6aQPhOYRncz82tH9TcYcAggiqyPLzleSc6OyYAslS1jlpGY8L50U6Wd5B73N+d+gTooHP10pnESzsmiVYEFYnnOihlaA6wVF8tdKbAR2kzyy8xOMJtPyPaECeD80s6ETgulKoox0dVNiBKNfbXZ2mmCVII9tQmC7MAS3WybdNBDpDCkZBtYqylAF4KUYxvcQ+DD+lPUb7Xh/An/wAQJLd9goVvPBgTH0ME2/C2Ptn+HtItgpTtJbdDefttaK0mBtmhr+PnD6ddYdKJN77xjfj+0kWo7/u88Y1vvBOuqBuve93reOxjH3tnX8aaId8dEY4HiSY1CTgCt0fCd9syuPfiOo4UGIM7/0Xq//NIWtf+CSY6jKzswe8TkiaEIPVTjAEiQSmfIIcsTOJYYbQ14vE8WSwuE73Kzlx02AaPMPmWzvtzZOVMTHSI5OD7LU+8jzvUckgOXwZAOvkAHJMVeV7/SdeRsghchP40LgBRn8MkIRpOSwpXJ3I6F9gFd0/kXQrfQUjRd5GZF7DDWAXnGDpk0ZFdAvie51L3przt/yJLF0M6R/OqZ2ZOOgbhlazLFAbdmsuu0Z6vc1exUf8ZG5vfAcDd9dLuayh7llJmwMyO3jVpW4eajM71RECi5q5GN/eNfL5OmCTCdQT+/L9hwn2IYAvBmb8LUBhYrKRjAsPZBrdaKWhDaSa0phaO7ZSIIM8yse8dK9U3A2fp7xS2jSMmV/YcJbodWlju0IQUhWqHIcJQ19SnYwJLdSaFhqtX/kbafqaKf9IaIQQTWRfzVHdNWslCoS/xFtsEG9vddAds3uSQQuC7PnrzWaTjm7mtMUc9iZFCsLs2Sanje+jMFFpWD3Gq6FyLCszFECn4ky+ltOsDCG8KE9uOXrDnhQjpoXSCkA6OcIo1wamkccF6x+TuhtO+MHHdpdxnz/Pu9MLka1/7GkePHuUZz3jGnXodawVjTDtgsShMYnBlzwVB25lr6Y5GmmrM3Lcp3fIbJD9+MbpxE8KbonT+G6k95GvIoHdquDGGpowRUjDmBjTrUfZew+2UFl0a3/rUuxkdZ012XXI9wxAC+BzCrVC++H3YxdzXUHPfWHHXJDmSFSYbLsXRdiJa7Mi1GHngIvQvTEwSwsJx+/9jG4Y2HbgzUVCU+tC5TJQV3BmdKuiwRu1EmzI0fIdO5lSuIToQiwXwXdeYKMxsiHS3Ur3k03g7ngkY66Rz9UswaR1ZngTai9H8OvMORqxSxg79fwg0SfUX8acuWnq9U1n3YCYcuQsthCgKNmVSZLAJZ/rB9r1PQgRvVAJG4bKAf9zmKJTO/VOEW8koMrngf2Vc8+US4NNUk0QKcahOoDXIrCjp0OG4UhaLsmG7JnmYoixPIIOVZf/kwaglx0V28P0Lal9rfqTNjc6u+GIU+oRcOC0EotqbzmXipQF9+eK1VvVwXIHWhkZj7ReWuW1wK6kTp5m+pEP4XtCKh+iW5MgL0QPNeebjCCFgV22Cag93yEGZQp3IP6v8s1srLBbAL0YuwPemHkbtwV/EnX4ozvjF+DufDWTjiXSzwqS7Y3Iq3Nbs++Rj23phcnfAaV2YfOQjH6HRGD4M61Tita99LW9961vv9MTrNUNBdxIIx8XEynZMXNlzQVBkmSTdO69q/lqaVz2L8s+ejdP8EThlgrP/iLGHfYfgzN9BOEu7Lznm4hBlDLWaR831WajHdrd42I5J1M0j9vJdlzUQwA8btLgY7tQlBGdb8Xt88H3oxtIMi+Wgm/vRCz/F4JBMPhBXZQuoZXYDfcdhIqO1lPqkTqcnbseREuFXoTR8qOWdippn2RT96Fz5v2VJ3kG/jklWmCyX+N6JQmMyzM5wvtDtVZgcb1lNctlFjo9RuehdlO/1DhAe6aHPU//2EzHY7AoT1TFpvERnMtO4g+kZqztSm17ce3d43AdXWOvgYfJfFqFNj8nsl1fBnSsPanXrn0KoOUz5fLwdTwfa34kzolVwJwoBfBL2XMQ3mwniUAM/VTiutDklPcwBRqFz6aiJbs3Za5/cuqLrhg4al9tdSAi/jPBKgBktCT63Cnb7U7m6KED96FxFQF9v16bxvGtST5bP+TlJdKbAt7JMky7h+6J5YRjk33XerdpRnaDm9d4gyzOF9LAC+GSNOybO4I5J0e3yJLK8g+oD/pXagy9DeJayq0yCcHIql/2dTlXqe4626+A6levugNO6MPnkJz/JGWecwXOe8xy+9KUvnRa6EoDPfe5zCCF48pOfvOyxURQxPz9f/FlYWFj2NacDumhcgI4Ty113RW8KxaKOiWrspXn171K/4jGYmcsxuLD1OYw97DuU7vFqhLc8v/p4ZHe7tk1VkUKhUk0YiaE0JsaYQl+Su4Dlbh5rMriVXLsYTg1mxNZ8cM6fICvngVogvOF1I9/nebdEjV8I3jie7u/ItRhnVMY5c2yKyQ5aVw61cAwTNXCkhzOxGWXUafMMDoJw5GChbkblEkHWMclDyPoUJs4IO/NDhyzSXwBvuyW2cyY3tXfW/V3PofqL/26T4us30vjek9Hh1QDo5lwHD9suNuP9H8MxIaG3C7nhEb2vQQhE1jXRMyuncxVanC2/DMJFL1yLqt888vkATBqiozsQc7a4Sc74M0TWmSmKxRV2S8COaQX1dFHXxBhDdOs8opEQlFzkjnFEpXeXMKfwDCOAV7MHAWuzLXpQYYdFIXzvsZFQiOBHoHO1OyZDULlo60wIVSF4N6kNKwW6xpzOAL5y2bWWy9oWJ2uJzhT4vLuWFyZKGZJCXzL88qfcwdzYXh0vNnR6Id8gSJexDKbomJwaKlcvjQnQ01GtE0qnbSqXXtQxOQXCd2h/pos1dOv4+cRpXZhcdtllXHfdddznPvfh1a9+NTt37uTVr341P/nJT+60azLG8IY3vIG//Mu/HOr4t7/97UxMTBR/duzYscZXuErIJ9t8pyjKFkq+1+XIlaM90R+hee1rqH/zl0gOfsaeaurJtM67jNI9344MNg/19s00oZUmCAEbShUqvl3oNWJ3qJ3SJNFd+hJot4NXO2QRstC8fKE5pG1w+7U+wXlvB+GhZv+H5LaPj/T65MgXAWsTLIREpvb3FUPwp4UQPekIJo0L6ok3uSMrUM1dZlIQY9n9uEhnYlLdnogXdUwWO3OtZBGcFyZ6mF3hUm8BvDmWdUsqbkGdyeFO3Y/apZfhTN0f0gWiW15DcuTjqMZx3I70d60iyoc+BUB96pm4A/RGYrJki+pWOnLHb7EAXvobcKetK9xKuyYmiUiOfAhMSjr2UJLKg4uCuMiVOYnCBPrbBse3LaBmI5BQOmtyyeffibw4CNPBO+O6tYCJ6oDAmdhyUtfdr2MCbZ1J3kEbBm2NydLz5RQg1fFcdKfAZ/dKfu+6wo6D5P/cvas+Nm7fo9lIUGvoRAVQ9toZS45sz1m5TbDrikIPNgyqrs90qcKO6niXNq8X3AFhp504Venvi93VFiMvjPrNF6lOQTpZx8Qemxedg7SJqwkp5JqZ16zj9MNpXZgAbNu2jVe84hX84Ac/4Itf/CKO4/CQhzyESy65hPe+970cPXp0Vd9v//791Gq1nn/e8Y538K//+q9s2rSJRzyi9w7kYvzZn/0Zc3NzxZ/bbx+dqnNnYHGGSRpnIsJ+O0WqQXL044Q3v4Dkto+ASXE3PoLSL15GuPPdmNLuZYOsOnEisyae8Et40qESKISAFM8Gny2DxfoSaC9mjNHLThorQU7nGkVnksOduBfu5ufZl1//JlRj71CvM8ks6oRNe082PNhOisUO2MonDXXigM1a8Cs4Yxu70t/vEsjpXPEiOlfUpi3kVsqulD2duXKb0VEWwZ1UrmVDFnsI4E2sMHNLuyWdkKUtVB/wafxdNnMgPfpxolteg4gtVUiZhPqBz+Alx4idSdjwFFyvfzEvXIkYzwq5Ea2D5aKOCXS4cx1amTuXmrkSPf8/gCTZZp370tR+lokaPldmEESwNAFeH6oTHWmCAG/XOO7EYC1brjuIlrGGVbN3ACDHNo6UwbQYsUrRxiBEb+qlcP22sL85t+z5jFaQbzT06Jg4UhaOSz27JjmdK15K41Jat+1ks8VrqeTi+xJjYGFhbReXJbddmHTSuKIV0LjAbuBsq4z17CwvRj/r7iXoKEzWshPdKX7v+T5p//nCjvcmK0w6NSanJvW9E7l5zTqd6+cfp31hkuPAgQN84Qtf4Atf+AKTk5M87nGP44orruDcc8/lne9856q9z65du6jX6z3/vOIVr+BNb3oTb3vb24Y+XxAEjI+PF3/GxkYMwLqzsLhjEmcLgqB7sjYqJLr1H1j4+gNJj3wcdIgcu4jqA/6N6v0/SRpcAHTnlyyHRCvmskJoQ7aAkDqhUrJ6l2EmtV4TkBXAr6UzV0YfGrFjAnZR4U4/FVm5GFST1jUvxwzRnUiOfMUuLqrnYkrbcfBsSjhY7cAKoJuz6HAeELgbdnQ7zQywwDydIBzZU6ibFymi1D0J512TqPDpV0V3aFirYLBJ0nnI4jAORIvpXEW3pOr1pRCB7bKV7/U2yhe9B4SPXvgu6vu/hWzuJVUJaq8VjR8bfwKeO76s+1BhHbwQj2QdvLhjAuBteby9pvqNqIXrhz4X2I50fNt77Xm2/SbO2PmAFaTb98mtgk+uY9KZAG+0Rs+GmJmIKFLozVXKfYrCTviOgxQCY/rrTHRjxuruhIMzPly3uB+ahfC9v76mEME3Z5Y/Yd5VkS6izwKzN50re66yFPjewvcs80PKLpH+WKY1aTbT4jtdC3SmwPfSl4wifF/Je8MQ4ndXtldgayiA7wzLTBY5yPWj4eXIn2vHLdl7rnDlOjWp753ItTvrhcnPP0675PdO1Ot1Pv3pT/PRj36UH/7whzz1qU/lve99Lw9/+MOLY44cOcLZZ5/Nq171qjW/nttuu40bb7yRJzzhCcW/RVFEq9Vi48aNXH755Vx44YVrfh2nAm2NiY9JlB1kBbh5BoBRJAc+TXjTOzHhAXtsaQ/epufg7fg13EzgmYeUjTIRzEQtjLF0hUpGMTBpRLUCYeyTxJooUn13vYwx7WRfv3uwdWVAqhPbDl7tuz8XyMaWmjMMlap9YQFCOHhnvILoZ7+Hmr2S6Gd/TykTxvdDmulLzPTD7GlyfYkUPcMVl4NRKekJ+306E1syS9qOnfG7SscEYMyHemLpXPlCsxC+d3/5JcelkcRFYbISq2DI7UIFShmUMgyIh2lfx3wMYYKJ/Y5uyfI7swD+jqcj3O20rv09TLif6o9/j3jLryAb16NEwPzYk5iQwfKFScm1FJ1WipkJEUMszKGtMdEdBavwJnA3PZz0yBdJDn62KC6GQXLws+jmdSDLBOe+kiiSJIkuFrErcUrrBeGVbCisTtGtJhyNSRJFOh4gxn1KpeG+87Lr0UhiWipdQq8yxmS5JeCMb0L0MZgYFq3s3qz0oF3lkJVJ1MwdmLiFScKBepaiKz7gfL50aJF0CadFZwp8I+ltFZzrSxZpEILAISg5RKFiYT5hasPoWTTDYrK0lUYySy2w2huldNF5G7VjMgrcQg9hAx7lIB2G59gubqLa2UarjDwsM1aKRKvuzKq8OHS6aXg5VKaTcd0SEGJUYsN875SOiQ/JXWwOWseKcFp3TLZu3conPvEJnv/853PgwAE+9KEPdRUlAJOTk2zcuPGUXM/OnTvZv38/V199dfHnLW95C+eddx5XX30155133im5jlMB09kx6cwwkR7J4f+2WSQ//iNMeAARbKN84buo3PffcMYf3BWymAvQh50IjDGcyETv0x1tc5NGOFJQHbMTbX1A16SXviRHux28Bh0Tt4OaMyKdSwiBcH2kv4XSua8HILrpnaj5/noqoyKSo18FIN3wEABclb3/CLS5TqjZg6BThFdCduzw3tU6JpDZBud0rmynNP/vYpelxQL4lThy5ZArFMCbo5a+KGqezRgZEu7mBxOc/X5k5WKEbhEc/FcAjk8+knJgNwhyitnA6867JjMhZsi8iV4dEwBva9uda1iailEh4Q1Wu+dufBpOdQeOm9sv26wUnS14nZOkckG7a6IPnYDUEBswUyWCkjN0d7e8qNPWCV0/jkkjcDzkWG9L9FHQaRXcD8JxkSXblV9OBJ/rUHoJ33Mstgwu3id351qI23a3PayCey1cx8Yy04BWWgjR1wK+W2KqvLXYWMi76N4I3fuVoDNTaDk6l/BPjQC+r85kCOE72I4JAEaR5JuW4tSJ32HdmevuhNO6Y3Ldddexc+fOgcf4vs+tt956Sq7HcZwl4vWpqSk8z7vriNqHRYfGxESZVbAToX/wXJqzV9qfeZMEZ70cf/fzEE7ZUoCwRQRY+oXOEraH1ZfMxSGp1rhSdjmf5BaitYkyrVk7ycSxwveXFjy99CU5vCzLJFkDy2CwdC4TR5hmUuRpDP1aN7AF2PQv427+GumRy2he8wfUHvT/ED1SrtMTV4BqIIKtJJWzwKQ4ecdklG5NBt1aaAfAbdjZ9dkttoW9KyCnc5l6glmIwCu3+fCLC5NF1q/JSezMO44gYbjCpEsAn93jw3YrcggpccZ24e95O/NH/gH/2OcwOBzf8CSmnAqOK4ZbiI35xU64mY+sKH4ZtF25uhc83pbH0ZIldPNn6PlrcSaWZqgsRrzvQ5jwdnA34m17JkDR6UlTTVrQg7zBu9BDQgRVzPwMHJ6FqSqtqg9CUC4PPy3mRUJeNOQwWnd0Szb3pUoNC2NMcW8O6piAFcHrcB7dnB1sTZxvPi3TMYGlC1ox5tsCth5Ddm+JPlbBS87pO5TKDmFLMT8fMz29cpeyURBl3ftgyG7YycCRHlpFKJ3g9Ri7C3gOkKwplQvs99hg6feYO6uJPnrEwmzCDexOn9Ek2fzuCnlK4xKc9cLkboPTumOyXFFyOuB5z3seV1999Z19GauONpXLZpgok+DG12JmrwRZIjjrD2wWyVkvQzi2s7E4/b0Ishphhyq3CN4QlItBr1Ok6ZbKlLNFZT/byUECxzW1DIa2Y80KBPDkvvgqpnzhXyP8afTCdYQ3vaPn4WnmxuVufgxp/vkMGa64GEZr1AlrzCDHNi4JgFtsC3uXQWfYYpRa/YYjltDsOp25tDGokylMsnt9KI2JI7t2K8WY1zMzYznIyiRCOMQbnsFtZ7+dG8/8C4R/Bp4sDZVuDVnXbrLdNRnqfbOC1Syy8RRuDXfTIwFIDi3vzqXj44S3ZNqSLc9F+pOAdU8CK35PTzLxfTFEUMUcT9Bxi9iTqLKHkCvLt1isMVFzh2zn0Q2QtemTvtYwE75LIYp7tR9EeQKExKQROjMR6YXCkWtQx6TfTnvFtQWJMj133Zej+oxl3cwoVMV4vdYo9CU9NrNWG209xGmSZdIv/X2ZjklO0XSEnX9fsAAAsDRJREFUi8i1M3nO0CnUl9j3y+fuwWYT67jr47QuTNZx52Bx6ruK7CLFUdaL39vyOErnvbYIYCqQJ7IbhVHpyPqSTovgqUU0rvxahJTUMipA2FJLqACD9CXQObglazK4FYLlMB2aDlO8NnfsSWJksJHyhX8NQHzr/yY98Z2uY40xJIdtYSI3PRq74hY4afZZj1iYqLmDGBUjHB9nYtuSn/ej7JzuELWMzhWpdhJ8j4W/2+FAFKl0RY5cOZysEFDpcN9/ZyEiNq4sEVyUx0E4RHHMcWcnzco98IVrC5MhaFzFeSYDOyuEaigTBylkB22l+97wt/0qAPHBzy77rEU3vxvSeWTlHjgTjyoCW/OiSmtDnK6OvqRA7EDTAJqmb8eRcskdieYTZAns2hjrmhU3SQ7dhF6wbpHOxJZV2VXO9SW9bIIXQ0iJLNuxeZAIPh9XB2lMvD6OTp0p8PYfWETlyjomfTpbniepZJs4Cz2yhlYbSaJtB1P0nhdWG4Vl8DJZJuIUZZnkls1L0t+XKUzyjokjvcIIJ0lzG/VTu3x0hIsUEld6dxnb+nWsDOuFyTqWYlHqe5w5ZLnK5lrIylk9XyakBCcXq8cj60uOh90WwQVyLnS2cPc8WYhTF3dNOvUlvXbGXOkhhATMmnRNhO9YNyxDz0Tvga/NhKr5gsHb8ni8M54BGJrX/CEmSzEGUPM/wkQHwalipu4HgCtdm+Bt/zL0++qoiV44BoCzYUdP2kkvW9i7AoQrIXdLm7X38WJHrhydu98nI7LOF7ZDZzVkCzwx7q+oWwLQSBNu03AiDCFcwJcOAT6O9HBHKFJXYh3c795wNz8KnAqmdRtq7uq+r1eNW4j3fwQA74zfRQhZPOtSikKzE2XOgCcTrpjDGIM50kR4JVTFoZVtvlRro3VjRN7BUCmNo3tJD92EiZsgJM7kdmR16qSvFdpUsV7Bir2QZ5ro5lzforCtIxysMWk7Oi2lcxVwu2k9SUe4Yj/UxqyldxxpwnBtF5qdm1VrqS/J0d7IGdIyeA0dyuzb5B3hRVSuNHdU6/09FS540iuiA5Ikfw5PbcdECMEZE+exbfzsnllq6/j5wXphso4laLf48wwTOxA5SZ5efGbf1+Z0rqTVGklfkmjFfNJtEVxcT869d9tc3VqHgLLTdrKgcQ1o13sdXZO1QC5cNs1RC5NsQZjGxWKifMFbEOUdmNZ+Wte9sTg2PWzduNxNj0CZPI8jKCgBwzqCGWNQx28DbCq1LPe2sx42NOx0hMgsSnNbzDzxfTFyAXwrjVZkFZyjM8tkqOubDJA7xxDbassfvAitNGHvwgx7F2Zo+RUc6TGhU7ZXxpB0dx2GRZ4Eb+pxwUEfhH7dNOFU8DY/FrBuW/0Q3vBWm3u06dHIUuZq6LWf9ZzOFWbjw8laBUNGVYs1olSmWfYwcUip5IyUtQT2+QmaszhHbiact10SWZnC234+zvjJC95z5IXJcvqSHKI0Zl3HVIIJ60t+boxp6wiXOWdfOlc1ywqCJTvuw7g2ua6kmmU/LcyvbddkpfklK0VbDzFE+rsANCPZdI+KNpVrUWZK/nz3E79n46Aj3HZ0QIfGZB3rWAus31nrWArdFkUabVB5YRBmGoQ+HRNodzXipl1EDKsv6WURnKNNOWgvSHzfsZOM6e6aDEMfKyYNtfrOXIDlXwOMmKItHM+2ejCQ/87eGJWL3gsIkts/WdC3kswm2Nv8uPbuvuO1OyZDhivq+aOYNATp4kwupXDlaFvmmrtccVLQuXL06UrkHZNmYnVOljow+kLGGcGVCzJaTM3vadfZD7FKua0+xy3zJ6gnMULAhvGN7J7YxLjnIaIG0tgCwx0xz0aUXHsPm+G0JoVlcI/7wtuWuXMd+hzGLF14pSe+TXr4v0E4BOe+tqCQCrctiM4Lq7xjcrKOXCbVmKP2O2brFK0ETNIauVuiWwukB2+ktHAUtCZyPNzN5+Bu3FVs6qwGtDFE2edSGvK8QghkJadzzS49oHBOFMtea7sw6f7+hCuLZ6lzx30UO9namI8QttPdWokub0gU88Ip0JdA50bOMlQuIdrd7TWkc7kdeTJ5gWm0GdhhVzotnlkp3fZG5Z1E5VrH3Qfrd9Y6lqAtfPfaVsHEiNi6zAzsmGR0pLBlFxHD6Ev6WQQXP+9RmEBH16SZopTu0pcM2hnLXVKSNRLAt4MWRxfpFV2TpF00udOX4p/5UgBa176CdPaH6IXrQDi4mx5VFCaOcdvhikPu/BYuXJPbBuYsCCHueunvGTrpXEgQfe6NnO7QTPOd+ZUtLgtrXjN8cTIsUq052FzgpvnjRQjphF/i3PFptlfHKY9Zi+ekuYAnA4QEZwV5NnKDfQ7NbLSsVmqQlbS78RHgjmHCO1CzV3X9zBhNeP2bAfB3PhsZ7AKsGLuTTui6Em1S0owff7IaE3O0aZ+TkkNYqWGMwJUJvjPcwtAkEemRW0mP/gyThvh+CT25jdaGXchS9aSurRdaaYIxdnHpLxuM04asWBqZbs5hFgfrFd2S5T/L/LmIe1giy+myfaY6aF25VbAQy9N9HEcUBeHCfLwmur84VmhtEKdIXwKdHZMhxsqsWFprnckSAXzeoZG9O+z581zYH2f3gUrvHPH7Ou4+WC9M1rEUXRkmitTESGH1JcKbRPob+r40n+iirDAZpnXezyI4R+63j9ttuxgEDp4vMQYaDeuJb4zlpQ+iZLQF8GtEHwgc+2RpY8OzRkC+U2zS7msrnftqZO08THyM5lXPAsCZeiDSn2p3TFRWWPQJy1oMHTdt0SdkkRg9CHfFLJMcBZ1rgIaj0JikIdqYFS+AhRCj60yWgdKaI606N84d43jYxBioeT5nj29gZ22iWDx6tY0IBEmzgWvckWlcBWqeLW6VsQGVAzCoYBVOCW/z4wCbadKJ5I7PoOZ+BE6N4JxXtk0uFi2WXVfYUNTUnLRVsAlTzGz2PpsqNEKN8HxqZYGJGoNfqzVq9iDJwRvQ4TwgkGObqO64F6Y6hTJmqevRScIYw5HQXtewNK4cslS1jltGYcL57vPm48sQxXdfKhe2IHHOm+4qTPJwxWGpPrWah5SCNDVr0jUp7OODpfbxa4X8mRimw5xnmbCGmS7QQwCfv1+fMSK/7rz7U3RMMgaFv94xWccaYf3OWscSFB0T6aGjlNQkODrTlwygcYEtTFJlUHEytL6kl0VwcS1ad3Chly4Ua9luW6ORFALK5XbFisJkrbJMhIBcZzJq0GL2O5qkm0IjnBKVi98HwsMk1mkn5+8XXvOZVfCwwnfTnANAlsaGylm4S6a/ZxATAWJrFbm1v44jd+ZSOibR6qR25vOuyTCWwYNgjOF42OTG+eMcaTXQxlByXfaMTbFnbGqJS5Mb1Jge2824nMYsHF9xYSKEaGtNlhHBy2UKVm/bU4CczpXRSFSL8Ma3AxCc/QfIYGMHfbF7A8J1JcrEaKVP2ipYH7KLfDHu00JgNLjlCoEPekBhohszJAevR80fAQyiNIa37R64U9txHJcg62SE6eo+G7c35mkkMVIINq2gG1OI4BeHLY7SMRlQmPRCnjcz7I66lKLofi/Mr75b4qnWl0DWYR5aZ5Jd11p3TPLOV07lKvQlg4Xv+biP46K1QatcEL/eMVnH2mC9MFnHEnSmvqsoownljlwDaFwAuAFxAhiF75hl9SX9LIIL5MWDcHpSjcplF9eTGN3WmixHH8vTvJVJ18x2UOQ6kyEsV7teVwjgl+5SOxMXEZz7iuLv3pbHd/GA83DFYTNMdF6YVCaWOTJ7/7tyx0QI5FSpL40rR8lxUTohUqtTmJwMlWs2anHT/HEONhdQWuM7DjtrE5wzPk3N639tY5vPw6OGiRrIaHbF719YB0cK0+h/Hy9nJe1ufCjCm8RER1AnvgtAtPeDmPAAorSdYM+LgTZ9MaeDFud3BMpYOpMwK3fjMXMRtFL7O20q08jGi7HJGkL07pjk9r/p8f2gEoQb4G7cg7f5rK7rzLUfLbV6hhqHmgvMxSFCwK7axFBWwYuRd0J1a97mQWVop74vf86+VrN9kFO5RtEgVCou0hEoZWg0Vm98McYU+SWnsjCBzCWRYdLfMyrXqeqY6O6OSb/5Ih/ni46JdEmNRmiFFKLQrKxjHauNu0xh0mq1OHDgwJJ//8lPfnInXM3POTpcudIkzzAZbBWcQ0hJouxA5snlJ5i+FsEZigl0wEIs75qQrQGXm4AsZ9Yek67iQqITYoUdk5yutpjKlSM48/fwd7+A4JxXICu72voS6SHS4fUlJm5lxY+wGRhD4K6Y/j4qAumgdGI7Jifh/iRPojCpJxE3zx/n9sY8sVK4UrK9Msa549M9qY6LIbwSurLR/n/9cN97adnzOBIxkd2PA0Twhfi9T8EqpI+75QmAdefS0TGiW/4WgNI9/qwIaC0Kk0WUTSEEiOzcemUdE6MN+qgda8R0mTC1342UgurkePb+YbF4NyohPX5bt/3vxDbcrffoWciX3d5BiyvF8bDJsWxs3F4Zp7aoizQshF/OCijTJYIvNp9G0JjoDlH7IAxKfe8HKQVjWddkfi7m8OEms7MRYZieVNcxjoej964F8pDFZS2D8+s6RRqTxYVJX0euIsMk75h4lqZnDP56wOE61hB3icLk05/+NOeeey5PfOITufjii/nud79b/Ow5z3nOnXhlP58wHTaSaZRbBd8BDNExAaJs5365wqTTInh6kUVwcS3pUqvgxSiXHZzMeWjYCSjvmiR6jZy5yq51gkr0UJarOQoai0q6djiLn0uX8j3/ktK5rwToTsMuOMPLLwiKbkl5HDHkAuIum/4+AnwBBr1qVK5RCpNmmnDrwgx7F2YJ0xQpBJvLVe4xsZENpcpI/HjtTyD8Mq7UpJkd9EpQJMHX4752pkXBajS6h/MWgLc1c+c6/AWim/4KVB1n/GK87b9mz29M2+Si1yI8G0tW2jExx1v2+fAkYkO7W1KtuUjPL8YXE9ZR80dJ7rihMIYo7H8nNvelPOYdk9UoTObikIPNBQC2lGu9O8kjoBDBd9K50uGpXFKIwl1rGDrXqBqTHJWKSzkbN1VqaDZSThyPOHSoybFjLRYW4sLcZFgU+SXBqV/qFFSuZUIWiywTZTCrpEnr+TYdlsHQpnL1zzDJUt+z51sIQZotGV3Wtruzjrs37hKFyVvf+la+//3vc/XVV/PP//zPvPCFL+STn/wkwJq4eNydYbSGnN7keCSx1X+IyHarnOrgjkmSaIz0rAOKHLxT22kR3I+mkGstBk2gQrR324I+4XmL4Uq7EFkrAbyQworgAUbIMxHS6QipXL5oKvQl0m8XQEPYw45K44JTn/4eq5B61D+5ei0ghR1PUiNOSmRdaEyGKEyU1uyvz/Kz+RM0MuvfjaUK95jYyOZybWTKhBXcC9yJLTiuxER1VBagOSpEybVFtqEtGl8EKZwstLR/N82dfgjC24CJjxPf9nEASue/sXidta810BGu2Akts8WdGr0wMYnCnLDjmNxcIU40SaIRAiqZW5sIrH4jPbYPNXsHGGULuy3nDmX/WyqcqxRqiK5CP9STmNsb9tmcLlXYVD55l6/8GTdRvdh0Mmp4Khf0cHQagJVQucCO41MbArZurTC1IaBSde2Gk7F2vwvzCceOhhw62GTmRESzmSxrLhGFdw6NC4bPfhJStMfsNaRz5R0spbW9R0dJfc+gsrHI7bMBsY51rAbuEvGZSZKwZcsWAC655BK+8Y1v8NSnPpWbb775lLls3G2Qt/iFBC0s1Uk3EclxYHkqVxwrhOPjuh3n6oEwTQqqQi+L4BxtR67BO3uViofryqHFvt4aC+DB0rlMqDCtpKDEDPU617cLiCQCv3cnKUd+/a70CvvHfjtgOSyNK2QUGhec+vT3meZBYhUihKTqD19AnQwcYRcyyki0MSvmUecWvcO4ch0NG8xnGR2TQYnNpdpItrCLkWaUPicIcCvbUTMHULMHrcnBCihBYjLAtFLMbAgbez+rjnBIjUaZFJelz6qQLt7WJxLf9jEA3M2Pw52+tPh5P0twsAs7KbMCT6+gMDnctOGaFRcxHlA/Zjc7yhW3KCBFUIHGCcBkmT5bcWrTQ7+HKyWelCRaE6qU6gq6bWGasL8+izEw7gdsLY8euNkLwgsQQRUTNdCNWZtGny8shy1MHIdmmgylMxlV/L4YUgrK5ax7AqSpJooUUaiIImv922qltLIoGteTBIHNtepMdtfaEGeL7zujMHGGzDIBrAA9TS2da4Bz4MldT27uYTvCXroMlSsb59sOY5BmFOj1wmQda4m7RMdk8+bNXHPNNcXfN2zYwJe+9CWuu+66rn9fx8mjO8NEWUcurCOX8DcivN7J4DniSIPrE/ii746/0pr9jTm0MVQ9fzBvfggqVw7fd4YKc4R2evSaWQbTFsCPnADvLs0y6Yd8V8tzgrYv/TJUNt3lxjX8hH0qOybaKGJlF5BhsjS5eu1ghZ2O9IlOgpZT2AUPwY/P80h2VMfZUZ04qaIE7EIOrJuVM7YREdTAaNITK6N0ifEApLC0xHrv52WYeyN350K4lM57fdfP+gnfwd7jjiORwmVI/XX7vI0Es2CvWW6pkiS6cGmqdQQqysoUsjKJM77Z0rZGKEpy5F3fldC5YqXYW59FG0PF9dhRnVjVTbdCBN+cKbolON5QbnwwmjPXSjsm/eC6kmrVY8N0ia3bKkxvLFEb8wrKbppoGvWEE8dDDh9qcvx4SL2eWOthY7uXK7bNPgnkz8Syrlx0CODjUySAj5NCk9nLxVEb1TZV6eiYpFmH0zuJruA61rEc7hKFycc+9jE2b97c9W++7/Mv//IvfP3rX7+TrurnFLrtyEWsUSZB6iEduYAoVgjHxXP7L6wPNK2o15OSnQMmYMs7zwuTkwtVW4xcP7BWIYtAO9QvUiNxh/PF2TCi5bywktqhoP0uMwnnhYkYgcYFo3nznyyitFX8f5gOzpdYTaQqxpcOjvROqjDJd+KNHmwZ3EhiEq2RQjA+hLB9GKRJuzABcDfsACExUWNFlC4hRVsEP9tbBD9MN83ZcCml899I5d5/j1M7p+tnbcrm0g2IVMe4rn1mlTJDi6GNMejDmT3wVIAouYVzX6nsdC1WhZS4G3fboNEV7vQHGZ1rVGeuVGv21WdItSZwHHbXJlfd8cgWJsJ2S7NclFHS6YctTJTW6IxePYr4fVgIIQgCh/Fxn02by2zZWmFyKqCcuXoZY+lb83Mxc7NZ3sad0C2BNpVLG9VXe1WgyDI5RQL4KLtHPdlz/k0Lq2DZRWlNsg0Xl3UK/TrWDqdlYXLs2DFuuumm4u87duxg69atANx8880cPXq0+NmDH/zgU359P8/o7JikUYTBIIfMMEkSjVYG4fr4HmB02/0lw5FWnfk4yiwwJwtRZU+oBLutI4amHAyLvDAxRq/ZIlu4st29GMGdq8gySQfnRyjdtjt2c4rLMuGKnTSuUfQlkFnuZq38taZzRWmz+H9tFPEyn8VqIdVJUZicjJBZSkE+nw8SwOfdknE/WLXFaE7lcjPeuvACnMlt9lpmDw7ViVsMMZkVJvWkpwh+mI6JEILgzN/B2/bkJT8bRNlMdYyUEjcbA4Y1FDCzkQ04lQKxsUKa6iLAr7NbslooFwGdw9832hj212cze2rJ7toUzhoE1wnHRZZst1st2PlzlM2eQenvnciF76fKTtZxBJWKy9SU1aZs2lxmfMK31K3s7XNK2KlGkZjOEJbB3ilOf4+z77HPJpYuhO/dz4nKxn9njWz217EOOA0Lk+9+97tccMEFfOITn+j584997GNccMEFfO973zvFV3b3QDsR2C0cuVx1GAC5jPC97YDiIPNd/6S9619PIo607G7dtsr4sr78nY5cq60lEkIUO1pr5swFiMrotsFFlskyC8hCnChcZD5PLEfjatkE6FFpXDlOlWVwXpjk4ugwPTV0rlRH+I6DI7yhA+X6oa0z6b2QNsYwl33Hk6vULYFuKldxLYsoXaOahnSL4JcWictZBi+HtiNXDypXRj0Ksuci7eMO1n0+jcntgTdXEK60+RjGOjT5/urvoufOXJFOh/p8jTHc3pijmSZIIdhTmzxpGt8g5GGLhfZvhM2enAKUaD3wd1ttGteo8DxJreYxvbHE1q0VNm8pUxrSEGUtMLTO5CTT3xvxHIlafh4rCpMwt+HvJ3zP9SXte8QY03blWteYrGMNcdoVJn/0R3/EG9/4Rt70pjf1/Pmb3/xm3vzmN/N7v/d7p/bC7i4oOiZ+4cjlJLZj4iwnfI86hIaLdv1jpbitYRfFU0GZDUNYYA4SxK4GCmeuNcoyAaDQmYzwHjmdpUfHqROFVbDjFeFcy4Ur5lkGo9K4cuQTVbqGhYk2utCX1HxrdXoqChPbgdJ4q9AxAXBynUkfGl89iVFa40hJdZXuca1NUQgt5tW70zsLSpdeCaUr75r0cOc6Gf2R0aqdRN5DnJ8X4CMVJseaoAwEDmIyQGtDM3sG16JbAlYgLoWlEw1z7xxsLnR1j0srCFAcBaI8Dh20nFHGVU86RQdkUMGenKTwfTUh5Z2jLenE0ONlbliSaMyIuS31aIYTzTs4tHArc+GxgYVjXvimeWdmOeG7bHebEq0xjrVzdtY1JutYQ5x2hck111zDb/7mbw485jd+4zf46U9/eoqu6O6FIsPEcUnjbFcltqLZ5TQmUd4x8Z32pJfGlq7QmEVpTdn12F4ZLKAvkHdvBoQrngxyaki6lh2TLGiRcLhdVLDdnGEE8J1WwQU3eUCGiUnCjMs/Oo0rx6lIf49VCzA40qPmTwIQpWFBW1sr5J9n2fURQhIrVfDlV4LCMrjPQmM2o3FN+qVV6wgmWYHqOKJ4/xzC9XGmtgOg5g4Vuo5hMUgEfzIZN8U97ng9u3h5AV7Kuko5Va3v+cIUM2PPKbdUEULQaCQYbeltpTVyPYK2AL61TGFytNXgRGQ3fnZUJ6it0RjXCSEdZLn93I+iMYHhLIPTO7ljcrqhsAxeJstEuLK9Ghuxa9KIZ7P/M8yHRzlS39e3e9KmcuUak34ZJkutglOjQbq4Qg7cMFvHOk4Wp93oceaZZ3L55ZcPPOZrX/sau3fvPjUXdHdDNqEa6ZImEUIvINKM/lPpX5gU+hJh2+mFgDuJuKM5T5imOMuI3RejXxL0asHLOibJWloGBw44wgrTw1F0JnkCfP/CRBWp735HuGL/R3qlblydOBVUrpzGFThlXMfPJnfTpTtZC+QFasktt3eHT0YAn2k8VI+FtDaGhez+HibNfVjkhUm/kFGnNo0ojVlK1/HRKF2DRPDyZBzblrEKzgvSwB+uY1II3sc8RNXDGGNpXEBtbG27Em2dSf+F20zU4nDLdgC3VcZW9ftfDgWdC2DEDk2+2z7IMnil4Yo/r2h3Eoe0DIaRBPBxGmbdZcFUeStSSGLV4tDCrSyEx5c837khgYltlkm/DrvqoAnnSLQCx7W6UKNs5tk61rEGOO1yTN72trfx27/921x55ZU86lGPYsuWLbiuS5qmHD58mC9/+ct86EMf4mMf+9idfak/lyg6JlqSmrgQvotgG8Ltn6mR60u8zEdeZ4uM2cYcs46lbe0c0Qp1zalcp8AyGKxtsFlIMM203UFZDp4P4XIdk3aGiUmXp3KdLI0LTk36e1GYuDZcruTVqEczhEmD8jJ21SeDzg5UyXFppgmhSv//9s47TIoi/ePf6u6Jm5ew5AxLUhFQkVPBgKIERRQweyYMgOHUU8879ad3BjzDeXpmMXOKWcQseAYEzCCSYZccN8/OdKjfHz3dM7M7oXt2wob38zzzwHTX1NT0dr1db70paRebeCmDq2U/NM7hFEV4U+jCEz4PYyEVd4O8Yy14oA5a1R6IBR1jtm0IK3KDH6g3g+BZUBEOxZio4JzbsgDF24AIj6NyOiQAclRFz+yrOqAXNGUA66jfPz6fAk3lEESW9kBoo9BiLFeumuBGDaAX0Wznjl+nKNUwdx6Y6ATnmu0NHyuZuQxrSjoycrVE7KUMFsD9KnhAhdXZY1hLPI5c5LqK4HHkYX/dDtQrNaio3w2fUo1iTxfzWccY061ZigbZocERYyPLkO9SmCuXommAIEI0/raqDAjp2TQk2jbNbltj8uTJ+Oqrr1BbW4vrr78eY8aMwfDhwzFmzBhcf/31qK2txVdffYWJEydme6itjoiq76oAhcsQuLVUwUZtAKOQFZNcqFcV7KmtAACUeHJtuyukK1WwgZGZS9Fk28HAtjAC4Kusu4yZi4Z4ioka7soVv4ZJhBuXjaKKDUl3LRPOuRlf4pJ0hdYt6YXmfGmOMzGCrB2C00z96m9CAHy84HczG1cSBQ/jYVhM4gV3N8Wli7nEqEHw+n0RVMRsKq1xA9/D4qjCXeOiXVOuhaUHbucxa0PU1OjjycmR0l6QN55i4lNklNVUgnPdStbJqktrCmGMQerUH47OA2xbTa0pJuTKFY6tIovGnLVYy0TjGupk3QpuuLyKgoQOud1R5OkMgQnwKz7srNmEav9+83MOLgAah6wqsWNMorhymfFDRvxoE5ODEEQsmp3FBACGDh2K//znP9keRtsjrOq7qugFlkR1O4DEikkgELkgkgURO+tqAE1DvsDQwZNjayhcVcKqE6dLMXGAMQGca1C0gF6kMA2wfJeeIcioAm/BapKolokWrLINAA7RCW64OcV40Ji1S9y5YGLy0z7d1d8Dqg+caxCYaP49XJIXAIOqyZBVf9r+TqFFsBNu6PdxKmqZaA0W0aqmmW5cqczGparctCbEcuUyx5ZbDF5XCa2+Csq+Mkgl/S0v2oUiNzRfDXiFH7ydx/ycyESoXIGqKaZvvRXMGiZxAt8lwQVB0ONmVJVDUTSIDayvfL9PV9AdAlg7Xamtr1egyBoYA3Jy0uvGBei1TATGoHEOv6qYCm5AVcwCirkOJ7rlJL850FSSnf+WXLmaUfB7c0CykyzEac+VyydXQ+MaRMEBtyM34lyuqxBuRw72122HX6lDhW8XfHI1ij2d4eQMMgCFAUyMVlxRM+uuNAx+BwzFhIfWCwSRYmhbgzAJBb47oNTriwUxmCo4Xkau8PgSp1MA5xzb6qqhCBIcooDOSSy+TGuJ6LRcnTgZHGFWk3TBJAEsL+ibv9/a7nSolok/qjXHLKzIRDCVxa3iC4TcuJINejdIt8Uk5MYVcnERmAB38H06iy0qZsyOAy4xhYqJFlkUsFL2g3N9dz2VmZhks7AiM93I4o6vXTeAieABH7SqPQnbm+Q59bgpWQNqQ/PGjD+ybTEJpQVviBIM4jUUHSPLUsNMZ1xWwffpweRCB69Zy8coqOjNcVi6Jk2FMWYqI4bVRNE0bK7Rk3+4JclWnF1zwpHAYsI5pxiTBoQsDomL0tqtZWK4ceU4o8t0SXCgY25PFHk6gTEBfqUOO2s2Qa7XN6lkMbqXgBpRXDGkYJp/W+PZRIoJkSZIehAhwvLbqwF9QSAqiS0m4X7tjDHs8tWgVg6AOVzo5MmDkMyi3wj6TpMbl4Hx4FAs5IBvCqw4aAGpDkQtUNeoveQMpvbkoexkYajhGbmM/iQWdcHDZX+YG1cTFZM0V3+PppgAgDsYb1Ivp0cxMVIFA/o1NXe6NTVpNz9BYDD+HBGKSdCNK9VBz3Jwp9URI9NOQ5jogFTcFUDQpSuYHjzh58KD4A+EFG3TmmbjvuBKIGgZZTGKK4bd5wglFGiYmYvvrtMTTHgkc2yBgKqnMGe6G1emMALgfYoMjXNsqalAQFXhEAT0zC1MSwHFTGC4cmmcR83MpXANxlQhVy4dxlgoLi/RvAirZZJI5ihqwJSVOUE3rljkuorQKbc3XJIHnGuo8+1GhbITPiH6c9mwhgsscs6Y8UOGZbOJ6dSTQd65DsreLWYhaKJ1QtKDMAmv+i4H6gHOwQLbAMSv+h4eX1IZqMfeel1gdsorhlMUk6o0ne74EgPDLUhOdwB8RIE6a9cj3GrSECMeQhIcYfEl0RekqXLjAtJb/V2PL9EXxy4xUjFxOXTFxK/WmQpEKgm3lghMMOs2cJ4aq4kREyFrKmqDRUdTrpgE3SnjBb43RMgpCiqr3FbhRVYYVLRrZPCgQpRMKunwwPdoSnUowYM+FwyLiRKWUpXXyeBVQQtip5DLqGEt8biljNazMOJMfKqC8poK+BQZoiCgV15Riw4KNwOnEd2dy0gVLAlCi7QIpQvRYspgSIIepsUR2myKQW0wtsQt5Vhym5REJzrm9kKhpwQOLkLmPuxSysNSDYcIbXpF9qto2bWYcCWgJ+yoqwRa8DwiEkOKCWFiChpRghLwg2mVYGot9LoXsdMzG4UVuaBhW20o40y+N+hHHSNOIu5Y0pwq2CAUAJ9exQQIL1BXb2kBGJ5yuSFyWDyEsTBkUvTFgOarANB0Ny6DdKUMllU/NK7pikGDOBKn6IbIJHCuIZCGtMHhGc4MUhEALzRQTAxriVdypLzKdyBBquBYiMVdAUEKunTttvQZ5hJDxUMrg9bVJNz8QoHvjee5xlUzVbBRc8hUTIILN87DAt4LXfoGQPB8vU//bLpTBDfEcM+rlQOolgMQGEPP3ELzfmrJOIO/IZrFJFRckZYV4VjNzMUYC7nixgmA55yjNqArJt4YblyxyHMVo7OjJyTmgiyo2Fe7HXtqyiPmrFn1vUFGLqOmk5Qli0miTQyi9UAShAhhChoJihqAEAx8Z56uYGL03V1Z1nQfenDslKuhcY4chxMlnlxLRQJjEVqwpNdiYiomaaxlYsDyXVF982O2j1PLJGIhbbpyNV7octkfdNFpuhuXQbpSBvuD8SNO0Rv1wWMEeKYjzsRYNDjC0l8mSv1qhVBmLv1vFF5UMZWoqh7nBWZfMWGiA5KZpWsXtIA1xU8wrCYVehyUZZeVMOIGvquhVMGGlU4yXLlUDs65rhTVq4DAwDqErGy1QWuJyyXavh5Nxd1AAemWk5/SlNDZJF5mLmNH3Um72RFISWTm4nEC4P1KLVRNhsCEpNKne7kDRWJneFztoXKOeqUGO6s3mMqOZiomYcUVNcMqKkA0s3Jl2GJiyIoM1v0hsgMpJoRJqIYJg8JliJqeKjhe4LsRX3JArUNA0+AIK6IYzxUp4VgMK0vaXbn0/lWupL2yeLhvvmYlCN64flEUu8iq77FTBafSjcsgtAOYYsXEcOMKpgluiBFn4pNTnzZYbhBkDSClAfCqyhFQFdQrChgD8lP8cDWy4kmSkFSQt5BTBMFbCIBDtVp4MT8yCD6Z4Hfz3o5iGZWDBS+lsArloshMdxcloOqxJQBYe49ZU0VVOerqgimCczOvEAiMmRXgu3jzUv63zibxFBOZAt+jYsYxWqxlAgCIEwBfE3S/8joLICRzrRUOhyjB6y1GobcHnKIbGtewv2479tZuhawFE9+wBlXfATiYAATneabjPEzFJM1eFET2IQlChAgqJpqqu1EYxRWFnPjxJQf8PtRDBmNA99zCkClfcsJYRcRKexsNrqlAcNGbbiEkMNHcjVUy4DPLioKLlFo5YfaVUMrgSMWEcx4R/M7l2MUVU+3GBYQetKl25WpYWLEh7mCciaIFUp5FzbyeYampjZ3vVKUMNqwlOZIz5e4uZv2SJlgHxKKgS5dcD61yV8L2jEUGwScT/I54GbkaBL4b32m6c+2sA1QOOAUzuQQA1NXJ4Fy3HLnd2dm975lbiL75xSjOcAHFdBMvZTC5ckUnZDGxMC8c8WuZqJpibswkCnqPBucckPUNRC4JAJPQMbcX8t0dADD45Gr4FX2DKNyVKxBWn8bc4MqWYtKKFH0iOiRBCBPDYqIGXYNENVhc0Rs7I1dFbT32++vgcAro7I10WdCtJkm4cxlKjCDZLgKWDIbVxNihTSfMKYIFd3HDMxpFbWtYi1RZL34ZxHDjYkzQHx5KdItJyI0LKXPjAtLjyhVQ66FxFYwJcMZwGxSYCKcYrE+R4uxcDYOsAcApND0zV7jFJF3ZuIDkAt8bwkQplKWrarcll67wIHhBNQosWrM8ck0DD7pQRnPlUqP8TQBAEhlQJ0PZG7y3S3JM1z9N46ityZ61xByjIJhWk9ZEvJTBirl4JVeucAzLgxVXLpbAlatOrgLA4RTdMeVkXJSwv5EkIKCpYIyhwN0eJbm9ImL7ImNMwurTmBZMnlGrSabiTonsQ4oJASBopQiaa2Ul6E9qpgqObjGpq5exo7YGYAztc70odjV2wUnGnStTGbkMpGBcQTprmYRjWE14hR9ci73gZaIUMpsrISVGaZg1xYwxiZzOphuXK3VuXEB6apkEgrt0TtEdN7AxFGeSOneu8FTB4X7VTrHpmbkMt6q6gAy/qkJgLOXV3oGQxaSp8RSCt9CWS1d4ELxQaSymrKWSNu9pQYp6f0ZTFvX3gLC7FqqqgRW5wHJD530+BZrGIYoMHg8tkFON4coVHgxtoFDV96iEZ6tLmFHQET/4PVS7pDC5wRi1jpxG4c+QAuSU3CjJ7Y0CdwfkuYojFB+5YcY1Q2nJUGYuPa24Cj2IjiwmrR2SIISOWfVdhCIH9FTBcuwaJhrn2FhxABrXkOOW0CVWJWOHEcBtw5UrjntHOpAyVMvEJMehP4A0Dl4V/zvNneSw6xe+YOOKFrO4YjrcuID0VH9P5MZlYMSZ+JXapK0YDWmYKjicpmbmMoLfq/x6JrZchzPldSwURU9AkUzgezQiXbp2JmwvGO6JlX6w4CPF0r0hx87IBQCyGl0xEff5AIVDFRlYx9D9wjk3UwTn5Dooc08akAQBQvC6Bhoo64YVhWJMIhEFCSx4TRK6vxrV3zXeqN6VX/FBVv1gTIDXGeN5mwhjA8PlCL6NlGuMMeS726PQUxJx3LCYGNYwYyMhUxaT8PgSmtetH5IgBIDIGiaKvx5M2w+m1QNMhODp0aj99roq1NQFIDABvQqLzIdVQ0yrhw1XrpAQyozFxDBfZyJlMBB0cQvLaBS3bRRXuIidZMPk74isHaDnfA+6uqRYMUmHxSSkmEQPfDdwim4ITITGNbPmSVMxrqdDaHy/NTXOxAjWrpYD4Frqs3EBocB3hyM19SN0l65uAIIuXf4ELl1GJXiFQwwaQazEH8XbgIiWKhgAtIp6CLUywAClXajCOwDU16tQFQ4mAF5vy0/N21wx4kzkMPdSjXPTgkKuXI0x3F+VBLVMmMAAI+17A3euumDWLI+UG1GR3Q6Gi5jkCrmpWkEOD34HTHeuTNUyMd24KL6kTUCKCaETFDBcEKEqfohKMPDd0wOsQaGl/fV1qPDXQ5E5Sjw5yPHE9qUOpby1bzFJd0Yug0zWMjFghS49L4BPAffFFu5RFRM1SkauuG5cqfV1T3X1d0UNBHfYmRlDEgvGWKgKfIrSBsfamQdCmbmakjLYzxWoXAPXgLxm7MYVjuAtgOAtAgDdpUuL7YKiK9r67xKq9YWOFYtJPJ9x4x4PT07BAyr4rlqIkgBe7IHqEHVLURDTWpLjSCozGWGNaJm5jB11gbEWW9k+ndhKGRwlAF7jGuqCRRVzXIXJD8SQFU4jU1hjl7zoH4t00zOfKZm2mJAbV5uAJAgBIMxiwiUomgxBi+7GVafI2OGrhqpwFDk8yHE44YwTcMtMVy6/ddebjLty6QtSjWsptQLEg0kCWF4w/uZAbKtJ+PUzUMLSqBrmftZIMakAkHprCZD66u9+1bCWuC2lvzSyc6UqAD5acUUDl9DYF9sudUHFJ09MjxuCHMzuFm8eJoNY1AUQHeBKPdQD2+K2NSyAgk93QbETYxK1holhxQompuCcQ9teA2iAmOMws3AZhRb9flVPAMCAnByylqSTaIpJeAwC0ZhQyuDE8yJaALxProLGNUiCw9yYSQYjg6Pkkkwvh2jFMiM+wzlU8+8bVJqC//IMPS/j1TsiWh8kRQgAMLPjaKq+2DRTBYdl5FI1DeU1FeAccENCkcsDp1OMu9hiYSmDrVSA55yHZerJjMWEMWYuSjORmcv83uDiilf7G/kTm20a1DLhnJsPt1g1THQ3Ln2xnw7FBEht9XfDjcspWkut6pb0APiA6kuJIhlKFdz4oReKMVGSimnhnKMu2H+OmPr7mXMeZjFJrQuN7tLVHQCDVrsfakXseBPmFIEcB0QmgVcH7FlMoiw25AaB73yfD/ApgMAgdM2F6AjVLAFCBRW9HsmM6yHSg1H9PTzGRG4Qg0BEItoqstg4AD5U6b2waQMJKjvMIYYUzASbLobSqRemJ4sJkX5IghM6QQFjeGyYqYLDMnLVKAHIwSKK7QR918bpSnwL2XLnMtowIeUuSPEwM3NlyGcWAJjHAbhFQINewTrqwIKLNq6Cq3LwAcUhMFF3qYqimITcuHLSdg1TmTLYUEzckjXFRBQkMy4oFe5cchyLSXhmLqv+2OHUyAFwxiEyAW6W+p18ReHgPLhokFJvjRE8eRDNFMK7oFbvjd220AUBElAdgJpgwcJVOZgFkEUtrqiaCQmc4D4Z3EgN3CkHzCGGapkoGmRZQ329/rfJZorgtoIzuDiNcOWi4opxkcy4PAspgx0h10VAd3U1ZGSOs4kbTWGp5UOxQokUk8ZKZyj4Pf3PSz0jV2xZQbQ+SIoQAEICRlH0BYUZYxJW9d3ws891uKDI+k6l05l4hyyaO1LMcWQ4VbCBEWCrZNBiAoSlDo5R04QJAphRnT7gQ1X9HgBAvqsdGGNRXblCblyFaRp16gLgFU020x87EwS+h2NYTfxNVExUTQE3FlVRYkyAkNUkmTiTikA9BJEh1+GEGic1dLLIwR3QVAW+R0PMbQexoBMAQD2wzVR8G5HnhChJgMqh1sZPTBCKL3FGHbfpXgcHtG01AAdYvtMs6GgoYYrMTWuJyy2mNM6GiE70GBNKFRwPO9XfTYtJcG4bld7dUk7UzROrcEUDDCOMJMStSRNOVKUzgxaTcDcuysjVNiApQugEBYyqaABXwWRdMRHDLCb1StDlRROgaRyMWfRrt1HLxGiT6SJKjqDFxAiEzhQs3wUIDJA18JoY3x1U7KrqdkLlCiTBgVxXsX6uQXHFTLhxAalLGRxy43LbyjSTqjiT8PiSWA89IwDebmYujXNUy34Igq7MG25HqcTMyGVhg6ApiAUlEHL0e07ZVxY1UxdjDFKhbvWSK+Jn8gpP/xkNw3Ip7pV1q6BDAOsU8q03LCYBWUWdL7hhQtaSjOAQRDAG3YoYdAMKkCtXXCSjyKIVeWm4ZCocmqqZ2biSrl1iYNa7YmACi6pgRiPrFpMAuXG1NUgxIQCEBIysyBDUfWA8ADAnmKer2cbYMRZU/bZJFF9iYPqQyxZiTDKckctAEjOfmQvQ00Mau8AxrSYOFxRNQY1vNwCg0FOiW0s4D3Pl0h8amq9K/0wa3biA1FlMjMKKLotuXAYu0QvGBKhcQUCJft2sEC8jl4E7SYtJVaAeGudwOyS4RQlaGhSTdGTkioVY3A2COx/gGpQ9m0zlIhypSLdkaXX1pitKNMxNiijxJRpXoXIFvE6GWKX/PqFzLlhY7IihmKgKB7he8d7lokVxJmCMmYtUY9GqUPB7XAyLCbeQYIVJgr5ZBaC+rkqP+WQiPI68pg2iwbPCqmIS1RpmPFu4GjdjXyowNytJMWkzkBQhIqq+K4oCQQ1m5PL2ADOyL2laKAhO0YWmlfgSIDzGxIKbVJiLRyYJpQyWU1a4zyqmO1eNHJGJxTwvuVAlH4Am++GSPKEHlLEDxkKuXJlw4wLC0182TTExYkTsKiaMMbiCwfJNqQIfq7p4OMlm5qoM7vQVenQXNVXjKb23wgPfU52RKxqMMYjte4I5vYCmQNmzudGOqehyAR4JHBzqgdjWrHiB74oqg6sa2F4/BCaCtXOD5UQq2aIYuSFC1pLM0nBRK1NxxbgwxkJxeVZkZnA+1/r2AwC8zvwmuzEZzxbjWWEoGonkmlk4M0wxYYIIPakNgDRn5uKyvnlFiknbgaQIEaphoglQNQWCGowvyelrNvEFd4sdgmArvgQIyyylBBIuzDJd9d1Ad+URoNfmyFwAPAAwl57RCIhuNZEZR51aC67IKHR3Cp0wTfNhblx+fTGYTjcuIDWuXKqmmIpBovol0fA49N35pgTAm4pJnIxZyWTmUjQNNcF7udjtNhPTaSmMM5FlDeCAIDDTgpBumCBA6tAbTHKBK37dchK2YyowAWJ+MJXvgbrY1yvOPFe0APgeHySuJ4dgHRorrYLAIAbjTESJwe0ma0kmaaiYGHEI5MoVGzMzV4Iii4AeAK9yBb6gBbzJblxAo0QpRnY1LSwdcDRCFpPIvy0ziyymWzGJvYlBtE5IMSHAg7Ej0ESoXA5TTEKpgg3/etvxJQgqJsFFf6KUwWaq4AxbTIBQ5W85w+5cACAYVpOKxvVeKpUKAIAHTjMbFYBGxRUz5cYFpMaVy6jc7hBdZn92MPL5+xWfWSXcLlYsJslk5qqS/XpabUmCWwoV/EtlnEkm3bjCYaIEqUNvQJDAAz4oezdH3LNirhsQGVRVBqobzyWuaWHuGY0XG4H9VYBPgSQ6IHTJi7lTbPzu3NzY8UFEejAyOgVUFYqmwfjzU/B7bAwZZzUAvk6tBldUOEUPnGIKrAUNFJPwYpjx5FrMjGtBxQZpjDPhsp8ycrVBSIoQpjuGkTVIjFLDxIwv0YL+qRbjSwyYhQD4yBSimVdMzMwpamYzcwEAch36A0PlQFVoMeeTqxGAAgYB+Y6CCMXOKJbFHJl14wJSU/3ddOOyWL+kIZLoDLqUcTOI3i7GIiFRthunzQB4043LqS8oDNejlComZuB75sU4c7h05YQJ4PXVUPdvNc+JggPIc0LjKrSKKHPJkAFMbKRA83oF8h492NfRoUC3JsagoMCF4nZu5OSQG1emCc/oZFR9F4X0ZYZrDdiq/u4UUatWAjJPjbUEYa5cYfWOnA1ihaIRq0ZNyGKSRsUkbAOD7q22AykmRCgjl6ovdIxUweEZuXxB4SOo9uJLDKzUMuFyyFqSDSFkWCOyYTFhjIEV6t+vBd25OOeo8O0CAOR5OkASpEjFLmwHjKtyyI3Lk5+R8Ta1+rsR+G4nTXBDjLTByWTnCqUKZnEtJoC9APiAqqI2eC/nO9KnmASyZDExEFxeSO17omEBRpFJYHlO/b6olRsFwceylhjV3RVNBrwSHEXxg31FkVy4skW4K5cRe+ig+JK42EkZHBACULgMJnN4nU0MejeIUvMqUQB8XGuYaTFJnytXKCNX8s8IouVBkoQADwpKRTVSBQeLKwYtJpxzM0BOCAa+282AY9YyiZLJxxyHsejOgrUECA+Az7xiAgCsMBiL4FPA6xXU+PdD0WSITEK+twRAA8VOCT5MJCFUVNHpzZgbXFOqv2tcRUDV7wXDJSsZ3ME4E18SAfBysGaNJEgJFWEjAN5vIQC+KniPeyWHaWkRg65cqYox0TQORclc4HssBE9+ZAHGmn0QBQlMEqB69N/MKyLnvLkB0SCYle+uA/wqFKaAtfeYKbyJ5oexoFU1DX4tFH9IxMZOwpBa6G65HnjBUrBM4xrXrfH6QMzjiQLg41nDMmIxCathQrQdSJIQ5o6HoqoQ1N1gUAHBDebuDEDfTdE4h6ZwiNBz2NvepQ0LgI9JloorGpiKSYZrmRgwSQDLC45hfy2q/HqV7Xx3B4jBRVy4YscV/UHDHGJG3bgMmlL93R+0lkiCI6n4EgM9mxeDqsmQbbrgGbUyEllLgJDFxIorV0UDNy4AEMPT26YAM/BdZBDF7IpxMbcdxHxdcVb3bwXz639bnh+sYN0gbipUqyh03XmtDL6/HhrXwNs7wUTBLHpKND9EQTDjE+qM+lYU+B4XkVlz5dK4Bh+vBRiQIxSELB1NwehDiCzGawTAx3LlkuMVzsyExUShGiZtEVJMkqSiogLHHHMMpk+fDr8/CzEJKcSMMVHDUgXn9A5mqQJ8wQePmGR8CQAwKShY4rlyZam4ooHDqLDOlaSDqZuKkTq4av8OqKoCh+hCjrPADPwzMpQAMCsDc0HNWDaucJoSAG/EhNhNE9wQgQlwBV3B7GbnspKRy8AsspggM5dfVVCvKGAMyA9TTMzg9xTl/DfTBDeTSudiYSezACM/sANaoB6qB4DE9J3a6vDYqMhdUK5o0LZXAwC0AgHM64DARFsFN4nMY1hNak3FpHnci80VU17y+DLEJ1eBcw2iwwmX4AHi1AOyjByyrofjTBD8LvPYbnqmxSRNWSw552EZuUgxaUuQJEkCTdNw+umno3///pg/fz5crhZuZlSM4ooKBMWoYdI48F1MMr4EAJgjFPweSyhH20nNJOGLISUDFW2jwbwOyA4VNXIFeI2MQndHPf7EUNaCih3nHAjuvmuyvqjLpBsX0LSUwQE1NYoJAHiSjDOxkpHLwCGEMnPFCxQ1rCW5kjNioZbqGJNsBr7HwijAKEKAWrEdmuzT3RMRipsCwtJ/Gsr2zlr9XnYKUNrp95SVvwmRXcLduQBKFZwIXTExNihiP19qAxUAgFxPUNFPgcWEB90+WYMU/6Hg9+jfESvwHQBgWLpt1neyjBLQk+EwIWvu3UR2aD5PtRbEfffdB7/fjyeeeKJVZIrgqgyucGiMQ1QbB777o1R8twsTHcGUwQhl5Wk4Djm7rlxAyGpixB9kgyqvrmi4ayQzhsLcXVYDet2IsOKK3K+3z6QbF5C8xUTjGvxBE32yGbnCcTmCaYPVOmjc+kPcjmLCGDPjReIFwBvZuAqckTt8KVdMgjugDkfzWQwaBRhFVw6gKQjsLwPygnO+TgH3q8HMe8burQtaRT14dQBggNA1DyqsZUkjso8xHwwo+D0xkpEyOEYtE1n1m26uOe4i/WBKLCaNA9/1t/rfUOM86oaLUcMkmjWMBV250hVjEm5ZbQ3rLMI6JEls4vP58M9//hOPPPIIJCl53/jmgl4ciUMJBMCZEKph4g3PyKVAUzlELgDJxJcECbluRKttoEYsWLKFFAy4tZRrPg3UK7Wod9cDAkMBbwdeq4+DiVJoh0rxmw8aLmjgfj3wO5NuXEAoxkSzaTHR65dwiEyy5EaVCKfohsgkcK4hYCNtsPE3dljcnU8UAO9TZARUFQJjEW5cQFilct505UQPfNf7yFZGrlgwQYCrYz8w0QlVqYd8YDPgNWJN6kObD6ITUDj4Lv3vxdp7wNxSKH2z2MKt0G2AhrvoFPyeGDFByuDagJ7ExC3lQnQH5ZKcQsVEapDyl7G4AfCyWfU9ygaIGQPG01JkMWRZJTeutgZJEpu89tpr6N+/Pz799FP07dsXI0aMwAsvvBCzvd/vR1VVlfmqrq7O4GgtYMSXKFzf8VSDGbmCxRUVTdNfAQ0uUYTDIZj+8nZh0eIkgpgZuUQHWBYfcFIWa5lwzlHp2w0mCMgt7ACH4AQ/4DPPR9SCMRSTYFxFpt24gPD0l/YeSsaOYCrcuAzcQauJ1TgTRZPNVMGixd35RCmDDWtJrsMJoWEGG8bMedPUzFxGfIkosZDC04wQJTekom6AIEH110DT9uj+4pV+aHIwMF5yQtteA2gc8Ehg7fQ4IcXMlEYWk+aOs8FilYLfEyPFkZmcc9QFFZNcV6HpdsUDKXDlMmuYNH62xguANywmzmgWE8bC3LlSv5EXspiQYtLWIMXEJosXL0ZlZSUKCgrwwQcfYM6cObjiiivw4YcfRm1/9913o6CgwHx169YtwyOODzdrmKgAl8GU3QAAIejKZSzCmCZAYEJSblwGcYssZjkjl4FRyyQbKYPr5EoE1HoITEBBhy4AAF4thz1UjMxcftPvWFOMoPfCjI83WVcuv1FYMZWKiRFnYlkxMdy4EqcKNggPgG8I5zxqNq5wQu5cTVtoBAKGG1fzFd+S0wOxsAtUcGhCLbS6PYDKwfcHFelqBvgUQGAQuuaafwM7mdKI7BKumDBGwe9WiGcxqVdqoHIFAhN1eWa4aabSYhJFZjjiBMDLsaq+Bwm5c6XDYqJvYlCq4LYHSZIGlJWVITc3N+rrvvvuw/bt2zFq1CjMnDkTpaWluOCCCzBz5kw8++yzUfu7+eabUVlZab62bt0atV22MPxDZU2DoO4EgwaIOWDODgCA+oaFFZsSbBvPYmLGl2RXCGWrlonGNVT69gAA8l3tIXndgDco9CsaBAsrAUDRwDUFCAaRZ6KoYkOSqf6u18QJxpekUDEx+pJVvyU3vNAC2Pr9ZlhMAqraKIFDrSJD0TQIjCEvxoNUSFGciRH43pRNgnQjChIEpxusuAsYY+BSLdTqveD7a8DrVfDKYKrrEq9ZiVrjmplIgSwmzR+nqKeOB2IvXIlI4qUMrvFXAABynAW6om48a7VQ8HrSKLEVk1gB8BrniRMbpKmWCWXkatu0/CCJFNOjRw/U1MQu1rZ8+XKUlpZGHCstLcU333wTtb3L5YrI2iU0t12lsKrvQrDiu54qWH/i1KsKuMbDUgUnP/6GmaXCyXZGLgNDMdG4BlVTmlRjww7V/n1QuQJJcCDXpWdjEYrc0OpqdN/89p5QZjO5HlBUaPU1gFMAc3qysqtkVH/XuAqVKxAtiJOA6gPnGgQmmtapVCAKEpyiBwHVh3q5FrmuwrjtTZchG7UyjMxcRqCo4QIBRAa9x7LApCoAXs5yxXcrGBnbuMsDsbgbFLkMWtl+PQFGDYeQ7wTLc0IoDC06jM0AgYkZm3dE03AKIvyqShm5LGIGvzdQTFRNMa29Oc5CAEFXKYegWzsCaqNUv1bhil7zCAxR+4hV/d0origwZtasaQgTJHAAiJOpMCkUPwAOMIEsJm2Q5vtka6YMHDgQGzdujDi2adMm9OrVKzsDaiI8WExQVdWwjFx9zfP1qgJF5nAJYtCnvQmKScPMUuHjaCaKCWPM3K3NVGYuVVNQ7d8PACgIpgcGAOQ59ToQil4HIjxGh8saeH0NIDEInsKMjDMadqu/p6p+STRCcSaJq8CbQdY2XIbCM3OFB8BzzmNm4wonFYqJqnLz881ZMQl38xNz20Fq11kPgucaoHAwlwusc07EZ9Qk/iZEdjEWteTGZQ3TlatBwhA9RTCHU/REbtgE5zhvSmausBom0TZNDKUy0MAdS46TkcskTZm5QtYSUkraIiRNbHL55ZdjwYIFWLBgAXbv3o333nsPTz75JK6//vpsDy05ghYRRdMa1TDhnMOvKlACGpyi1GTXESZKgFE0rUGciZmpK8uuXEBYZq4M1TKprN8NzjW4JA+8zpBLFmMsVAdif33o2nAV3OcDD/h0xSTD2bjCsVv9PR2B7wZGnIlfqY1bwAyAWSXeakYuAyMzV3gAfLXsh8Y5JEFAjhTbAmMoJloTFBMjTbAksaSTUGSChhnbxMJOEDvr7qFgAsTuRWANNjmMvwm5cbUcDKthw0B4IjqGYsK5FlHE18jGZVhLDMy6I02pZWJm5Iq+3DM2W2RNi5CbcWuYGOMzLM4pjjEJBb57Utov0TIge7lNunbtioULF2LmzJlYvXo1+vTpgxdffBEjR47M9tCSgqsyVFkBF1goVXAwI5dfVcC5LnMcbrFp8SVBmMMJHvCBKwEwpy50uKaZWT2ybTEBgu49SsjdJ50ElHrzoVTgLml0nhW5wff59EDhgAYmOqHJfmhV+wFwMK83q7tKdgLg9fiSoMUkBfVLGuIU3RCYAI1rCKi+uMpPMhYTIHoAfHjQe7xAesPa2JTg94BZWLF5LwSj3RdS916AIkDweMByGisfoVTB2ZcBhDXauXQZXuyiBaQVBCaY7q+KJsMpivArdVC0ABgT4HXmRX7ACIBvgsXEyOoVLSMXoCsejMEsHmsom0qCwHcgfbVMGhZhJdoWpJgkwRFHHIGffvop28NIDaoCNSADTDRduYwaJvWqAs55qOJ7ChZDTHKbikloDMH/M9EUdNnEEbSYyGr6A+Ar6ncBALyOfLikxg93JglguU7w6gB4RT3gcAH19dB81QADxNyitI8xHnaqv8uqHxrXIDAhpfElBowxuKQc+ORq1Cu1MRUTfQGsO11bTRVs0DBlsMY5aoKJG+K5cQEwLRxqE9IFt4T4EiC6JY0xBkefnjE/Y6fgJdE8cIoSOnvzEjckTCTBgYCq6kq7GKr07nXkQ2CRz1jmFMDRxOrvSlCpiSMzjFihgKYhZKQxAt/juXKly2ISzMiVQKYSrZPm/XQj0g5XZciyH0xQIKh7AUSmClZlDqcgQRBYShZDZsrgoKkWCLlxGcHd2cbYsU13Zi6fXA2/UgfGBBR4OsZsx4qCaYIr/QBz6DEn4Fl34wLsWUz8QWuJU/SmrZKvxxFMGyzHThscWgA7bI/DFZaZCwCqAvXQOIdTFOGJ48YFhFy5uJZ8LZNQRq7mLbqFJFJJKyopJkTrJzxlsMZV1Ml6bbMcZxRZ7my6xSSUKjj2xqIjSgC8NVeu1FtMIjJykcWkTdK8n25EWjGqvquKDEHVU9UyRyEEp54Vygx8l6TULYTMWiahRb+pmDQTIRRKGSxH+AGnEs45Kny6tSTPVRzXr57lOPTUkRrA6oWgYgIwtzvrwYF2qr+HAt/T5/ZhxJkEVF/MRXFTFsDOoNuDxjkCqmIp6N1AEBgMr4hkAuAVRdMVGgZISWboyRSh+6JxauVoUKpgoq0ghmXmqgtUg3MNkuCMbuE1NgNVDp6kC6hhbYnlygWEZeYKs3xYC34PzlWuNkpokzSUkavN07yfbkR6MWqYyBokzXDj6m2e9hmB74IIpys1Pu1mkcCw4PfmkpHLQBIcEJgAgGNH1XpU1u+xXUQwETWBA1A0GSKTkBdMDxwPw2qCGpiKiZCXXWsJYNNiksaMXOHjMdzEYhVbNC0mNlIFGzDGzAD4WkVGTVCpjlVUsdH4zDgT+4qJ6cYlCc068B0w7oug65oFpTWUKligVMFEq0YKq2ViuHHlNgh6N2CiAAQtrUkHwFuwmIQHwBsoViwmgghjniNFz8hQ4DspJW0VUkzaMIb5VdXUUEauYOC7rKlQNQ2KwnXFJEUWE1P5UGVzh8UsuNhMFBMAKPZ2hSQ4oXENVfV7saN6Ayp8u1KioKiagqr6YDFFd4dGfsXRYAUufbYqAnhNML98XmGTx9JUQrEE8S1LenyJCsYEOMX0Bsq6JT0NrT+GYmLEDjlsFFcMx3Dn2lNfC84BtySZxxIhBhUKLYndxZYSX2JgR2kNpQqmxQjRujFcufxKHQKqDwCDN5obl0ETMnNxVQMMt9E4ciOaK5eV4HcglJkrVdXfQ6mCKaFCW6VlPOGItBBSTHgoI1cw8N2vKlAVDgkCxBTFlwAxUgY3M1cuQI9V6JzfF+1zusEpusG5hmr/fmyvWo8DdTtNd6BkqPLvhcY1OERXdL/iKDBRAMt3gUlOCFIBhJxiMG/2BbcRS9Aw/WVDDGuJU4yfuSoVuBPEmYTHmCSDkZnLiDOxai0BmlbLJBD0M3c08/gSAztufiH3OnLjIlo3DWuZeBy5ca2ErCm1TAxlRmRgcaysoervqvkvN/WZBPLG2JRJUZxJyGJCge9tFbKZt2VUBaqiQgMgmlXfQ4HviqzBKYpwOKMXZkoW5nCBB+p0Fy6HOyzGpPlYTAw8jjx4HHmol2tQ5d8Lv+JDTeAAagIVyHHmI8/VzlaGKUUNoMZfAQAoDC+maAFW5Aav8EPM1+tBsGYQZ6Cnv9RT9KqaAkGMbv3JhBuXgUv0gjEBKlcQUOvhFEMPOM550qmCDdwNrCP5Nh6ggqGYKE1w5WpJFhPVmsVENt3rmp8MIIhU0lD5bli7pBGmxSQJxUQx3LjiywxDMVE0DRrX65oBenxJomcUEx165rCUKybNZ6OSyCwt4wlHpAWuylACAUAQIaiRrlw+RYESMNy4UlszIVTBPBDcZdFTtyIJn/9M4XbkomNuL3TM7Rl0FeKoDVRiZ/VG7K3dioBSn7APAKio3w2Awy3lmjv7VmFuCfCELYqbgWICRGaZiUUmFRPGmFknpV6OrAKv71ImlyrYINxtK8fhNP2zrWBaTGxm5ZJlDVwDGGtBiomNVNJNtWIRREshPP5KZJLpehoT02KShCuXhcB3fUwChKACElCVCMUkIabFpOmuXBEZuchi0mZpGU84Ij2oCpRAAIwFIGgVAAAxzJVLkTW4haZXfG+IsRPCFX9ERq50u/ikApfkRYfcHijJ7Q2PQ8/f75OrsatmE/bUlJkL8GjUK7XwydUAGArjpAeOh1AUJqybyQI10QJUUQPBcyzt8SUGbof+sG8YAK+EVRdP9n4zMnMB1rJxhZNs8LthLZEcqbVephM7KYMVijEh2hBScG54nQWJLRJNSRlsWFmkxM/w8AB4w6XLGSfw3RyfGWOSAotJeEauZuhBQWSG5rGyIbICV2WoigyRB1MFO9uBOfLBOYdPlqGpHA4xdYHvBmYtE8Xf7DJyWcUpudE+pxtK8nrD68gHoC+Cd9dswe6azY126gGg0rcbgJ6BJekCg/lOwCuB5Tn1jC3NgERBzqH6Je5gtrP04wmmDfYrPmg8PNNM09y4AN0iU+zywiM5UGDT3cCwmGh2FZPgosTZTJRRK5gKawLFRHcDNP4uZDEhWj/e4DMg12WhQG5Y8LuV1NsRyNZcuYCwlMGaCtli4DuA1FpMKL6EAMWYtGm4KkMOyBA1fcEcHl8iBzQwxuB1OVKfmtRw5VICZuA7mklxRbs4RTfa5XRFgdoBVf59qA1Uwq/4sEcph1N0I9/dHh5HHmoDFQio9RCYgHx3+6S/jzEGsWf20wSHk6j6eybduAwk0QlJcEDRZPiVOrPwoqzpirCjibEMyVa7NhUTjUPTuOW5ZcaXpNh6mU4MhTVR8DulCibaGgXu9iiw+BxgkqBvIWvQFQ0bMsCqKxcQGQBvZOSKlyrYHJ+RACUFGSt5gBQTghSTNgvnXHflUgJwcL3Qn5GRyyis6BZTWFgxDDOoTZWhBXz6sWaUkSsZJNGJYm9n5LvbozqooATUeuyt3QqH6IIWNI3nudq1usVXQotJFhQTQC+2WBM4gHq5xlRMFLXpFpOmIAgMjAGcw7JiwjlvcYHvgHWLiZoCKxZBtGocIuBXdXcuO5sThiuXBbkRnjJYC1pmrMWYBK2cqbCYKG0jvmTs2LGoqKiA263/ztNPPx07duzAN998g9GjR+PBBx+Ez+fD5MmTsWjRIkhS61ozJKJt/VoihKYHASuyDBd2AggFvtereuB7bgoLK4bDBBEQJEBTwP16DEBLc+WKhSQ4UOTphHxXe1T796M2cAByMK5BFBzItVBMsaURLy2sqimm+1Q6K75Hw+3I0RUTJeRW1xyCrEWRQVE4VJXDyvNGUTi47nbdshQTQ2ENVn+P5UsfShXcOmQAQaQa5hTA/Sq4rMGq/wLn3CzGG6+4okGo+nsoliVhqmAESwAgNTEmbclismjRInTu3BkAUFFRgbPPPhvfffcdTjvtNFRUVOCRRx7BVVdd1eaUEoBiTNosXJWhaio0DojBGiZG4HudLENVNDjTZDEBwhSRoMm4tSgmBqIgodDTEZ3z+yHf3QFO0YNib+eMxVhkkngWEyP4XI8vyawbkm6hYVA0GYoaiEwVnGyMTwoQbNYyMeuXtCClBEDY35vHrXET+pu0LhlAECnDkUQAvBFfwqylljeC3wOaahZatOLKFcqmyZtUZJFzHmYxadkeFIlgjKG4OLRJKYoi/H4/VFWF3+/H7t278c033+C0007L3iCzSNtTxZoJ3CeDC1F2GAQBLMxKwX1xdiEY01PIJtO2th5KtR9QGAT/XkBzgAk9wH0y6ir0XQuvQ4IoCuD1ChAr6K5hv/HaAmAeXYgxhxtadY3ZlgcYoMhR2wIA96tAnGrZdtrCLZm7tzygAmqK2roks4gVl1VA0Xe38lGAfKkAkAEuyzHbxsQpmoHuttoqWvzc9w7RfGA1pa2gAvCpUBkHd8gRbQP1tYBPhdPliH5/hveravEfvJIAFnxAW2krOES4JA/8gVrUVVfoAfE+PTuY6AI45Mb9ahzwx3m4ioKZJYdzDtTbbysGNKBegVLDwFlwrsSZ93JVAKhX4JSC1zBTMiIF816sZ1ChQM1VTAW2YVu5tg5QVIiMgXM5ci5blCdAy5URKWnbzGVEytqmWEZYnvcZlhEN4SoHD6hgYdcp7lwWhNA9IAmW5r2hhBhtGQDRpYILvFFbcwzB+ckDTPeAqPEBRqZCm/IEQrB0ABMBRQg9K6M1z5CMiHvdmoDX68XcuXPx3nvvoVOnTvjXv/6FcePGYcSIEZgxYwZcLhcef/zxtHx3S4AUkyxRc/Lr0NDYnUT6Q1d4HzrBfF994msxhZU4vAQ5T4wP9Tn5DfAKf9S2wqB2yH1hovm+7rxPwXf5oJfqu1E/hp8A/IRO3XJQeffhyPXoO5i1578PbVNl1H5Z5xzkvXuG+b72sg+hrd4XvW2hC3mfzND/LzkR+PsG8FX6jrofv0Y2dkvI/9855lvfn7+A8vW2qP0CQP7yC0Jtb/sflM+2xGyb9+XZQFAA1f/jW8gLN8Rsm/vxdLBgit76B5dDXrAmdtt3poJ1CWaDeuxHBF5aFbNtzvzJEPvqGVn8z/2KwFM/x247bwLEIXqgZGD+avj/9X3Mtt7HT4I0ohMAQH5zLernfhezrefB4+E4qpvedtFG1P/f17Hb3j0GjhN6AQCUxWXw3bwk4rwRjl+N5XD/7Q9wTuqn9/vddhTcsip4rjHuG46Ac9pAAID6027UXf5RzDG45oyA67yhAADt9/2ovXBhzLbOSw+B+7JhcEs5kNfvBS5dBF/EOFeE2p47BO6rRwIA+M5a1Jz6Rsx+HWeUwvPnUXrbCj9qTvxv7LYT+sJz+1H6m3oF1ce8AgAQARgVbIxrIh3fE957xpqfNdoCulk7vH2mZETNtLfBd9RGb9u7ALmvnWa+jyUjcgFoJU6ob/UKtW0gI9zBlwagJkxGAEDd1Z9C/WFX1DGQjAhr2wJkRDjhMkJZuh2+az+L3TbNMgIAtE0VqJ3xbuy2GZYR0RAP6wz39Yeb7+O1lf7QFW6jX6doSUYIjEESBJScvwRipb4gb5j8PpGMCH+OW5URgL6OyJmvyzTmcFleRwDplRE1n60H0hAaOX36dAwbNgy33norXnjhBVx++eVYtGgRpk2bhry8PNx77734/PPPce655+K6665L/QCaOS3LN4BIIbF3GDgAiYlwpSG+xKC1m2oJ3bUrXtHFTGC3iCWRHqzUMiEIIgF2qr8r1jNyGVhy3UoTbSm+5Pzzz8fBBx8MAJg2bRp++ukncM5x+eWXY9OmTaioqMDy5cvx8ccfo6amcemB1g7jthNjE02hpqYGY8eOxQdvvIqcnCiqeIbcNORtm7F/02rItUuRV/8chKIjkHvYK9hTV4u1WyuQk+PB0J4d4HCkx5VLC9RB3rIG4BxCTjGk4q4x2wLkptHc3TR2Vm2CogXQPrc73J48MEmAT67G3qpySIqETvm9E/ebJjeN7QfWQq0PwCG6IKt+5LmKUBBe4DLDbho+n4qKA344HALadwg+hGPM+0BAw7699RAEhpJOnrhto5JlV64DdTtRK1civ7CTmR41vK2sBrCrehMEJqBLQX+9a3Llst+2BciIlLRtq65cnENbXwHmECH0LwJL5J4lCOD7feAVfrAOHrCcOMk+wuZyeU0lqqr0hbBXcqJXXmHMtkBofir7tkKrOwCxoDPE/PZx28Yag1q9FZqvEmJhFwjOIuvzPo0yora6BqdMPQuLFy9Gbm5qNrkURcENN9yAO++8E7m5uVi0aBEee+wxnH322dizZw/GjBmDefPm4cEHH8Rpp52G559/HgUFzatEQLohV64swTyOiEkQr52dPi23dXDIggrRsRvQZIhFPcA8DlT7NHCnALckmcG24cIlYb8W2zLJBebS+xdyvQnHri/ErO3m2GrrTFNbh2gpE0pa20oCYCHoMRVtRdUFRVGhubi5iPArdYDI4PbkW7vXRQHwWByDjbZuVy5qWSVkKABESB4vmCv6eJjATBeehGNgybWVREGPyRFZzOtiHFc0GXBLcLjFhG0tjcNO2xTMe5G5gfoaaGEWk/C2qlwPKCIk0R11bLbGQDLCftsMyoiUtE2TjLA17zMgIxqdA8C9Dj2gPaDqilKCfjU5FGNidd47RRE8OOccLmfi53KwLctxgWki4OSx5VSCucz3h1IFp2PNAdiXEUxJffZGSZJw6KGHYsyYMXC5XCgqKsJjjz2Giy++GB988AEcDgd27NiBgw46COPGjWtzSglAikmbhWsyFCUAZ7CGiZjTFwBQW6+n7syzsYBJBiaIejYPVQZrocUViRCS4IAfkS47Rv0SZ4bTBDfEJeWgNhDybc529icxuFutqTxuGl1At5gALS8jl4GYoPimkSpYpIrvBBEfp6hXfw+oYF4L8yVohWIWlVQg0pXLUtX3IKyJtUwiMnI524Yr1/nnnx9x7NNPPzX/P3/+/EwPqVnRMp92RJPRFBmqIkPUgsUVc3pD4xx1QVNyjif9izfBWwgmOsFcOWn/LiK9NKz+rnEVAVX3Gc50YcWGuKXI+yvb9TJEkcEoRpAoZbAcdEVJV9rudJOo+KZCxRUJwhLMkAFyHDe9cAx3PhubGs4wxcRpI96kybVM5HoYGblMJYdos5DFpA3COYfsrwNUDlENFlf09jErvgtMQI47/cJBKuoCFHVJ+/cQ6afhAjSg+ADolpRsFjME9LE5RQ8Cqg+MCVkfjz4mBlWNX2RR0ziUYIG0lmoxaaiwNsQoeOmgGiYEER8btUy4oulp7gCbikmoraWq7wZNtZjIwcD3NmAtIRLTMp92RNPQFKhyAAw1YLwOAIPg7YkafwBc43BLYotdCBHZoWH19/qgG1e2rSUGboduNWkOSgkQtJpAVz5iIQd3RkWRme5fLY1EFhNZo6rvBGEFM0jeisXErGHC4rqKNsQhiDCaSxm0mHA56MYlUbZOghSTNglXZSiBAES2HwDA3F3ARDdqfPoiIcflsCXMCKKRxURtXopJjqMAkuBAjqN5BBIaikY8Vy5DMWnJmwTh1d8bKiecczOdNCkmBJEAQw5Yqf5uKC824ksAPQC/wOmGW5TgFm041BgWE66Cx8t2F4OQxSS78YhE84BcudoiigxFkSFiL4BQ4LupmLhpkUDYIxTkrELjGvxKML5EbB6KiSQ60Tm/X7aHYSIELSbxFJNAcAHiaKHxJQAgMAECE6BxDSpXIIY9cgw3LsYEU7ElCCIGhmKicnBVM1M+R4MHZQezmO0snG459jdvmCAimDsM0BTA5kaDqZiQxYQAWUzaJFyVocghxUTI0WtM1Nbru5d5GQh8J1oXQnBhybkGv1ILgENkUtYzYDVXRFMxib27GLKYZK/oWSow4ky0BhYTI/DdQdYSgkgIEwUgKDcSBsDL9gPfm4oRtM5txplwTWtTGbmIxJBi0hZRFV0x4bsBAIK3N3wBBYqigTFSTAj7GDvjAFAXqALQfNy4miNmjEkMi4mqcqjBwPeWmpHLwHTzaxAAr6j+4PnmEfdDEM0ep8UAeCV4PpNuoIbrl804Ex60rlNGLsKgZT/xiKTQlIDuyqUFFZOcPqiu1xcJboejxQbaEtnF2Bn3KXrlYFJMYiMmcOUyA98lBkFo2fFepptfDIsJxZcQhDVYUNHggfgWEyNA3giYzwQhi4nNAHiZrCVEJLQCbYMocj2gqGE1TPqY8SW5aS6sSLRexDB3LiD7hRWbM4ayoWp6kcWGyMHiaM4W7sYFxLGYUEYugrCHoWjICSwmYVXfM4ZpMbHpymXElzhIMSF0SDFpg8j+Wgi8EgwBgIkQPD1QE4wvIcWESBZjZxzQszE5RXrQxMKwmIBHTxksGxXfW7gbFxDPYkI1TAjCFqbFJLZiwjUOGJbYrMSY2HTlMiwmpJgQQVr+U4+wjeyrg8j3AAAET3dwSKjzU+A70TTCMyuRG1d8GGNxM3MFWkGqYAMjMYIWZjHhnJMrF0HYxHTNihf8bpwTWNzMXSnHqHtCFhOiibT8px5hC8451IAPgpGRy9sb/oAKWVUhCAw5TkrXRyRHeBCzSyQ3rkTEijNRVc0Mim8Nikm0IouUKpggkiBMMYnmAqqfy0LgO8IsJjGKqUYjIiOXg9YehE7Lf+oR9lBlKAE5ZDHJ6YPqYHyJyyVCEuiWIJIj3JXLJeVkcSQtA1GIrpgEgm5ckkNo8YHvQGSNG4OQtYRcRwnCKkwSQqu2GAHwPFj1nWV6U8PIqGXDYmJm5BIkyshFmNAqtI3BVQWyHAirYdIHNT59x4LiS4imYOx8MybAIdLuVyLMlMENYkxaQ8X3cMKTImjBxAgU+E4QSeJIEACfhRomAMCCwe92Ykx4wHDjoucFEaJ1PPkI66gyVCXMYuLpjRpfMPCdKr4TTcApepDjLEShuwSMtfyd/nQjBjPmGPVKDIzA95Zev8RAYCJYsMaNUWRRUUkxIYhkYM4EAfBmRq4MZ/QzLR7cepFFhQLfica0jicfYRlF9oHLiqmYqK6e8KsKGGOkmBBNgjGGYm9n5LoKsz2UFkEoZXCkS0Zrs5gAgMj0RZKRMpgsJgSRJIbFJJYrV1BhybQrF2MMEOwVWQxZTEgxIUK0nicfYQk5UAdBOwAGBWAOyEJn+DUVkoPBLVIQKkFkimjB74qi6a5drJUpJg0C4E3FhPzKCcIeiWqZKNlx5QLC3bmsWUw4WUyIKLSeJx9hCdlXG3Lj8vZEXb2e3cPhEuAixYQgMoYZYxKmmJjWEkloVe5wAgsVWdRTBesLF4dAvuUEYQcWp5YJ5zyriolpMbGQmSsyIxcpJkQIUkzaGEp4DZOcPqip13cuvW5Hq1oIEURzx3Dl4jxkNQm0osKK4YRbTFRNBsApVTBBJEO8WiaKBnAADJmt+h4kVGTRgmISkZGL5AARonU9/YiEyP5aiNAVE7h7wSfrAiTXTS4VBJFJBIGZyomRmUsOume0lsB3AyNlsMYVyGZ8CckcgrCNQ9AVDw7whu5cZuB7liyuNjJzUXwJEYvW9fQjEqL4602LiebqiYCmQnII8EoUhEoQmSYUZ6K7VBoZuRyODGfUSTPhFhMKfCeI5GGMhawhDQPgs5Qq2IDZqGUSqvhO7pxEJKSYtCE455D9PghGRi6pN/yKAsnBKL6EILKAEBYArygcnAOMAZLUutwqxbAYE1JMCKKJBN25GlpMuGwUV8zOxoatWiYyxZcQ0SHFpA2hyj5wOQAR+wAA9UI3KFyD5BTgIcWEIDJOeGYuw43L4Whdge8AIIRbTFSj6jspJgSRDEYtEzQMgFeC77OV0S8pi4knnSMiWiCkmLQhZNkHQd0HBg0QXKjV2gEA3C4RokC3AkFkmgjFxAx8b11uXEB4jIkKWdN3SilVMEEkSaxaJll35bJmMeGaBh4sskquXERDaDXahlDqqyFqwcB3Ty/InEMQGbwOWiAQRDYITxkcaIWFFQ30GBOjoCRZTAiiKbBErlxZyMgFIGQx4Sq4Fr0AJBCylkB0UEYuohGt7wlIxEQOSxUMVy/UqyokJ9UvIYhsIYq6CFZUzaxh0toychmEpwZmTKCsXASRLI5Ewe9ZijERRBgbEPFqmZhuXBJZS4jGtM4nIBEVxVdnpgpWnb0Q0PTAd49ECwSCyAZGumBV4QAHmABI2drtTDOGOxdAqYIJokkY7p4aBw8WVOSqBgTTjmctxgTWapmYiomTAt+JxrTOJyARFbk+ZDFRpFCqYDdZTAgiKxiuXAbOVpYmOJxwiwm5cRFE8jCBAUbmPsOdy7CWiEw/ny2M9UScOBOymBDxIMWkDRHw10Hke/X/O3oATPdndwqtdzFEEM0ZQWBgYVK4tVV8D4csJgSRQhoGwCvZDXw3CFlM4gTAm6mCKSMX0ZjW+xRMI6+99hqGDh0Kr9eL0tJSPPPMM9keUkI0rkLz10LAfgBAvdjNrF/S2lKTEkRLwogzAVpn4LuBEGExoZ1SgmgKDQPgeTB1MMu2DDEtJtFdubimhjJykSsXEQXy4bHJihUrcP755+OFF17A2LFj8d1332HGjBno0aMHxo0bl+3hxURRZYj+nWDg4IIXPlYIyamSGxdBZBlRYDAe4a1ZMYmwmFCqYIJoGs4GAfCGK5eUXQ+IRBYTHrSWQHQEg+UJIpLW+xRMEx999BHGjRuHadOmoWPHjpg0aRLOPPNMLFq0KNtDi0tA9kFUdgIAuLMXAlzTA99JMSGIrGLEmQgia7WB7wDFmBBEKjGquxuWkmzXMDExlA1NjXqayz4AVPGdiE3rfQqmCYfDAacz8qHqcrkaHWtuKHU1ZuC75uoFmasQJUapggkiywhBxaQ1W0uAcIsJoxgTgmgqhsXEcOUKxpiwLBdotWoxocKKRCxa95MwDUybNg1Lly7Fjz/+CABYvXo1Fi1ahPPOOy9qe7/fj6qqKvNVXV2dyeGayPV1EMxUwT3BRYAxRq5cBJFlPB4JLpeI3NzWvVh3iC54HfkocLfP9lAIouVjBL8rHFzjoexc2d7gMNw0Y8WYGBm5yGJCxIAUE5v06tULzz33HEaNGoWcnBwMGTIE9913H4YMGRK1/d13342CggLz1a1btwyPWEf115oWE7+jByQHg1MUIQp0CxBENnE4BLRr74bL1br9rRljaJfTFfmkmBBEk2GSABhpgQMqoARrmGTZHdSo5B7bYmKkCibFhIgOrUobUFZWhtzc3Kiv++67Dx999BHmzJmDBQsW4Oeff8bChQtx5513YsGCBVH7u/nmm1FZWWm+tm7dmuFfpBMIq2Hid3SH5KT6JQRBEATRYgm6c/G6oBIgBBWWbGImtuCNiixyTTXrm1BGLiIWtDJtQI8ePVBTUxPz/OjRo3H99ddj0qRJAIB+/fqhtrYWt912G84444xG7V0uF1yukC+lkAULhcY1qL4KiKgAANRJXc1UwQRBEARBtDyYQwSvV4HaoGKSbaUEumUUggRoiq6EhK0zeEC3llBGLiIe2b+LWxiBQACSFLmgF0URfr8/SyNKjKrJEOq3AwA4y4Ms5YMxyshFEARBEC0W02IStEw4msdinwmGO1cDi4lC8SVEYmhlapMzzzwT99xzD/r164dBgwZh/fr1uP322zFt2rRsDy0mihaA4NcVE83RHZqk+6KSKxdBEARBtFCMDFya/kzPenFFA1ECFOhWkzAo8J2wAq1MbXL99deDc46LL74Y5eXl6Nq1K84991zccsst2R5aTORAvVnDRHH2hCgJEBiDkxQTgiAIgmiRMIcIHn6gmSgmTHSAI4rFhFIFExaglalNRFHETTfdhJtuuinbQ7GM4q+HoO0CAAScPSE5KU0wQRAEQbRonA0UkWYQYwLAjCtpmJkrZDHxZHxIRMuhmdzFRDqR/T4IfDcAIODqAUEgxYQgCIIgWjSSALDQW9ZcYkyi1DKJyMhFFhMiDqSYtAFkXy0kvhcAoHh7AqD4EoIgCIJoyTDGIt23mo0rV2OLiZGRi4lOyshFxKV53MVE2uCcQ6nbD5FVAQD8nu4AALfUuqtMEwRBEERrhznDFvnNRDGJVv2dyz79P2QtIRLQTO5iIl2omgyhbgsAQGMF0Fx5AMhiQhAEQRAtHsN9S2K6BaUZENViohiB75SRi4gPKSatHEULAHXbAACq2A2ixOAURQjNRIARBEEQBJEkRgB8M4kvAaAXWAQAroJzPW+Y6cpFigmRAFJMWjmyGgAL6DVMVFc3AGQtIQiCIIjWAMt1Ai4RrLD5uEjpFpPg5mfQakIWE8IqtEJt5cj+eghqsIaJEV9CiglBEARBtHiYU4TYpzDbw2gEEx3gakCvZcKEsIxcpJgQ8SGLSStHCfghcb2GiezuAYAUE4IgCIIg0oixzlDlUGFF0Qkm0LKTiA+tUFs5kuwCsAcA4PcaFhPKyEUQBEEQRHoIVX+XyVpC2IIUk1aOw6dAYzUAAMXbGwLTg98JgiAIgiDSgmkxUcC1YNpgShVMWIBsaq0cuWIdAEBjReCOfHLjIgiCIAgirTAhlDLYdOUiiwlhAVJMWjlM2QwA0MTOgCDAQ4UVCYIgCIJIJ8YmqKaCy8FUwU5STIjEkGLSynHnBzNyebsCAFxkMSEIgiAIIo2wYCwrl+uBoCsXk0gxIRJDikkrR6vdBAAIOLoAADykmBAEQRAEkU4MxcSoXyK5KCMXYQm6S1o7mgwwCbJTL65IFhOCIAiCINIJa7DWYBIFvhPWoFVqK8fV/27I+8vhYw64RBECY9keEkEQBEEQrZkGZQkovoSwCllMWjuqDL8GQPKQtYQgCIIgiLTDGANYWGkCspgQFiHFpLXDOQKqAogSPFRYkSAIgiCIDMDC1hxkMSGsQlvorRypQy/UO3LAVZVqmBAEQRAEkRlECQjWVqSMXIRVyGLSytE4R4BrAGNwS6SYEARBEASRfgyLCWXkIuxAd0orx68q4BwQBQEOQUz8AYIgCIIgiKYS9NKgiu+EHUgxaeXUq7odldy4CIIgCILIFII7D2AiBG9BtodCtCBotdrKMRQTKqxIEARBEESmEDx5cHYfmu1hEC0Mspi0cgzFhFIFEwRBEARBEM0ZWq22cjp5cuFzyMiRnNkeCkEQBEEQBEHEhBSTVo5HcsAjUf0SgiAIgiAIonlDrlwEQRAEQRAEQWQdUkwIgiAIgiAIgsg6pJgQBEEQBEEQRJpZvHgxGGNYuXIlAOCuu+5Cr169zPM//fQTzjvvvCyNrnlAiglBEARBEARBZICCggLMmzcPAPDpp59GnBs2bBhefPHFLIyq+UCKCUEQBEEQBEFkgNGjR+Orr77CF198gbFjxwIA1q1bh1GjRuHQQw/F0KGRtV8uvPBCXHnllTjhhBMwcOBAfPLJJ1kYdeagrFxZIhBQ4XCojY4zxuBwCBHtYpGutgDgdIpJtZVlDZzzZt3W4RDAGAMAKIoGTUtNW0kSIAjNp62qalDV2G1FUYAoJtOWQ1W1OG0ZRFGw3VbTOBQldltBYJCk5tOWcw5ZTk3b5jDvSUaEIBmhQzKiaW1JRrRsGZFozMkiCAImTJiAmTNn4pNPPsG8efPQv39/LF26FJs3b8bEiRMbfaZ79+547LHH8P333+PCCy/Er7/+mpaxNQdIMckS/7z3R0iSu9Hx/gMKcM75peb7uXf/GFNY9eyVhz9eMsh8/9D9P6OuTonatkvXHFx2xRDz/aP/+hWVFYGobTt09OCqOQeZ7596/Dfs2e2L2rag0Ilrrx9mvn/u6dXYvq02aluvV8KNtww337/0/Bps2Vwdta3DIeAvt40037/26jqsW1sZtS0A3H7X4eb/31qwAb+tOhCz7S1/G2EKoPfe2Yyff9wbs+0NNx+KnBw93fJHi8qw/LvdMdte/adDUFTkAgB8/ulWfPPVzphtr5w9FB1LvACA/y3ZjiVfbI/Z9tLLB6Nrt1wAwHff7sInH5XHbHvBRQPRu08+AOD75XvwwftbYrY9+7wBGFBaCAD45ed9eOfNTTHbnjmjH4YMLQYA/L76AF6fvz5m21NP741Dh3cAAGxYX4lXXlwbs+0pE3vi8FElAIAtm6vx/LO/x2w77qTu+MPRnQEAO7bX4qnHf4vZdsyxXXDs8d0AAHv3+PDYIytjth19VCecOL4HAKCyMoCH//lzzLaHHdEREyb1AgDU1SmYe/ePMdsecmh7TJnaB4D+kPvH/30fs+3gIUWYdlZ/8328tiQjdEhGhCAZoUMyQodkhE5TZcQvP++I2bapXHTRRfj666/Rs2dPS+3799f/9oceeii2bIk9Z1sD5MpFEARBEARBEBmia9eueOKJJ2x/ThAEaFpsy1prgPF4di0i5dTU1GDs2LF45+3/IifH2+g8mWDT35bcNHTITaNpbclNg2SE3bYkI4y2JCPstm0O876tyYiamlqcetp0LF68GLm5uXHHb5XFixfj/vvvx/vvv28e69WrFzZv3gwApiuXkbUL0GNMJk6ciDPOOAMAkJubi5qampSMpzlCrlxZwukUIyZBvHZ2+sx223Ch1RLaGg+F1thWXyikoy2DaLGxnbaCwCzfa82hLWPpaQs0j7lMMkKnOcxlkhE6zWHek4xIf9vmMO8dDsHWmJvKunXrcN5558Hv92Pjxo0YNWoUxowZg3vvvTdjY2gukGJCEARBEARBEGlm7NixZiYuA8NasnTp0qifMVILG7RmawlAMSYEQRAEQRAEQTQDSDEhCIIgCIIgCCLrkGJCEARBEARBEETWIcWEIAiCIAiCIIisQ4oJQRAEQRAEQRBZhxQTgiAIgiAIgiCyDikmBEEQBEEQBEFkHVJMCIIgCIIgCILIOqSYEARBEARBEASRdUgxIQiCIAiCIAgi65BiQhAEQRAEQRBE1iHFpAFVVVUYOXIkGGN46KGHGp0/cOAApk+fjtzcXHTs2BF/+9vfwDnP/EAJgiAIgiAIohUhZXsAzYn6+npMnjwZffv2hdfrjdrmwgsvhCRJ+P3337F//35MnToVHTp0wOzZszM8WoIgCIIgCIJoPZDFJIwLL7wQHo8HL730EgSh8aXZvHkzPvroIzz77LPo1q0bDj74YDz88MN4+OGHszBagiAIgiAIgmg9kMUkjCuuuAKHHXYYHA5H1PPffvstDjnkEBQUFJjHjj32WGzYsAG7d+9Gx44dMzVUgiAIgiAIgmhVkGISxpgxY+Ke37p1ayPlw+PxoKCgAGVlZVEVE7/fD7/fb76vra1NzWAJgiAIgiAIohVBrlw28Pl8EEURANCvXz9ccsklAABJkuDz+aJ+5u6770ZBQYH56tatW8bGSxAEQRAEQRAthTalmJSVlSE3Nzfq67777kv4eY/HA1VVAQADBw5Ejx49AACKosDj8UT9zM0334zKykrztXXr1tT9IIIgCIIgCIJoJbQpV64ePXqgpqYm6c937doVe/bsAQC8//77APRMXpWVlaaS0hCXywWXy2W+jxZUTxAEQRAEQRBtHVol2+DII4/Ezz//jKqqKvPYF198gT59+lDgO0EQBEEQBEE0AVJMwqiqqsLWrVuxdetW+P1+0/XKcL/q3bs3TjzxRFxyySXYtm0bVq5ciWuuuQZXX311lkdOEARBEARBEC0bUkzCeOCBB9C9e3d0794dS5cuxe23326+N3juuecAAKWlpTjuuOMwffp0Kq5IEARBEARBEE2Ecc55tgfRlqipqcHYsWOx6IMFyMmJXl2eIAiCIAiCyB61tXU4+ZQzsHjxYuTm5mZ7OG0GspgQBEEQBEEQBJF1SDEhCIIgCIIgCCLrtKl0wc0Bw3Outq4uyyMhCIIgCIIgomGs0yjiIbOQYpJh6oI3+hlnnJ/lkRAEQRAEQRDxqKurQ15eXraH0Wag4PcMo2ka9uzZA6/XC8ZY2r+vuroa3bp1w9atW1MysVLZH42tdfVFY2se/TXXvmhszaO/5toXja159NeWxpYIzjnq6urQoUMHKo6dQchikmEEQUBJSUnGvk/TNGiahpycnJRklUhlfzS21tUXja159Ndc+6KxNY/+mmtfNLbm0V9bGpsVyFKSeUgFJAiCIAiCIAgi65BiQhAEQRAEQRBE1iHFpJXjcrlw2223weVyNbv+aGytq69U90dja119pbo/Glvr6ivV/dHYst9XqvtL9diI5gkFvxMEQRAEQRAEkXXIYkIQBEEQBEEQRNYhxYQgCIIgCIIgiKxDiglBEARBEARBEFmHFJNWTF1dHWbPno0uXbqgY8eOuOSSS1BdXZ1UX9XV1bj44ovRrl07lJSUYNasWWYV+6ZyxRVXgDGGhx56yPZnb7/9djDGGr1Sweeff45OnTph/vz5SX1+8+bNUcfGGMPbb7+dVJ+1tbWYNWsWunTpgoKCAowbNw6rVq1Kqi9N03DnnXeipKQEOTk5mDp1Knbu3Gn5859//jk8Hg8YY6ioqGh07uCDD4bb7cYhhxyCxYsXN6m/qqoqjBw50vJ9Eq+v119/HQcddBByc3Nx5JFHYvny5Un3NW/ePAwYMAC5ubkYO3YsfvzxxyaNzeC7774DYwzDhg1Lqq9Y9968efOaNLaKigocc8wxmD59Ovx+f1J9jR07NurYTjvttKTH9tprr2Ho0KHwer0oLS3FM888k3RfX331FYYNGwaXy4WhQ4figw8+iNtXIjlrZy4k6svuPEjUn525kKgvO3PB6rPJ6jyI15/duWBlbHbmQbz+7M6FRGOzOw8S9WdnLiRaI9iZB4n6sjsPiBYGJ1otF198MT/mmGP477//zjdu3MhPOOEEftFFFyXV19SpU/n48eP5+vXr+e+//84PP/xwPmfOnCaPcePGjbxz58780EMP5Q8++KDtz99222384osv5tXV1RGvprJy5UpeUFDAP/nkk6T72LRpE+/Ro0fEuDZv3swdDgf//fffk+pzzpw5fPjw4fyXX37h27Zt41dddRXv3bs39/v9tvu6/fbb+ciRI/lPP/3Ey8rK+KxZs/ioUaMsffa7777jhYWF/MEHH+QA+IEDB8xzZWVlvKCggD/77LN8z549/KmnnuIFBQV827ZtSfXn8/n4mDFj+LRp0/jRRx+d8D6J19eSJUt4fn4+f++99/jOnTv5ww8/zNu3b8/3799vu6/33nuPFxcX848//pjv3LmT33bbbbxz5868pqYmqbGFc/zxx/MTTzyRH3LIIUn1tWnTJu52uxvNC1mWkx6bqqr82GOP5RdddBHXNC1mP4n6GjNmDP/ggw8ixjVp0iR+8803J9Xf8uXLucvl4v/973/5rl27+Lvvvsu9Xi//+OOPbfe1du1anp+fz1955RW+c+dO/tZbb/Hi4mL+66+/xhxbPDlrdy7E68vuPEjUn925EK8vu3PB6rPJyjxI1J/duZBobHbmQaL+7M6FeH3ZnQeJ+rM7F+KtEezOg3h9JTMPiJYFKSatFFVV+SmnnMLXr19vHvvmm294Xl5eUv398MMPfN++feb7N954g/fp06fJ4zzvvPP4/fffz8eMGZO0YhJvQZMMsizzIUOG8EcffbRJ/WzatIn37Nkz4tjDDz9sefEfjX79+vEFCxaY7wOBAHc4HPznn3+23VdBQQH/3//+Z76XZZmXlJTwH3/8Me7ntm7dytu3b8/nzZvHN23a1Ghxd/vtt/MZM2ZEfObMM8/kd955Z1L9TZ8+nY8fP54HAoGE90mivp588kl+3333RXxmwIAB/PXXX7fdl8/n41999ZX5XtM0np+fz7/88sukxmbw+eef84MPPpg/++yzMRdkifratGkT79y5c9TPJju2u+++m48ePTqucmOlrzFjxvAvvvjCfL9nzx7udDpjKuuJ+rvrrrv4xIkTIz5zwQUX8GuvvdZ2X3PmzOEXX3xxxGf+9Kc/8auvvjrq2BLJWTtzIVFfduaBlf7szIVEfdmZC1afTVbmgZX+7MwFK2OzOg+s9GdnLiTqy848sNKf3bkQb41g95kQry+784BoeUiZtc8QmUIQBCxcuDDiWFFREerq6iDLMhwOh63+Dj300Ij3jDG43e4mjfG3337DkiVL8OSTT+K9995Lup+ioqImjaMhb775JpxOJy6//PIm9dO9e3csXbo04thzzz3XpH4dDgecTqf5XpIkiKIYccwKe/bsQWVlJQYMGBDRV58+fbB69eq4rhNdunTBiy++iPHjx2Pz5s2Nzn/zzTeNXBGOO+44vPvuu0n1d8UVV+Cwww6zdM8m6uvSSy9tdKyoqCiqG0mivtxuN/7whz+Y7w03jFjzIlF/Brfccgvuuusu7Nu3L2YbK33ZmReJ+vP5fPjnP/+Jjz76CJIU/7GRqK/XX38d+fn55vuXXnoJw4cPR2lpaVL9NZwTgF7vINqcSNTX+vXrMWbMmIhjAwYMwBtvvBF1bInkrJ25kKgvO/PASn925kKivuzMBavPJivzwEp/xnsrJOpLURTL88BKf3bmgpXrZnUeWOnP7lyIt0aw+0yI15fdeUC0PCjGpA3x5Zdf4pBDDmnyhN67dy8eeOABzJo1q0n9/PWvf8Utt9zSZAWHc44JEyagZ8+emDp1KrZs2dKk/v7zn//gzDPPxJQpU9CzZ09MnjwZ69evt92PKIro1KmT+f6HH37A77//jhkzZiQ9tksuuQT/+c9/UF1dDc45HnzwQYwcORIDBw601U9hYSEkScLWrVvNY5xzbN26FZWVlXE/yxjD+PHjY57funUrOnbsGHGsU6dOKCsrS6q/MWPGwOv1xh2T1b4acuDAAfz6668YOXJkk/rSNA1z587FoEGDovZltb/33nsPjDFMmjQpbjsrfRUXF+Pee+9Fr169cMQRR2DBggVJ9/faa6+hf//++PTTT9G3b1+MGDECL7zwQlJ9dejQIaJA2nPPPYcLL7ww6bFNmzYNS5cuNWMaVq9ejUWLFuG8885LamzhcwIAysvLE86JcMLlrN25EK8vO/PASn8NiTcX7PRlZS4k6svqPLDan525EK8vO/PASn9250K8vuzMA6tjS3YuNFwjNGUeNOwrFfOAaOZk2WJDZIjdu3fzTp068VdeeSXpPj744ANeXFzMGWN81qxZTRrPihUreL9+/UxzeLIm2XvuuYcPHDiQf/HFF/zXX3/l5513Hh88eLAlM3s0AoEAdzqd/PTTT+dLlizhv/zyC//jH//Ie/XqxX0+X1J9GsyaNauROdsumqbxP/7xj1wQBO52u3nfvn359u3bk+pr0qRJ/KSTTuL79+/niqLwBx98kOfn5/N33nnHch/R3GF69+7N33rrLf7FF19wj8fDv/jiC/7ee+9Zcv2L5+LEub37JFFfnOs+1ieeeGKT+urTpw93uVy8tLQ0bhxNov40TeOHHHII//zzzznnnD/33HMJfetj9VVeXs4LCwv53Llz+dq1a/lzzz3HPR5PhLuNnf4uvPBCPnjwYP7444/z33//nc+bN497vV6+aNEi232Fs2LFCu52u3lFRUXCccXr76OPPuJOp5N7vV7OGOOvvvpqUn298cYbPD8/n3/77becc85//PFHPnjwYD5lyhRL42soZ5syF+LJ7GTkZaJngNW5EK+vZOZCw76SnQex+mvKXGjYV7LzIFZ/4didC9H6SmYexOovmbkQa42QzDywst4gV67WCSkmbYDq6mp+5JFH8vPPP79J/fh8Pl5eXs6XLVvGTzzxRH7jjTcm3ddJJ53EX3rpJfN9UwSMqqoRY8zPz7f00InG9u3bOYAI3+hAIMA7duzIFy5cmFSfnHNeX1/Pi4uL+Ycffph0H5zrD8YzzzyTr1ixgq9evZrPnTuXl5aW8j179tjuq7y8nB9zzDFcFEVeVFTE//nPf3Kv12urr2iLu8GDB/MFCxbw77//nh966KH8+++/52+99RYfMmRIUv2Fk0rF5J///Cfv0qULLy8vb1Jf27Zt42vWrOFz587l/fv355WVlUn19+qrr/ITTjjBfN8UxYTzyHnBOeeXXXYZv+SSS5Lq78QTT2wUnHzttdfyM888M6mxGVx55ZW2lPVo/X344Ye8tLSUv/vuu3zdunX8gw8+4IMHD44aK2FlbLfccgv3eDzc7Xbz0047jU+YMIE//PDDCccWTc4mOxcSyWy78jJRf3bmQry+7M6FaH0lOw/ijS2ZuRCtr2TnQbyxGdiZC9H6SnYexBub3bkQa42QzDywst4gxaR1QopJK6e2tpaPGTOGn3766UlbEaKxYcMGLopiUlaEL7/8kh900EERD4tUCpihQ4fy1157LanP1tTUcAB8165dEcdHjRrF//Of/yQ9pvnz5/OuXbs2ekDaYc2aNVySpEbXfMKECY2CWO1QVVXF/X4/v++++/i5555r67PRFnfjxo1rdK0ef/xxfvLJJyfVXzipUkz+/e9/806dOvHffvutyX2Fc/TRR/OnnnrKdn+KovDS0lK+bNkys01TFZOG3H///fyUU05Jqr8zzjiD33vvvRHtHn/8cX7EEUckPTafz8eLiopsKevR+jvyyCMbXfPXX3+dDx48OOmxKYrCKyoqeFlZGW/fvn3CXexYcjaZuWBFZtuZB4n6szMX7DxPEs2FaH01ZR7YGVuiuRCrr2TnQaKx2ZkLsfpKdh4kGpvduWAQvkZoyjOhYV/hkGLSOqEYk1aMz+fDpEmT0KFDB/z3v/+1FKwXizVr1kS8F0URqqqitrbWdl+fffYZ1q1bh44dO6J9+/Zo3749vv76a9x666049thjbfW1dOnSiDEEAgFs3boVvXr1sj0uAMjJyUG3bt2wceNG85imaSgrK0u6T0D3HT7vvPMgCMlPuUAgAMZYoz5EUUyYSz8eeXl52LlzJ+bOnYubbrop6X4MRo8ejS+//DLi2Oeff44jjzyyyX2ngieeeAL/+Mc/8MUXX2DQoEFJ97Nly5ZG110URVRVVdnuq7y8HGvXrsXJJ59szonZs2dj5cqVaN++PVauXGmrv6qqqkY1KTZu3Jj0PTxw4MCIOQEAmzZtatKcePvtt+H1ejFu3Lik+wD0edFQtjV1ToiiiPz8fMyZMwczZ85EQUFBzLbx5KzduZBKmW2lPztzIV5fdudCrL6SnQfxxmZ3LsTrK5l5YOVvanUuxOsrmXlgZWxW50K8NYLdeZDK9QbRAsm2ZkSkjxNPPJFPmjSJHzhwICJPut2aF+Xl5Tw3N5c/8sgjfNeuXXzt2rX81FNP5ZMmTUpqXJWVlby8vDziNWrUKH777bc3slQkYty4cfyUU07hq1ev5mVlZfyyyy7jhx9+uKX88rF44IEH+KhRo/gvv/zCy8vL+bXXXsuHDRuWtLWjvLyci6KYdO0SA0VR+JAhQ/ill17KN2zYwHfu3MmfeeYZnpOTE7fOQiL27t3LBw0axB955BHLn9mxYwcvLy/n3377LQfAV61axcvLy/n+/ft5WVkZLyws5M8//zzfu3cvf/bZZ3lhYSHfunVrUv2F3y/GfWK8t9vXyy+/zDt27MhXrFgRMSdqa2tt9zVhwgQ+efJkvnr1ar5r1y7+xBNP8IKCAr5p0ybbv3Pv3r2N5sQDDzzABw8ezMvLy3kgELD9O9u3b88XLlzId+/ezRcsWMDz8vLippWO19/WrVt5u3bt+Ouvv27WSCgqKuLLly+33ZfBuHHj+E033RRzPFb7u+eee3hpaSn/3//+x/fu3cuXLl3KDz744JhpxK2MjXPOb7zxRj5q1KiEu+/x5KzduRCvL7vzIFF/dudCvL7szoVYfdXX19ueB1Z+p525EK8vu/MgUX8GVudCvL7szgOrY+M88VxItEawMw8S9ZXMPCBaFqSYtGIARH3ddttttvv65ptv+DHHHMNzcnJ4586d+aWXXhqzEFcyJGuSrays5Jdddhnv0KED93q9/IwzzuA7d+5s0lg0TeP/+Mc/eMeOHbnH4+GnnXZa0gHmnOv55ZtSuySczZs382nTpvGSkhKel5fHR48ezT/99NOk+1u3bh0fMGAA/+tf/2rrcz179ox6b11wwQWcc84/++wzftBBB3Gn08kPPvjgiFz9dvu77bbbYt7Ldvu64IILop5rWG/GSl+VlZV85syZvGPHjjwvL48fffTR/Ouvv27SdQsnkQtLor6ef/55PmjQIO5yufiQIUP4Rx991KSxLV26lB9yyCHc6XTygQMH8vfffz/pvsrKyrggCJaV9Xj9KYrC7777bj5gwADu8Xh4v379+O233x5zEZtobLIs88suu4yPGDGC7969O+HYEslZO3MhXl9250Gi/uzOhXh92Z0Ldp5NVly5EvVnZy4k6svOPLDSn525EK8vu/PAytjszIVEawQ78yBeX8nMA6JlwTjnHARBEARBEARBEFmEYkwIgiAIgiAIgsg6pJgQBEEQBEEQBJF1SDEhCIIgCIIgCCLrkGJCEARBEARBEETWIcWEIAiCIAiCIIisQ4oJQRAEQRAEQRBZhxQTgiAIgiAIgiCyDikmBEEQNujVqxcKCwtRX19vHmvfvj0WL16csu+4/fbbcdppp6Wsv3SzevVq9O7dG4wxMMZw++23Z3tItrjwwgvNsTPGsj0cgiCINgspJgRBEDapqanBwoULsz2MZsPbb7+NoUOHorq6GtXV1bjllluyPSRbPPHEE6iursayZcuyPRSCIIg2DSkmBEEQNjnuuOPw8ssvZ3sYzQa/3w9RFJGbm4vc3Fw4nc5sD8kWLpcLubm58Hg82R4KQRBEm4YUE4IgCJucffbZWLRoESorKxudmzdvHoYNGxZxbOTIkZg3bx4A3U3rkksuQffu3TFixAh8/PHHKC4uxkknndSorzvuuAOFhYXo3LkznnrqqYhzv/zyC4466ii43W4MGDAA7777bsT5cNekjz76CGeddRZycnIwceJEy79z/fr1GDduHNxuN7p164YHHngg6nfccccdeOedd5Jy5dq+fTumTJmC4uJi5Obm4qSTTsJPP/1knt+1axemT5+OwsJCdOjQAZdffjn8fr95fuzYsbjhhhuQn5+P2bNn45577kFeXh7uuOOOiDZz587FlClT4PF4MGTIENvWkbKyMkyYMAEejwc9evRo9PdQFAXXXXcdunTpArfbjUMPPRQLFiyw9R0EQRBtHVJMCIIgbNKrVy+MGDEi6YVnWVkZli5divr6erz11lv48ccf8cMPP2DNmjVmm+XLl2Pw4MFYs2YN7r//fsyaNQtr164FAPh8PkyYMAHTpk3Dpk2b8J///AeXX345vvvuO/PzhltVu3bt8NJLL+GCCy7A9u3bLY9Z0zSceuqpGD16NDZu3IgFCxbg8ccfx+uvv97oO26++WZMnDgxKVeuq666Cvn5+fjll1+wZs0aTJw4EXPnzjXPP/XUU+jTpw/WrFmDr776Cj/99BPuv//+iD7cbje+/fZbPPPMM2jfvj3efPNNPP744xFt3n77bfzlL3/B+vXrcfLJJ2PGjBlQVdXSGDnnmDJlCg455BCsX78eCxYswAMPPIDXXnvNbPPoo49i8eLF+PTTT1FeXo477rgDjzzyCKqrqy1fC4IgiLYOKSYEQRBJcM455yTtznXkkUeia9euOPTQQ3H44YejZ8+eKC0txe7du802Q4YMwZlnnomSkhKcc845OP30083ve+WVVzB8+HDMmTMHnTt3xvHHH49rrrkGjz32mPl5w60KAI444giMHz8eBQUFcLvdlsb46aefQtM03HHHHejSpQtGjRqFv//973jwwQcbfYfT6UzalcuwRHTr1g1du3bF7NmzI67rrbfeirvvvhslJSUoLS3FjBkz8NVXX0X0cdxxx2HIkCEoLi7G8ccfj2OPPTbiWgLA1KlTMXLkSHTt2hX33XcfAoEA/ve//1ka4+effw5FUfCPf/wDXbt2xeGHH4477rgDjz76aMTvGDVqFAYPHowOHTpg8uTJWLJkCfLy8ixfC4IgiLaOlO0BEARBtESmTZuGa6+9Ftu3b7f9WSPzkyRJEf8P38H3er0Rn+nfvz82bdoEAFi1ahU+/vhjtG/f3jzv9/sxePDgqN8X63g8Vq9ejX79+kUcGzBgAH7//XfbfcXjqquuwuWXX4433ngDQ4cOxRFHHIETTjgBgqDvm23cuBG33HILvv/+e1RUVMDn82HkyJERfTS8npIkQdO0iDbh11MQBPTp0webNm3C2LFjE45x1apV+P333yOutyzLEUreeeedh3HjxmHjxo0YNmwYhg0bhkmTJiEnJ8f2NSEIgmirkGJCEASRBO3atcO4cePw6quvZuX7p0+fjrvuuiviWCxLhbHITwWc85T1BQAXXXQRTj75ZHz55ZdYuXIlbrzxRnTv3h3vvfceAH3B37dvX7z99tsoKCjAvHnz8Omnn6Z0DFY46qij8Pzzz0ccC7+uw4YNw+bNm7F48WKsXLkSL774Im655RYsW7YsQqEhCIIgYkOuXARBEEkSzZ2rqKgIe/bsiTjm8/ls911XVxfxft26dejduzcA3c1r48aN6Natm/ny+XyNrCxNYeDAgVi3bl3EsbVr12LgwIEp+w5Aj1Pp3Lkzpk+fjjvvvBNffPEF3n//fdMV66effsLs2bMxZMgQdOvWLemMX+HXU9M0bNy40byeiTCud5cuXczrbVhmwn9HTk4OJkyYgD//+c9YuHAh8vLy8Pnnnyc1XoIgiLYIKSYEQRBJMnnyZKxbtw4VFRXmscMOOwz79u3D448/jt27d+OFF17Arl27bPe9atUqvP7669i9ezdeeeUVvPnmmzj77LMBAGeddRY2bNiAO++8E9u2bcPSpUsxYcKEiMxcNTU1qKmpAaArRuHvrTBu3DgIgoDbbrsNO3bswNKlS3HrrbfiuuuuM9vU1dWhpqYGgUAAqqqa32E1qHz//v0oLS3Fww8/jK1bt2LXrl149NFH0aVLF3To0AEAMHToUMyfPx979uzBkiVL8NJLL0FV1YgCl1aYP38+VqxYge3bt+PGG2+Ew+HA0UcfDUB3g6upqTEVSON3BAIBAHoMS3FxMWbNmoUtW7bgl19+wdSpU/H000+b/U+YMAFXXnklfv/9d+zfvx/vvPMONm7ciIMOOsjWOAmCINoypJgQBEEkidfrxZQpUyIW4l26dMFzzz2Hu+++GwMHDsTu3bvRq1cv230fdthhWLVqFfr3749rr70W//rXv1BaWmp+74cffohPPvkEffv2xfTp03HllVeaigsA5OXlIS8vD/v27cMpp5xivreKIAh499138c0336B3794444wzMHPmTJx55plmm8GDByMvLw9333033n//ffM7rAaVFxcXY+HChfjoo48wZMgQ9O/fH59//jnef/99M27kySefxJIlS9CjRw/8+c9/xrPPPotNmzZhxowZln8LoCsO//d//4c+ffpg0aJFmD9/PkRRBADMnDkTeXl5OPzwwwGErt0//vEPAHoMy1tvvYWysjIMGjQIJ554Io4//nj8+c9/Nvt/4403IMsyxo4di65du+Kvf/0rnnnmGQwaNMjWOAmCINoyjKfaYZggCIIgmhFjx47FaaedhmuuuSbbQyEIgiDiQBYTgiAIgiAIgiCyDikmBEEQBEEQBEFkHXLlIgiCIAiCIAgi69iuY6IoipmphCAIgiAIgiAIIhZut9tyPS3LignnHFu2bMG+ffuSHhhBEARBEARBEG0HQRAwePBguFyuhG0tu3Jt3rwZ+/btQ8cOBfB6XUAwlSNBEARBEARBEERDuMaxfcc+uFweDBgwwEwFHwtLiomiKPj555/RsUMB2rXLT9lgCYIgCIIgCIJovVRW1WL79v3Yvn0bRo/+A9q1axezrSWHLyOmxOtNbIIhCIIgCIIgCIIAAKdDjxzZuGED3nv3nbhhIfbSBZP7FkEQBEEQBEEQVgnqD507d0ZZ2RasWrUyZlOqY0IQBEEQBEEQRFoRRBEulwsVBw7EbpPB8RAthHPOuRgFhV2Rk1uCQYNHNjr/6vwFKOnUB5s2bU7YV05uCX7+JbZm3Bz58suv0aVr/2wPoxHJjKu8fCsmTZ6G9h16YUDpoXjiiWfTNDqiLUKyovXIip9/WYmTT56Ckk59MOzQ0Xj5ldfSNDqirULyovXIC4Oamlr07DUYObklqKiotPQZxhg412Ket13HhGjd7Ni5C2+/8z7Wrf0J+fn5EITG7nvFxUXo378f3B5PFkZIWIVzjmnTL8CRow7H00/9Gxs2bMJZZ/8R3bt3xSmnnJTt4REtHJIVrYf9+w/g1FOnY/bsy/HcvCewatVqnHfeJejZozuOOurIbA+PaAWQvGidPProEzjkkIPw2WeLU9YnKSZEBAG/HwDg9XqRm5sTtc1JJx6Pk048PpPDIpLgq6++xZ49e3H//X+HIAgoKemIv9xyAx597ClSTIgmQ7Ki9bBx4yYcf/xY/Om62QCATiUdMfX0U/Hmm++SYkKkBJIXrY8DByrwxJPP4eWXnkmpYtLqXbnGj5+Cfz/6hPl+1arVyMktAaCbr3r3GYq3334fpQOHo6RTH/zpTzdD00ImpkGDR+L5F17B+PFTUNyuB8YeezI2bNgU8R1PPPEsSgcOR7v2PXHGmedi+/Yd5rkXX5qPnNwS03T5ww8/4fAjxiIvvzPeeus9y79j2bIVOPqYk1DcrgeGDz8KH338WcT5DRs2YeKkM1Hcrgf6DxiGfz3yeMT5y2bOwTXX/BkXXDgTHUt646ijT8TKlb9FnM/JLcHgIYcBALp2G9DI3Dp+/BTztxjXMJxAIIDLr7gaHTr2wpChh+HDjz5t1ObXlatwwrhJKG7XA4cMOxILF34YcX78+Cn4+9/nYtLkaehY0hsnnzwF5eVbbV2L8vKtOH3qOWjXvidKBw7Hc8+9GO/SxuT99xdh4KAR6FjSG9deexNUVTXP7d69B+ecczE6dOyFnr0G42+33RVx/rKZc3DDjbea72tqapGTW4ItW8oAAFu2lCEntwRvvPEOBg8Zie49BuLWv97Z6HecdNJpKG7XA2PGjo9p3v73o0+gY0lv/PDDTxHHl363HKOPPDyi2uqYMUdh2bIVsFi+qE1BskKHZIV9WrqsGDlyOJ55+tGIY4VFBaiuqUnmcrQJSF7okLywT0uXFwYPPvRvTJt2Orp06ZTUdYhFkxQTjfOMv1JNdXUNNm8pw5IlH+LNN17Bwg8+xksv/zeizcKFH+LBB+/BTz9+jd69e+HKK681z73//iL8+9En8Owzj2HlymUYOWI4TptylnkjnTXjDOzauREvvfg0AOC119/CKy8/ix3b12Py5FMsj/HMM8/HhRecg9W/rcBdd/0Vl14yC/v368FDmqZh+vQLMOqIw7Bq5TK8/NLTeOaZ5/Hmm+9G9LNkyVeYedlF+PnnpRg8eCAuuXSWee6Rf83Frp0bsWL5lwCAdWt/wq6dG/H9ii/NNm+99Qp27dyIL5dETniDRx97CkuXLseiD97Ep5+8hx++/ynivM/nw9Sp5+L0KZOxatVyPPTgvZhz9Y1Yvvz7iHaffvYF7rzzr/jh+6/gcDpx/Q1/sXwtOOeYcdYfcdBBg/HrL0vx8ktP45FHnsAbb7xj6VqHxlqP39esw+LFi/D2W/Ox6MNP8OKLr5rnL71sNgqLCvDjD19j4fsL8L//fdNIYFth5crf8NlnC/HKy8/imWeex3vvfWCeu/qaP6OgMB/fr/gSTz35b3z4YWNhDABVldWora1DXZ0v4vj2bTvQoUP7iGMlJR1RV+fDvn37bY+1KWgaz8orlZCs0CFZEUlrkBXR+PrrpRh+6CG2x5kKNK5l5ZVKSF7okLyIpLXIi127duOll/6L6/80x/bYEpG0K5fGOX47sDuVY7HE4KKOEFKYttjhkHDN1VcC0M3XN1x/NV55+TWcf95ZZptzzp6OQYNKAQCP/Ot+dOteii1bytCzZw88/PB/8Pe7bsMf/jAKAHDTTdfh9dffwldffYsxY46CJEnIzZXgdruwffsO/PnGa1FUVGhrjK+//iZGjDwUF198PgDglFNOwvLlS1BcXAQA+PyLL6FpGm699UYAQOfOnXDb327Gvx99AqefPtns5+ijR2P06CMAADffdB2GHnQEqqqqkZ+fB5fLBZfLBa9X9+2MZm71BP0+3W531HG++urr+Outf8bIkcMBAH/602zcc+8D5vnXXnsTw4YdhCuvvFQfZ6cSXHXVZXjyqXk47LARZrsJE8Zj2CEHAQCuu3YWzj3vEsvXYvHi/0FRFNxxuy5wunTpjL/85QY8+eRzmDr1VCuXGwAgCAKuu3YWBEEw74tXX12ACy88F+vWbcCyZSvw+mu/wel0olu3rrh/7t8xbfoFuPaaqyx/BwDMvPxidCrpiM6dSjBhwnh89fVSTJp0Cvbt24+PP/4MGzf8io4dOwAALrvsj1jy5VeN+rj55j9h1qyZyM/Pizjuq/chLy8P1dU1GDxkJK668jLMmjUTAFBfX29rnE1B0zh27qjL2PeF06mzN6ovczKQrCBZEY3WICsa8ur8Bdi4cTPOOutMW2NMBRrXsK1yTca/FwC6FpRCYKlxJCF5QfIiGq1FXsyd+xAu+uN5aN++HWpra22NLRFtPsak4UTo27c3NgdNYgYebygQKzc3ByUlHbF5sy48Vv++BldceQ1mzfqT2aayqgpr167HmDFHRfTTqVOJbcEBAL+vWYc+fXpFHCsp6Wj+f83va9Gnb+T5fv37Yu3a9RHHXO5QgcwOHfQb8sCBAwkfUlYpKytHn769Q9/nckGSQrfYb6vX4LPPlqBHj0HmMX/Aj4EDB0T0444YZ3scOFBhvk90LVavXoO1a9dHfIesyHC57BUHdbmcES5Q4ffFmjVr0a1bVzidTvN8v359sXPnLlMYW8XtivythiWjrHwrcnNzTMEBADk53qh9MMaifqfH7YGmqnA4JAwY0A+dOnWEoij698Z4ABCxIVlBsiIarUFWhPPNN9/huutuwgsvPIXCwgLL4yMiIXlB8iIarUFelJdvxdvvLMQP3zdWZlJB0oqJwBgGF3VM3DDFpNJakiqeefpRHHTQkIhjBQWNBXr4zWgHzjmQhBtbc4wjmDr1VNz2t5sijjkcDsuft3ItjjzycDz15CMRx5K99nZpTte8S5dOWLnyN7jdbnz26fsAgLVr18Pr9aBdu+KMjUMQGDp1ji74MvHdzQmSFdYhWZF5li1bgWnTz8e/H/knxp1wbFbGIDABXQtKs/bdzQmSF9YheZE5/nH3/bjqqstSpng2pElXVGAs4y+7FBYWYO+efeb7hi4sDd9v2LAJvXr2iDjmC/Ovq6mpxa5du9Grl95m0MBS7Nq9B127djFfe/bui5l1Ihn69+uLDRs3RxwLD1YaUNofG9ZHBs2tX7cBAwb0S9kYrNCjR3dsWL/RfO/3+80degAYPKgUmzdtibhWPl89vF7ri9ZE12LQoFJs3rwFnTt3Mr+DMQZRFG39Fr8/EBGoGH5fDBjQH1u3bkMgEDDPr1+/ASUlHVFQkA8geN/tDd13Pl9in+5wenTvZt5rBrW1sd2hqqsbB6keccRh+ObbZRECbcmSr3DYYSPAMqzgCwLLyssOJCsyB8mK5iUrAOD773/EGWech0f+db8t15R0IDAhKy87kLzIHCQvmpe8WLz4K9x//8Po0WMQevQYhD8cNQ4AcNDBR+CZZ16wNZ5oNK/tgTQw+g+jMP+/b+CXX1ehrKwc8+a9HHHe56vHgw89ip27duObb77D3PsfxllnnRHRZt7zL2P16jUoKyvH7DnX47CRw9EzeCNdffUVuPPOe/HJp19g9+49ePzxZ3DqqdNRU6P73CmKgpqaWtTX+8E5R01NLWpqauEPps6zwowZZ+CH73/C008/j127duOLL77EccdPNM2pxx83BoIg4K677sOOnbuwbNkK/N+d92D2rMstf0cgEEBNTa0Z5FRXV9donD6fL/hbdIFr/BZDQMyYcQbu+vt9+P77H7Fj5y489FBklpczz5yCjZs24557HsD27TuwbNkKTD3jHCz8IHrAWzLXYuzYo1FUVITrrrsZZWXl+HXlKpx9zkV4/vmXE/QciaZpeODBf2Pnrt349ttlmHv/w5gxYyoAYMCAfjj88JG49rqbsHXrNqxatRrX3/AXzJ4dut5/GD0KH374Cb7+eil27Nxlu7Bhu3bFGDfuOMyecz02bdqMdes2YF6M33D33f9E5y798PXXSyOOH330aLRv3w433Hgrdu/eg6VLl+Pv/5iLq4J+uEQkJCusQbIiktYgK1avXoMpU87G3ffcgXHjjjP/XjU1tc1qp7Y5QfLCGiQvImkN8uKLLz7Asu8W49tvP8O3336GN9/QP//xR+9g+vSptsYTjVavmFx26YUYM+YonHTSqTh96jkYHQwkM/B6PejerSuOOmocTpsyA6ecfCLOPXdGRJuTTjwec+bcgEOGjcamTZvx2GMPmucmTjwZN95wDebMuQGDBo/E6wvewttvzzd3NYxKpueedwnKy7eipFMflHTqg9lzbrD8G/Lz87Bw4QK88OIrGDhoBK6+5kbcP/fv5q6FIAh47bUXsPS75Rgy5DCcc+4luOii8yOC0xIxd+7DKOnUByMPOwYA0H/AsEbjnDLlbJR06oNjxowHAPO3vDp/AQDgqisvxciRw3HS+Ck44YSJGDFyeIQfqNfrxdtvvYrPP1+CoQcdgfMvmIlLL70Q06dZv5ETXQvGGOa/+hzKt27F8BFHY/Lk6Rg75mhcF8zPbxWPx42Bpf0xZsx4nHradJx04vE4//yzzfNPPfkIDuyvwKHD/4BTTpmKo48ejTlhwmPy5FPwxz+ehxlnXYgTTpiIQw4Zauv7AeChB+/B/v0HMHzE0bhs5mxMnDA+arvcvBx4PO4I/1lAvxb/nT8Pa9asw6DBI3H+BZfh5pv+hAkx+mnrkKywBsmKSFqDrFjx/Y/Yt38/Lrtstvm3Ml5lZeW2x9MWIHlhDZIXkbQGedGppGOEdcqIxencuVNKLHqMW9gOqaurw+rVq9GrVwk8bmei5i2GL7/8GjPOuhDbt62L2WbQ4JG4797/w6RJ1tLvEQTR+iBZQRCEVUheEEQkvvoANm/ehU2bNmLjhvUoLS3FqaedHrVtq7eYNHe++eY7dOnaP+rrv6+9ke3htTrKy7fGvN73//Nf2R4eQcSEZEVmIVlBtGRIXmQWkhepo82nC842I0YMw/JlS6KeSyb9HxGfLl06x7zeeXnpyTBBEKmAZEVmIVlBtGRIXmQWkhepo027chEEQRAEQRAEkT7IlYsgCIIgCIIgiBYFKSYEQRAEQRAEQWQdUkwIgiAIgiAIgsg6pJgQBEEQBEEQBJF1SDEhCIIgCIIgCCLrkGJCEARBEARBEETWIcWEaMQ551yMgsKuyMktwaDBIxudf3X+ApR06oNNmzYn7CsntwQ//7IyDaNMH19++TW6dO2f7WE0ItlxzZr1J+TklmD6jAvSMCqiLUOyovXIimXLVuC44yegQ8deGHnYMViw4O30DI5os5C8aD3yIp1QgUUigh07d+Htd97HurU/IT8/H4LAGrUpLi5C//794PZ4sjBCwg63/vVOfPPNd7js0j9i+44d2R4O0YogWdF62LVrNyafOh23/e1mzH91HpYtW4EL/3gF+vTpheHDh2V7eEQrgOQFYRVSTIgIAn4/AMDr9SI3Nydqm5NOPB4nnXh8JodFJMHTTz+PBQvexmefvod5814mxYRIKSQrWg8lJR3xyivP4rhjxwAAJk48GcceezQ+/vhzUkyIlEDygrBKq3flGj9+Cv796BPm+1WrViMntwSAbr7q3Wco3n77fZQOHI6STn3wpz/dDE3TzPaDBo/E8y+8gvHjp6C4XQ+MPfZkbNiwKeI7nnjiWZQOHI527XvijDPPxfbtoQXgiy/NR05uiWm6/OGHn3D4EWORl98Zb731nuXfsWzZChx9zEkobtcDw4cfhY8+/izi/IYNmzBx0pkobtcD/QcMw78eeTzi/GUz5+Caa/6MCy6ciY4lvXHU0Sdi5crfIs7n5JZg8JDDAABduw1oZG4dP36K+VuMaxhOIBDA5VdcjQ4de2HI0MPw4UefNmrz68pVOGHcJBS364FDhh2JhQs/jDg/fvwU/P3vczFp8jR0LOmNk0+egvLyrbauRXn5Vpw+9Ry0a98TpQOH47nnXox3aWPy/vuLMHDQCHQs6Y1rr70Jqqqa53bv3oNzzrkYHTr2Qs9eg/G32+6KOH/ZzDm44cZbzfc1NbXIyS3Bli1lAIAtW8qQk1uCN954B4OHjET3HgNx61/vbPQ7TjrpNBS364ExY8fHNG//+9En0LGkN3744aeI48ceewzef+91dO3aJanf39YgWaFDssI+LV1WADCVEgPGGFxul91L0WYgeaFD8sI+LUVeZIsmKSZc0zL+SjXV1TXYvKUMS5Z8iDffeAULP/gYL73834g2Cxd+iAcfvAc//fg1evfuhSuvvNY89/77i/DvR5/As888hpUrl2HkiOE4bcpZ5o101owzsGvnRrz04tMAgNdefwuvvPwsdmxfj8mTT7E8xjPPPB8XXnAOVv+2Anfd9Vdcesks7N9/AACgaRqmT78Ao444DKtWLsPLLz2NZ555Hm+++W5EP0uWfIWZl12En39eisGDB+KSS2eZ5x7511zs2rkRK5Z/CQBYt/Yn7Nq5Ed+v+NJs89Zbr2DXzo34cknkhDd49LGnsHTpciz64E18+sl7+OH7nyLO+3w+TJ16Lk6fMhmrVi3HQw/eizlX34jly7+PaPfpZ1/gzjv/ih++/woOpxPX3/AXy9eCc44ZZ/0RBx00GL/+shQvv/Q0HnnkCbzxxjuWrnVorPX4fc06LF68CG+/NR+LPvwEL774qnn+0stmo7CoAD/+8DUWvr8A//vfN40EthVWrvwNn322EK+8/CyeeeZ5vPfeB+a5q6/5MwoK8/H9ii/x1JP/xocfNhbGAFBVWY3a2jrU1fkijvft2xv9+vWxPaZ0wDWelVcqIVmhQ7IiktYgKxryv/99g++//wnTp51ue5xNhXMOrtRl58VTJzNIXuiQvIikJcmLbJG0KxfXNMhbf03lWCzh6HYQmJA6Q4/DIeGaq68EAHQq6Ygbrr8ar7z8Gs4/7yyzzTlnT8egQaUAgEf+dT+6dS/Fli1l6NmzBx5++D/4+1234Q9/GAUAuOmm6/D662/hq6++xZgxR0GSJOTmSnC7Xdi+fQf+fOO1KCoqtDXG119/EyNGHoqLLz4fAHDKKSdh+fIlKC4uAgB8/sWX0DQNt956IwCgc+dOuO1vN+Pfjz6B00+fbPZz9NGjMXr0EQCAm2+6DkMPOgJVVdXIz8+Dy+WCy+WC16v7dkYzt3qCfp9utzvqOF999XX89dY/Y+TI4QCAP/1pNu659wHz/GuvvYlhww7ClVdeqo+zUwmuuuoyPPnUPBx22Aiz3YQJ4zHskIMAANddOwvnnneJ5WuxePH/oCgK7rhdFzhdunTGX/5yA5588jlMnXqqlcsNABAEAdddOwuCIJj3xauvLsCFF56Ldes2YNmyFXj9td/gdDrRrVtX3D/375g2/QJce81Vlr8DAGZefjE6lXRE504lmDBhPL76eikmTToF+/btx8cff4aNG35Fx44dAACXXfZHLPnyq0Z93HzznzBr1kzk5+fZ+u5MwTUObc3+rHy3UFoMFsWXORlIVpCsiEZrkhWXXDoL7733ARhjeO2/L6BLl862xpgSVB+qPumb+e8FkD9uAyB5U9IXyQuSF9FoSfIiW7T5GJOGE6Fv397YHDSJGXi8oUCs3NwclJR0xObNuvBY/fsaXHHlNZg1609mm8qqKqxdux5jxhwV0U+nTiW2BQcA/L5mHfr06RVxrKSko/n/Nb+vRZ++kef79e+LtWvXRxwLN8t36KDfkAcOHEjZgrasrBx9+vYOfZ/LBUkK3WK/rV6Dzz5bgh49BpnH/AE/Bg4cENGPO2Kc7XHgQIX5PtG1WL16DdauXR/xHbIiw+Wy55LgcjkhhCnA4ffFmjVr0a1bVzidTvN8v359sXPnLlMYW8Xtivyt+/bpC/iy8q3Izc0xBQcA5OREf2AyxpqtUtKaIFlBsiIarUlW3HvP/+HWv9yAn376FTMvvxovvfgURow41PIYiRAkL0heRKMlyYtskbRiwgQBjm4HpXIslr+3ufHM04/ioIOGRBwrKCho1E5IcuyccyAJE3MqzdKpYurUU3Hb326KOOZwOCx/3sq1OPLIw/HUk49EHEv22tulOV7zbMMEBqG0OGvf3ZwgWWEdkhWZp127YrRrV4xevXri119X4dHHnsKzzzyW2UGIHt1ykQ3E5pUNiuSFdUhetB6adEWZIGT8ZZfCwgLs3bPPfF9fXx9xvuH7DRs2oVfPHhHHfGH+uDU1tdi1azd69dLbDBpYil2796Br1y7ma8/efTGzTiRD/359sWHj5ohj4cFKA0r7Y8P6yKC59es2YMCAfikbgxV69OiODes3mu/9fj8URTHfDx5Uis2btkRcK5+vHl6vdW090bUYNKgUmzdvQefOnczvYIxBFEVbv8XvD0QEKobfFwMG9MfWrdsQCATM8+vXb0BJSUcUFOQDCN53e0P3nc8X36e7IT26dzPvNYPa2rqY7aura2z1n2mYwLLysgPJisxBsqJ5yYq6ujps27Y94pgoiqiurrY1llTAGAOTvNl5Mesyg+RF5iB5kT15kQ2an/khxYz+wyjM/+8b+OXXVSgrK8e8eS9HnPf56vHgQ49i567d+Oab7zD3/odx1llnRLSZ9/zLWL16DcrKyjF7zvU4bORw9AzeSFdffQXuvPNefPLpF9i9ew8ef/wZnHrqdNTU1AIAFEVBTU0t6uv94JyjpqYWNTW18AdT51lhxowz8MP3P+Hpp5/Hrl278cUXX+K44yea5tTjjxsDQRBw1133YcfOXVi2bAX+7857MHvW5Za/IxAIoKam1gyKrKurazROn88X/C26wDV+iyEgZsw4A3f9/T58//2P2LFzFx566NGI7zjzzCnYuGkz7rnnAWzfvgPLlq3A1DPOwcIPoge8JXMtxo49GkVFRbjuuptRVlaOX1euwtnnXITnn385Qc+RaJqGBx78N3bu2o1vv12Gufc/jBkzpgIABgzoh8MPH4lrr7sJW7duw6pVq3H9DX/B7Nmh6/2H0aPw4Yef4Ouvl2LHzl144olnbX1/u3bFGDfuOMyecz02bdqMdes2YF6M33D33f9E5y798PXXSyOO+/1+bNu2Hdu2bUdVdTXq60Pv7dx/bQWSFdYgWRFJa5AVTz41DxMnnolvv12Gffv24/MvluCpp+fh3HNm2BpLW4LkhTVIXkTSkuRFtmj1islll16IMWOOwkknnYrTp56D0cFAMgOv14Pu3briqKPG4bQpM3DKySfi3HMjhfFJJx6POXNuwCHDRmPTps147LEHzXMTJ56MG2+4BnPm3IBBg0fi9QVv4e2355u7GkYl03PPuwTl5VtR0qkPSjr1wew5N1j+Dfn5eVi4cAFeePEVDBw0AldfcyPun/t3c9dCEAS89toLWPrdcgwZchjOOfcSXHTR+RHBaYmYO/dhlHTqg5GHHQMA6D9gWKNxTplyNko69cExY8YDgPlbXp2/AABw1ZWXYuTI4Thp/BSccMJEjBg5PMIP1Ov14u23XsXnny/B0IOOwPkXzMSll16I6dOmpuxaMMYw/9XnUL51K4aPOBqTJ0/H2DFH47rrZlv+DgDweNwYWNofY8aMx6mnTcdJJx6P888/2zz/1JOP4MD+Chw6/A845ZSpOPro0ZgTJjwmTz4Ff/zjeZhx1oU44YSJOOSQoba+HwAeevAe7N9/AMNHHI3LZs7GxAnjo7bLzcuBx+OO8J8FgO++W4EBpYdiQOmh+Pe/n8Cnn35hvv/uuxW2x9PaIVlhDZIVkbQGWXH1nCtwwYXn4NLLZmFA6aG48Ya/4o47/oJTT51geyxtBZIX1iB5EUlLkhfZgnELjmt1dXVYvXo1evUqgcftTNS8xfDll19jxlkXYvu2dTHbDBo8Evfd+3+YNMla+j2CIFofJCsIgrAKyQuCiMRXH8DmzbuwadNGbNywHqWlpTj1tOjpyFu9xaS5880336FL1/5RX/997Y1sD6/VUV6+Neb1vv+f/8r28AgiJiQrMgvJCqIlQ/Iis5C8SB1tPl1wthkxYhiWL1sS9Vwy6f+I+HTp0jnm9c7Lo5S7RPOFZEVmIVlBtGRIXmQWkhepo027chEEQRAEQRAEkT7IlYsgCIIgCIIgiBaFPcWkDRV4IQiCIAiCIAiiiRj6gwU9wpJi4nTq7lt1dVT7gCAIgiAIgiAIawRkvSaNqqoJ21oKfpckCe3atcPuYJVTr9cF2KiQShAEQRAEQRBE24JrHLt2VaCurs4smhkPy1m5evbsCQCmckIQBEEQBEEQBBEPTdOwY/s2ALrVxOPxxmxrWTFhjKFXr17Ytm0rfvh+BQoKCuH1eslyQhAEQRAEQRBEYzhHIBCApmmorKwAEwSUlHSK2dx2HZNRo46Er64OP/z4A+SATHoJQRAEQRAEQRBxcblcOOaYMTjo4INjtrFUx6Qhqqpi27atqKmugca1Jg2SIAiCIAiCIIjWiyiKyMvLQ5cuXSEIsXNvJaWYEARBEARBEARBpBIqsEgQBEEQBEEQRNYhxYQgCIIgCIIgiKxDiglBEARBEARBEFmHFBOCIAiCIAiCILIOKSYEQRAEQRAEQWSd/we/uwSdBmPGRgAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "# Quick test\n", - "path = \"./out/sol_gpt-3.5-turbo_1_1.pkl\"\n", - "title = \"\" #\"gpt-3.5-turbo-0125\" #f\"{path[6:-4]} \n", + "# path = \"./out/biasfree_ocm_gpt-turbo_300_1_1_lambda_mult0.1_corrected_tablepromptgpt44.pkll\"\n", + "title = \"\" #f\"{path[6:-4]}\" \n", "d = cloudpickle.load(open(path, \"rb\"))\n", "# d = bayesOpts\n", "data=raw_data[y_name]\n", @@ -754,7 +1976,7 @@ "plt.ylabel(f\"Max {name}\")\n", "\n", "for i, acq in enumerate(d.keys()):\n", - " if acq in [\"log_expected_improvement\", \"random\", \"greedy\", \"random\"]:\n", + " if acq == \"log_expected_improvement\":\n", " continue\n", " if acq == \"random_mean\":\n", " plt.plot(d[acq][0,:,0].astype(int), d[acq][:, :, 1].astype(float).mean(axis=0), \n", @@ -762,49 +1984,42 @@ " else:\n", " for j in range(M):\n", " try:\n", - " plt.plot(d[acq][j,:,1].astype(int), d[acq][j,:, 2].astype(float), alpha=0.2, color=f\"C{i}\")\n", + " plt.plot(d[acq][j,:,1].astype(int), d[acq][j, :, 2].astype(float), alpha=0.2, color=f\"C{i}\")\n", + " plt.plot(d[acq][j,:,1].astype(int), d[acq][j, :, 4].astype(float), alpha=0.2, color=f\"C{i}\")\n", " except:\n", " continue\n", - " plt.plot(d[acq][0,:,1].astype(int), d[acq][:, :, 2].astype(float).mean(axis=0), label=acq, color=f\"C{i}\")\n", + " plt.plot(d[acq][0,initial_train:,1].astype(int), d[acq][:, initial_train:, 2].astype(float).mean(axis=0), label=acq, color=f\"C{i}\")\n", + " #plt.errorbar(d[acq][0,initial_train:,1].astype(int),d[acq][:, initial_train:, 4].astype(float).mean(axis=0), yerr=d[acq][:, initial_train:, 5].astype(float).mean(axis=0),fmt='o', color='green', ecolor='green', capsize=5, alpha=0.7, label=f\"{acq}\")\n", "plot_config()\n", - "# plt.ylim(-6, 2)\n", "plt.show()\n", "\n", - "# Plot current values on each iteration\n", - "plt.figure(figsize=(8,5))\n", - "plt.xlabel(\"Number of samples\")\n", - "plt.ylabel(f\"{name}\")\n", - "for acq in d.keys():\n", - " if acq in [\"random_mean\", \"log_expected_improvement\", \"random\", \"greedy\", \"random\"]:\n", - " continue\n", - " else:\n", - " for i in range(M):\n", - " plt.plot(d[acq][i,:,1], d[acq][i, :, 3].astype(float), label=f\"{acq}:{i}\", alpha=0.2)\n", - " plt.plot(d[acq][0,:,1], d[acq][:, :, 3].astype(float).mean(axis=0), label=f\"{acq}\")\n", - "plot_config()\n", - "plt.show()\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "for key, value in d.items():\n", - " print(key, value.shape)\n" + "# # Plot current values on each iteration\n", + "# plt.figure(figsize=(8,5))\n", + "# plt.xlabel(\"Number of samples\")\n", + "# plt.ylabel(f\"{name}\")\n", + "# for acq in d.keys():\n", + "# if acq == \"random_mean\" or acq == \"log_expected_improvement\" or acq == \"random\":\n", + "# continue\n", + "# else:\n", + "# for i in range(M-1):\n", + "# plt.plot(d[acq][i,:,1], d[acq][i, :, 3].astype(float), label=f\"{acq}:{i}\", alpha=0.2)\n", + "# plt.plot(d[acq][i,:,1], d[acq][i, :, 4].astype(float), label=f\"{acq}:{i}\", alpha=0.2)\n", + "# plt.plot(d[acq][0,:,1], d[acq][:, :, 3].astype(float).mean(axis=0), label=f\"{acq}\")\n", + "# plt.errorbar(d[acq][0,:,1],d[acq][:, :, 4].astype(float).mean(axis=0), yerr=d[acq][:, :, 5].astype(float).mean(axis=0),fmt='o', color='green', ecolor='green', capsize=5, alpha=0.7, label=f\"{acq}\")\n", + "# plot_config()\n", + "# plt.show()\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "## BayesOpt Plot" + "### BayesOpt Plot" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 146, "metadata": {}, "outputs": [], "source": [ @@ -814,26 +2029,31 @@ " for i in range(M):\n", " if \"expected_improvement\" in d.keys():\n", " ax.plot(\n", - " [int(s) for s in d['expected_improvement'][i, :, 1]],\n", - " [float(y) for y in d['expected_improvement'][i, :, 2]], \n", + " [int(s) for s in d['expected_improvement'][i, initial_train:, 1]],\n", + " [float(y) for y in d['expected_improvement'][i, initial_train:, 2]],\n", " color=\"C1\", alpha=0.2\n", " )\n", + " # ax.plot(\n", + " # [int(s) for s in d['expected_improvement'][i, initial_train:, 1]],\n", + " # [float(y) for y in d['expected_improvement'][i, initial_train:, 4]],\n", + " # color=\"C9\", alpha=0.2\n", + " # )\n", " if \"greedy\" in d.keys():\n", " ax.plot(\n", - " [int(s) for s in d['greedy'][i, :, 1]],\n", - " [float(y) for y in d['greedy'][i, :, 2]], \n", + " [int(s) for s in d['greedy'][i, initial_train:, 1]],\n", + " [float(y) for y in d['greedy'][i, initial_train:, 2]], \n", " color=\"C2\", alpha=0.2\n", " )\n", " if \"upper_confidence_bound\" in d.keys():\n", " ax.plot(\n", - " [int(s) for s in d['upper_confidence_bound'][i, :, 1]],\n", - " [float(y) for y in d['upper_confidence_bound'][i, :, 2]], \n", + " [int(s) for s in d['upper_confidence_bound'][i, initial_train:, 1]],\n", + " [float(y) for y in d['upper_confidence_bound'][i, initial_train:, 2]], \n", " color=\"C3\", alpha=0.2\n", " )\n", " if \"probability_of_improvement\" in d.keys():\n", " ax.plot(\n", - " [int(s) for s in d['probability_of_improvement'][i, :, 1]],\n", - " [float(y) for y in d['probability_of_improvement'][i, :, 2]], \n", + " [int(s) for s in d['probability_of_improvement'][i, initial_train:, 1]],\n", + " [float(y) for y in d['probability_of_improvement'][i, initial_train:, 2]], \n", " color=\"C4\", alpha=0.2\n", " )\n", " if \"random\" in d.keys():\n", @@ -845,31 +2065,49 @@ " if \"expected_improvement\" in d.keys():\n", " label = \"EI\" if label else None\n", " ax.plot(\n", - " d['expected_improvement'][:, :, 1].astype('int').mean(axis=0),\n", - " d['expected_improvement'][:, :, 2].astype('float').mean(axis=0), \n", + " d['expected_improvement'][:, initial_train:, 1].astype('int').mean(axis=0),\n", + " d['expected_improvement'][:, initial_train:, 2].astype('float').mean(axis=0),\n", " color=\"C1\", label=label\n", " )\n", + " # ax.errorbar(\n", + " # x=d['expected_improvement'][:, initial_train:, 1].astype('int').mean(axis=0),\n", + " # y=d['expected_improvement'][:, initial_train:, 4].astype('float').mean(axis=0),\n", + " # yerr=d['expected_improvement'][:, initial_train:, 5].astype('float').mean(axis=0),\n", + " # fmt='-o', # Format string: line with circle markers\n", + " # color=\"C9\", # Line and marker color\n", + " # ecolor='lightgray', # Error bar color\n", + " # elinewidth=1, # Error bar line width\n", + " # capsize=2, # Length of error bar caps in points\n", + " # label=\"Model Prediction\" # Label for the plot\n", + " # )\n", " if \"greedy\" in d.keys():\n", " label = \"Greedy\" if label else None\n", " ax.plot(\n", - " d['greedy'][:, :, 1].astype('int').mean(axis=0),\n", - " d['greedy'][:, :, 2].astype('float').mean(axis=0), \n", + " d['greedy'][:, initial_train:, 1].astype('int').mean(axis=0),\n", + " d['greedy'][:, initial_train:, 2].astype('float').mean(axis=0), \n", " color=\"C2\", label=label\n", " )\n", " if \"upper_confidence_bound\" in d.keys():\n", " label = \"UCB\" if label else None\n", " ax.plot(\n", - " d['upper_confidence_bound'][:, :, 1].astype('int').mean(axis=0),\n", - " d['upper_confidence_bound'][:, :, 2].astype('float').mean(axis=0), \n", + " d['upper_confidence_bound'][:, initial_train:, 1].astype('int').mean(axis=0),\n", + " d['upper_confidence_bound'][:, initial_train:, 2].astype('float').mean(axis=0), \n", " color=\"C3\", label=label\n", " )\n", " if \"probability_of_improvement\" in d.keys():\n", " label = \"POI\" if label else None\n", " ax.plot(\n", - " d['probability_of_improvement'][:, :, 1].astype('int').mean(axis=0),\n", - " d['probability_of_improvement'][:, :, 2].astype('float').mean(axis=0), \n", + " d['probability_of_improvement'][:, initial_train:, 1].astype('int').mean(axis=0),\n", + " d['probability_of_improvement'][:, initial_train:, 2].astype('float').mean(axis=0), \n", " color=\"C4\", label=label\n", " )\n", + " if \"log_expected_improvement\" in d.keys():\n", + " label = \"LEI\" if label else None\n", + " ax.plot(\n", + " d['log_expected_improvement'][:, initial_train:, 1].astype('int').mean(axis=0),\n", + " d['log_expected_improvement'][:, initial_train:, 2].astype('float').mean(axis=0), \n", + " color=\"C5\", label=label\n", + " )\n", " if \"random\" in d.keys():\n", " label = \"random\" if label else None\n", " ax.plot(\n", @@ -911,32 +2149,303 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Paper figures" + "### Updated BayesOpt Plot\n" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 51, "metadata": {}, "outputs": [], "source": [ - "raw_data, starts, indexes, x_name, y_name = get_dataset(\"ocm\", M=0)" + "from dataclasses import dataclass\n", + "\n", + "@dataclass\n", + "class AqFunction:\n", + " color: str\n", + " linestyle: str = '-'\n", + "\n", + "def plot_BO(ax, data_file, title, data, axis_name, lim=None, label=False, M=1, initial_train=1):\n", + " \"\"\"\n", + " \"\"\"\n", + " \n", + " aq_functions = {\n", + " \"expected_improvement\": AqFunction(color=\"C1\"),\n", + " \"greedy\": AqFunction(color=\"C2\"),\n", + " \"upper_confidence_bound\": AqFunction(color=\"C3\"),\n", + " \"probability_of_improvement\": AqFunction(color=\"C4\"),\n", + " \"log_expected_improvement\": AqFunction(color=\"C5\"),\n", + " \"random\": AqFunction(color=\"C8\"),\n", + " #\"random_mean\": AqFunction(color=\"gray\")\n", + " }\n", + "\n", + " try:\n", + " with open(data_file, \"rb\") as f:\n", + " d = cloudpickle.load(f)\n", + " except (FileNotFoundError, EOFError, pickle.UnpicklingError) as e:\n", + " print(f\"Error loading data from {data_file}: {e}\")\n", + " return\n", + "\n", + " mean_y_values = {}\n", + "\n", + " for i in range(M):\n", + " for func_name, props in aq_functions.items():\n", + " if func_name in d.keys():\n", + " try:\n", + " # Extract and convert data\n", + " x_data = d[func_name][i, initial_train:, 1].astype(int)\n", + " y_data = d[func_name][i, initial_train:, 2].astype(float) # Y-values from index 2\n", + " except IndexError as e:\n", + " print(f\"Data indexing error for '{func_name}' in run {i}: {e}\")\n", + " continue\n", + " except ValueError as e:\n", + " print(f\"Data type conversion error for '{func_name}' in run {i}: {e}\")\n", + " continue\n", + "\n", + " ax.plot(\n", + " x_data,\n", + " y_data,\n", + " color=props.color,\n", + " linestyle=props.linestyle,\n", + " alpha=0.2\n", + " )\n", + "\n", + " for func_name, props in aq_functions.items():\n", + " if func_name in d.keys():\n", + " try:\n", + " \n", + " mean_y = d[func_name][:, initial_train:, 2].astype(float).mean(axis=0) # Y-values from index 4\n", + " mean_y_values[func_name] = mean_y\n", + " except IndexError as e:\n", + " print(f\"Data indexing error when computing mean for '{func_name}': {e}\")\n", + " continue\n", + " except ValueError as e:\n", + " print(f\"Data type conversion error when computing mean for '{func_name}': {e}\")\n", + " continue\n", + "\n", + " highest_aq_func = None\n", + " highest_mean = -np.inf\n", + "\n", + " for func_name, mean_y in mean_y_values.items():\n", + " if mean_y.size == 0:\n", + " continue # Skip if no data\n", + " overall_mean = mean_y.mean()\n", + " if overall_mean > highest_mean:\n", + " highest_mean = overall_mean\n", + " highest_aq_func = func_name\n", + " \n", + " for func_name, props in aq_functions.items():\n", + " if func_name in d.keys():\n", + " try:\n", + " mean_x = d[func_name][:, initial_train:, 1].astype(int).mean(axis=0)\n", + " mean_y = d[func_name][:, initial_train:, 2].astype(float).mean(axis=0) # Y-values from index 4\n", + " except IndexError as e:\n", + " print(f\"Data indexing error when computing mean line for '{func_name}': {e}\")\n", + " continue\n", + " except ValueError as e:\n", + " print(f\"Data type conversion error when computing mean line for '{func_name}': {e}\")\n", + " continue\n", + "\n", + " ax.plot(\n", + " mean_x,\n", + " mean_y,\n", + " color=props.color,\n", + " linestyle=props.linestyle,\n", + " label=func_name.replace('_', ' ').title() if label else None\n", + " )\n", + "\n", + " if highest_aq_func and highest_aq_func in d.keys():\n", + " try:\n", + " mean_x_best = d[highest_aq_func][:, initial_train:, 1].astype(int).mean(axis=0)\n", + " mean_y_best = d[highest_aq_func][:, initial_train:, 4].astype(float).mean(axis=0) # Y-values from index 4\n", + "\n", + " if d[highest_aq_func].shape[2] > 5:\n", + " y_err_best = d[highest_aq_func][:, initial_train:, 5].astype(float).mean(axis=0)\n", + " print(y_err_best,mean_y_best)\n", + " # Plot error bars with label\n", + " ax.errorbar(\n", + " x=mean_x_best,\n", + " y=mean_y_best,\n", + " yerr=y_err_best,\n", + " fmt='-o',\n", + " color=\"blue\",\n", + " ecolor='black',\n", + " elinewidth=1,\n", + " capsize=2,\n", + " label=\"Best trajectory error\",\n", + " alpha = .7\n", + " )\n", + " except IndexError as e:\n", + " print(f\"Data indexing error when extracting error bars for '{highest_aq_func}': {e}\")\n", + " except ValueError as e:\n", + " print(f\"Data type conversion error when extracting error bars for '{highest_aq_func}': {e}\")\n", + "\n", + " ax.set_title(title)\n", + " ax.set_xlabel(axis_name[0])\n", + " ax.set_ylabel(axis_name[1])\n", + "\n", + " if lim is not None:\n", + " if isinstance(lim, dict):\n", + " ax.set_xlim(lim.get('x_min', None), lim.get('x_max', None))\n", + " ax.set_ylim(lim.get('y_min', None), lim.get('y_max', None))\n", + " elif isinstance(lim, tuple) and len(lim) == 2:\n", + " # Assume lim is (y_min, y_max)\n", + " ax.set_ylim(lim)\n", + " else:\n", + " raise ValueError(\"lim must be either a dict with 'x_min', 'x_max', 'y_min', 'y_max' keys or a tuple of (y_min, y_max).\")\n", + "\n", + " if label:\n", + " ax.legend()\n", + "\n", + " ax.grid(True, linestyle='--', alpha=0.5)\n", + "\n", + " try:\n", + " padding_fraction = 0.02 # Fraction of the plot width for padding\n", + "\n", + " x_min_plot, x_max_plot = ax.get_xlim()\n", + " y_min_plot, y_max_plot = ax.get_ylim()\n", + "\n", + " x_padding = padding_fraction * (x_max_plot - x_min_plot)\n", + "\n", + " thresholds = {\n", + " \"max\": data.max(),\n", + " \"99%\": data.quantile(0.99),\n", + " \"95%\": data.quantile(0.95),\n", + " \"mean\": data.mean(),\n", + " }\n", + "\n", + " if not data_file.startswith(\"./out/sol\"):\n", + " thresholds[\"5%\"] = data.quantile(0.05)\n", + " thresholds[\"min\"] = data.min()\n", + "\n", + " colors = {\n", + " \"max\": \"C15\",\n", + " \"99%\": \"C14\",\n", + " \"95%\": \"C13\",\n", + " \"mean\": \"C12\",\n", + " \"5%\": \"C11\",\n", + " \"min\": \"C10\"\n", + " }\n", + "\n", + " for label_text, y_value in thresholds.items():\n", + " ax.axhline(y=y_value, color=colors[label_text], linestyle=\"--\")\n", + " \n", + " ax.text(\n", + " x_max_plot + x_padding, # Positioning just outside the plot to the right\n", + " y_value, \n", + " label_text, \n", + " va=\"center\", \n", + " ha=\"left\", \n", + " backgroundcolor=\"w\", \n", + " fontsize=8\n", + " )\n", + " except AttributeError as e:\n", + " print(f\"Error processing 'data' for horizontal lines: {e}\")\n", + " except Exception as e:\n", + " print(f\"Unexpected error processing 'data': {e}\")\n" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 52, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Data indexing error for 'upper_confidence_bound' in run 1: index 1 is out of bounds for axis 0 with size 1\n", + "Data indexing error for 'probability_of_improvement' in run 1: index 1 is out of bounds for axis 0 with size 1\n", + "Data indexing error for 'log_expected_improvement' in run 1: index 1 is out of bounds for axis 0 with size 1\n", + "[0. 0.06406427 nan nan 0.39286417 nan\n", + " nan nan nan nan nan nan\n", + " nan nan nan nan nan 0.90030515\n", + " nan nan] [0. 0.32032134 nan nan 1.96432087 nan\n", + " nan nan nan nan nan nan\n", + " nan nan nan nan nan 4.50152573\n", + " nan nan]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAysAAAJjCAYAAAAMK47pAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXxcVf3/8dddZs+etOmarpRCKTuCgAgIyC4qorIKgqhfVBR3RVFQXH6CXxUQ9KuIiqCgooKyqJVFwbK0LKUtbdOma9pmn33uvef3xySTpM2kWU6Smcnn+XgEOpOTm3PfuXPnnjnLNZRSCiGEEEIIIYQoMOZEV0AIIYQQQgghBiKNFSGEEEIIIURBksaKEEIIIYQQoiBJY0UIIYQQQghRkKSxIoQQQgghhChI0lgRQgghhBBCFCRprAghhBBCCCEKkjRWhBBCCCGEEAVJGitCCCGEEEKIgiSNFSGEEJPK3XffjWEYE10NIYQQQyCNFSGEKDCvvvoqZ5xxBhUVFdTV1XHOOefw6quv5r5/ww03YBhG7ss0TRYsWMDXv/51HMcB4AMf+EC/MgN93XDDDaOq50UXXYRhGJx44omj2s7dd9/N3LlzR7UNIYQQpcme6AoIIYTotWXLFt761rfy1re+lT//+c8A/OAHP+DEE0/kxRdfpKGhAYCqqiqeeuopAJRSvPLKK1xzzTUEg0E++9nP8o1vfINPf/rTue1efvnlVFdXc8stt+Semzp16ojr+be//Y1HHnmE0047jVQqNeLtCCGEEIORxooQQhSQ//f//h91dXX87ne/w7IsAI4//nhOPPFE/vOf/+QaK5ZlcdBBB+V+bunSpbz++uv87Gc/47Of/SwzZ85k5syZue9HIhEqKir6/cxIxWIxPvKRj/Dd736Xp59+mo0bN45qe9u3bx91nYQQQpQmGQYmhBAF5M9//jOXXHJJrqEC2YbJU089xXvf+95Bf3bmzJk0NTWNdRW5/vrrmTNnDh/84AdHvI2eeSOGYfDFL36RTZs29Rui1ndo2Q033DDgMDHDMLj77rtzj0888cR+21i/fj3XXXcdU6ZMwTAMnn322X4/v27dOk466SRCoRBz587lrrvu2ut3rF69mnPPPZeKigrKyso488wz+w3JE0IIMbakZ0UIIQpEIpGgsbGRBQsWjOjn29vbmTZtmuZa9ff8889z11138eKLL45qkvp5553HkUceCcDtt9/OQw89xKOPPpr7fiQSGfY2f/7znxOLxVi+fDlXXHEFt912G/X19TzyyCOEQqG9cr3pppv4zGc+Q0VFBffddx9XX301CxYs4G1vexuQ7fE5/vjjOfnkk3nooYcwDIOf/OQnvOUtb2HFihXMmTNnxPsvhBBiaKSxIoQQBaKtrQ2lFOXl5cP+2VWrVvGTn/yEd7zjHWNQsyzHcbjqqqv44he/yKJFi0a1raqqKqqqqoDs3BmfzzfqIWrz5s0DYPfu3QAsXLiQj370o3nL33TTTcyaNQvIDrVrbGzk1ltvzTVW/vd//5dp06Zx3333YZrZgQhvfetbOeqoo/jud7/Lj370o1HVVwghxL7JMDAhhCgQSql+jzdt2oRt27mvvsOuWlpa+n3voIMO4tBDDx3xCl99h2XlWy3slltuwfM8PvOZz4zod4y3E044YdDv9zRUepx88sm8/PLLucf//Oc/Oe6443INFcgOPTvhhBNYtmyZ1roKIYQYmPSsCCFEgaioqACgq6sLgBkzZrBixQoAvvzlL+O6bq5s39XATNOkoaGBsrKyEf/uvsOyevRdLWzDhg3ceOON/P3vf8fn843494yn4eYRiUTYuXNn7nFLS8uAvVwVFRW0tLSMun5CCCH2TRorQghRIMrLy5k+fTqbNm0C6Dc0KhgM9iu752pgo9V3WNZAnnzySaLRKMcee2y/5z3PQymFbdvccsstfPzjH9dWpx6WZeXuHzOWYrFYvwZabW1truHYV2dnJ7W1tWNeHyGEEDIMTAghCsqpp57Kfffd168XJZVK8Z///GcCa5XteXnllVdYsWJFv69zzz2XI488khUrVnDRRReNaNv7mqg/a9YsduzYQWtra+45Hcsdb9mypd/jf/7znxx88MG5x6eddhrPPPMMnuflnlNK8eSTT/LWt7511L9fCCHEvknPihBCFJDPfOYzHHnkkbz3ve/lU5/6FPF4nFtvvXXCP8nP1/NSVVVFe3v7qHp5pk6dSiaTYfXq1bnnwuFw7p4yZ5xxBqFQiIsvvpgvfOELxONx7rvvvr2209jYSCwWo7GxEYC1a9cSjUaBbINnz/p/+ctf5oILLqCyspL777+fhx9+mCeeeCL3/euuu44777yT973vfXzkIx/BNE3uuusu1q9fz4MPPjji/RVCCDF00rMihBAF5KCDDuLPf/4zGzZs4OSTT+bqq6/m4osv7veJf6l53/vex/z58znooIM44IADOOCAA7j00ktz3582bRp//vOf2bFjB29/+9v50pe+xCc+8Ym9tnP55ZezdOlSrrjiCgDe/va3s3TpUpYuXcof//jHvcp/+ctf5rvf/S6nnHIKf/rTn7jzzjtzK4FBtiH25JNPkkgkOPfccznrrLNoa2vjqaeekmWLhRBinBhqz+VnhBBCCCGEEKIASM+KEEIIIYQQoiDJnBUhhBBa7WvCvHToCyGEGCpprAghhNDqlVdemegqCCGEKBEyZ0UIIYQQQghRkGTOihBCCCGEEKIgSWNFCCGEEEIIUZAm1ZwVz/PYtWsX4XB4nxNAhRBCCCGEKEZKKeLxOFOmTME0i7tvYlI1Vnbt2sVZZ5010dUQQgghhBBizD388MPU19dPdDVGZVI1VsLhMAAPPHAPke5/FxvX9Whs3My8ebOxrOJuKRcCyVMfyVIvyVMvyVMvyVMvyVMvyRNi8Tjnn39p7tq3mE2qxkrP0K9IOEwkUpx/PNf1CIVCRCLhSfsC1Eny1Eey1Evy1Evy1Evy1Evy1Evy7FUK0x4m91+wCJmmQX19LaZZ/AdfIZA89ZEs9ZI89ZI89ZI89ZI89ZI8S8uk6lkpBYZhUFlZPtHVKBmSpz6SpV6Sp16Sp16Sp16Sp16SZ2mRnpUi43keGzduxfO8ia5KSZA89ZEs9ZI89ZI89ZI89ZI89ZI8S4s0VoqMUpBOZ1BqomtSGiRPfSRLvSRPvSRPvSRPvSRPvSTP0iKNFSGEEEIIIURBksaKEEIIIYQQoiBJY6XImKbBzJn1ssKFJpKnPpKlXpKnXpKnXpKnXpKnXpJnaZHVwIqMYRhEIqGJrkbJkDz1kSz1kjz1kjz1kjz1kjz1kjxLi/SsFBnX9Vi3rgnXlRUudJA89ZEs9ZI89ZI89ZI89ZI89ZI8S4s0VoqQLMWnl+Spj2Spl+Spl+Spl+Spl+Spl+RZOqSxIoQQQgghhChI0lgRQgghhBBCFCRprBQZ0zSYM2eGrHChieSpj2Spl+Spl+Spl+Spl+Spl+RZWqSxUoRsWxZx00ny1Eey1Evy1Evy1Evy1Evy1EvyLB3SWCkynqdYv74Jz1MTXZWSIHnqI1nqJXnqJXnqJXnqJXnqJXmWFmmsCCGEEEIIIQqSNFaEEEIIIYQQBUkaK0IIIYQQQoiCNClnH6VS6QEnXpmmgc/n61cuH8Mw8PtHVjadTqPyDKM0DPD7/XnLKqWYNXsamUwG1zX2KJtB5dswEAiMrGwmkxl03Odwyvr9PgwjuzqH4ziD3l12OGV9PhvTNIdd1vPcXJ6Os/eqISPdruu6OI6bt6xtW1iWVTBlPc8jk3HylrUsM/eayVe259j0PBfLMgctO5ztDlRWKUU6ndFSdjiv+/E8R3ieGvDY3Nc5ov929yw7ec8Rtm2xYEEDpmmM2flkMp0j+r4XOY4x4teynCN8uZ8b7L1I53XE4GVL4xzRc3wafaIshNf9eJ4jBjv2huLuu+/m3nvvpampiQsvvJC//vWvNDQ08MMf/pAPf/jDbNmyBaUU119/Peeeey4AF1xwAaeddhpXXnklK1eu5Morr+Tpp58mEAiMqi6TsrFyw9e+k/sD93XAAYv40FWX5B5/5avfynsCW7BgLtf8zwdzj2+86XvEYvEBy86ePZNPffLDucff+vYPaWtrH7Bsff0UPv+5j+ce33Lrj2lu3jVg2erqKr5y/XW5xz+67f/YvHnrgGUjkTA33fiF3OO7fnIP69dvHLCs3+/j29/6Su7xz+++j9dfXztgWYBbb7kx9+9f3/sgK1e+lrfst26+PndS+u3v/sTy5S/lLXvj1z9PWVkEgD8+9Feeeea/ecte/+VPUVNTDcAjjzzBP5c9k7fsZz97DdOn1QPwxN+f5LHHluUt+8lrr6ahYRYATz75LH/+y6N5y/7PR69g4cJ5APznP8/z4O//krfslVdezJID9wfghRdW8pv7/pC37GWXvpdDDz0IgFdeeZ1f3HN/3rLvf987edObDgdg9Zp1/PSnv8pb9t3vOpvjjz8agA0bNnHb7T/LW/acs9/OyScfD8CWLdu49ft35i172mkncsbpbwOgeecuvvOdH+Ute9KJx3HuuacD0N7ewY033ZK37HHHvYnz330OALFYnOu/8q28ZY866jAufP+7gOwb6ue/cGPesoccsoQPXPa+3OPByso5IqsYzxFf/tInKSsrw+/3De8c8cSTPPrYP/OWlXNE1nDOEW8/7SROP/1kQM4Rfc8R3/zmrXKOQO854utf+xzl5WXAGF5HFOg5wnXzN3SGaunSpXz3u9/liiuu4Pnnn2fWrFmYpsk3vvENDjjgALq6uli6dGmusXLnnXdy7LHHcsIJJ/DRj36Ue+65Z9QNFZikjRUhegzyoZAYIclUFCLPU2zatI0FCxomuipC7MXz1KCfuIuRkdXARqe8vJzKykrKy8sxjGyvoWEYfOMb32D9+vUopdiyZUuufHV1NT/60Y84+uijufnmmznggAO01MNQg/XhlZhoNMqJJ57IH/9wL5FIeK/vF8MwMNfzaNywmXnzZ2NbZkl2346k7Ei7WVOpNOvWbWLe/NlY5t5TuCbrEI89DWUoRs+xuXDhnNwxIUM8Rn6OcNze13rfY1OGeIysrGmaNDZuYcGCBpTyin6Ix3iX3fP12fe9yDJNGQY2grJ9X/eu67F69fq870UyDKzXUF73Pcfn/vvPx7atQcv2KLVhYLFYnPPeeSHLli2jrKws73byufvuu9m4cSMf+MAH+MAHPsCyZcuYO3cuF110ET6fjxtuuAGAqqoq2tvbcz/34IMP8vGPf5wPf/jDXH/99cP+vQOZlD0rgYC/3wtjsHLD2eZQ9T0xDLes63r4fD4Cfn9uXkBvWR9DNZyyfU+8Osvats1Q79k0lmXz5Tma7VqWNeBQw0Ita5rmkI/hfGV7js2+88F0bHcghmGMSVkYu9f9cM8R1iCv9T3LDn27k/cc0fcCoRDOPYXwuh/NOWKw96Kxet2X+jliqO9FMLrriMHLlsY5ouf4NPpMWimE1/14niMcJ3/DfjQymQzTpk0DYNWqVXR2dua+t337dm688UZeeuklzjjjDE477TSOPvroUf9OWQ2sCJkDfOoiRk7y1Eey1Evy1Evy1Evy1Evy1EvyHBvXXHMNv/nNbzj66KO5/fbbef/7388VV1yBUorLL7+cm2++malTp/Kzn/2MK664gmg0OurfOSmHgf31kQcGHAYmhBBCCCFEsYvF4pxx5vkjHgZWSKTZWWSUUsRiiUHHiYqhkzz1kSz1kjz1kjz1kjz1kjz1kjxLizRWioznKbZubZYVLjSRPPWRLPWSPPWSPPWSPPWSPPWSPEuLNFaEEEIIIYQQBUkaK0IIIYQQQoiCJI2VIpNdE91Hn9X4xChInvpIlnpJnnpJnnpJnnpJnnpJnqVlUt5npZiZpsncuTMnuholQ/LUR7LUS/LUS/LUS/LUS/LUS/IsLdKzUmSUUnR0dMkKF5pInvpIlnpJnnpJnnpJnnpJnnpJnqVFGitFxvMUzc0tssKFJpKnPpKlXpKnXpKnXpKnXpKnXpJnaZHGihBCCCGEEKIgSWNFCCGEEEIIUZCksVJkDAPCkZCscKGJ5KmPZKmX5KmX5KmX5KmX5KmX5FlaZDWwImOaJrNm1k90NUqG5KmPZKmX5KmX5KmX5KmX5KmX5FlapGelyHieoqWlXSaNaSJ56iNZ6iV56iV56iV56iV56iV5lhZprBQZpbIvQFmOTw/JUx/JUi/JUy/JUy/JUy/JUy/Js7RIY0UIIYQQQghRkKSxIoQQQgghhChI0lgpMoYBlZVlssKFJpKnPpKlXpKnXpKnXpKnXpKnXpJnaZHVwIqMaZrU19dNdDVKhuSpj2Spl+Spl+Spl+Spl+Spl+RZWqRnpch4nkdz8248z5voqpQEyVMfyVIvyVMvyVMvyVMvyVMvybO0SGOlyCgFHR1RZIELPSRPfSRLvSRPvSRPvSRPvSRPvSTP0iKNFSGEEEIIIURBksaKEEIIIYQQoiBJY6XIGIZBbW0VhixxoYXkqY9kqZfkqZfkqZfkqZfkqZfkWVpkNbAiY5rZF6DQQ/LUR7LUS/LUS/LUS/LUS/LUS/IsLdKzUmQ8z2PL1mZZ4UITyVMfyVIvyVMvyVMvyVMvyVMvybO0SGOlyCgF8VhCVrjQRPLUR7LUS/LUS/LUS/LUS/LUS/IsLdJYEUIIIYQQQhQkaawIIYQQQgghCpI0VoqMaRrU19dimrLChQ6Spz6SpV6Sp16Sp16Sp16Sp16SZ2mR1cCKjGEYVFaWT3Q1SobkqY9kqZfkqZfkqZfkqZfkqZfkWVqkZ6XIeJ7Hxo1bZYULTSRPfSRLvSRPvSRPvSRPvSRPvSTP0iKNlSKjFKTTGVnhQhPJUx/JUi/JUy/JUy/JUy/JUy/Js7RIY0UIIYQQQghRkKSxIoQQQgghhChI0lgpMqZpMHNmvaxwoYnkqY9kqZfkqZfkqZfkqZfkqZfkWVpkNbAiYxgGkUhooqtRMiRPfSRLvSRPvSRPvSRPvSRPvSTP0iI9K0XGdT3WrWvCdWWFCx0kT30kS70kT70kT70kT70kT70kz9IijZUiJEvx6SV56iNZ6iV56iV56iV56iV56iV5lg5prAghhBBCCCEKkjRWhBBCCCGEEAVJGitFxjQN5syZIStcaCJ56iNZ6iV56iV56iV56iV56iV5lhZprBQh25ZF3HSSPPWRLPWSPPWSPPWSPPWSPPWSPEuHNFaKjOcp1q9vwvPURFelJEie+kiWekmeekmeekmeekmeekmepUUaK0IIIYQQQoiCJI0VIYQQQgghREGSxooQQgghhBCiIEljpciYpsGCBQ2ywoUmkqc+kqVekqdekqdekqdekqdekmdpkcZKEXIcZ6KrUFIkT30kS70kT70kT70kT70kT70kz9IhjZUi43mKTZu2yQoXmkie+kiWekmeekmeekmeekmeekmepUUaK0IIIYQQQoiCJI0VIYQQQgghREGSxkoRMk35s+kkeeojWeoleeoleeoleeoleeoleZYOe6IrIIbHskwWLmyY6GqUDMlTH8lSL8lTL8lTL8lTL8lTL8mztEizs8gopYjFEiglk8Z0kDz1kSz1kjz1kjz1kjz1kjz1kjxLizRWioznKbZubZYVLjSRPPWRLPWSPPWSPPWSPPWSPPWSPEuLNFaEEEIIIYQQBUkaK0IIIYQQQoiCJI2VImMY4Pf7MIyJrklpkDz1kSz1kjz1kjz1kjz1kjz1kjxLi6wGVmRM02Tu3JkTXY2SIXnqI1nqJXnqJXnqJXnqJXnqJXmWFulZKTJKKTo6umSFC00kT30kS70kT70kT70kT70kT70kz9IijZUi43mK5uYWWeFCE8lTH8lSL8lTL8lTL8lTL8lTL8mztEhjRQghhBBCCFGQpLEihBBCCCGEKEjSWCkyhgHhSEhWuNBE8tRHstRL8tRL8tRL8tRL8tRL8iwtBddY+cc//kEoFMIwDNrb2/f63sEHH0wwGOSQQw5h2bJlE1LHiWSaJrNm1mOaBfenK0qSpz6SpV6Sp16Sp16Sp16Sp16SZ2kpqL/if//7X9797ndz88037/W9zZs38653vYtPfvKTbNmyhY997GOcd955bNu2bQJqOnE8T9HS0i6TxjSRPPWRLPWSPPWSPPWSPPWSPPWSPEtLwTRWtm7dyllnncX3v/99zjvvvL2+/7Of/YwzzjiDyy+/nLq6Oq688kpOO+00fvazn41/ZSeQUtkXoCzHp4fkqY9kqZfkqZfkqZfkqZfkqZfkWVoKprEyY8YMfvnLX3LZZZcN+P1///vfnHDCCf2eO/nkk/n3v/89HtUTQgghhBBCjLOCuYO9YRicfvrpeb+/ZcsWpk6d2u+5adOm0dTUlPdnUqkUqVQq9zgWiwHguh6u63X/3uzYRs/z6NsANwwD0zT2et40DQwj//M92+37PLBXV2S+5y3LRCnV7/meOmaf9/C6/99bd9Xv04Pi26eB6j4++9STp+r+KoV92lfdx2qfsvXq++/i36f+z4/vPvUek/3LF/M+TfTfyeuTZ6ns00T9nfrmOdi+FtM+7VnH8dynvufPUtmnvs+P9z4Be50/i32fhvt3KiUF01jZl0QigWVZLFu2jDPPPJNHHnkE27ZJJBJ5f+bmm2/ma1/7Wu6xaZocdthhNDZuJhQKAVBZWUZ9fR27drXS0RHNla2traK2topt23cRj/X+jvr6Wiory2lq2k46nck9P3NmPZFIiMbGLf1eHHPmzMC2bdav79+oWrCgAcdx2LSpd86NaZosXNhAPJ5k69bm3PN+v4+5c2fS2Rllx47dxOMJNmzYTKQszKyZ9bS1ddDS0p4rX2z71Nzckns+HAmN6z4ppYjHE2QyGQzDXxL71GO8/07ZE6jCMCiZfYKJ+zvNmz+LSCTEhg2bc288xb5PE/l32rFjV+7caRhGSezTRP6des6dW7bsYN68WSWxTz0m4u+klCIY9GMYsGFDaewTTNzfacb0KZiW2e/8Wez7NNy/UzDop1QYqgAH9G3cuJF58+bR1tZGVVUVAEuWLOHrX/868+bN48orr+SnP/0pTU1NfPnLX+bVV18dcDsD9aycc845/OXPvyUSCQOTr6Ut+yT7JPsk+yT7JPsk+yT7JPtU2vuUSCQ448zzWbZsGWVlZRSzoulZmTlzJrt27eLd7343L774IgDLly+noaEh788EAgECgUDucc8SdpZlYln9p+vkW95uuM/vud3e5wfukhvoecMw8j5vGIpdu1qZMqUmV4fsC2Hv8sWyTwM9P1775HlevzxLYZ/2fn589mnPLIdT90Ldp6HUcaz2abA8i3WfBnt+rPcJYPfuvfMs5n2ayL9T3+Oz7/N716V49mmoz4/FPnmex86dLUyZUlMy+9S/juO7T4OdP4t1n7J1Gf55rxQUzd4de+yxPPnkk/2e+8c//sGb3/zmCarRxFAKOjqi/VrQYuQkT30kS70kT70kT70kT70kT70kz9JSUD0rO3bswHEcduzYAcC2bduIRqNEIhE++MEPcvDBB3PPPfdw1lln8ac//YnHHnuMW265ZYJrLYQQQgghhBgLBdVYOeaYY9i0aVPu8ZIlSwC47LLLuPvuu3nwwQe59tprueqqq1i8eDF/+MMfmDlz5kRVVwghhBBCCDGGCqqxsnHjxkG/f/LJJ/Pyyy+PT2UKlGEY1NZWldyydBNF8tRHstRL8tRL8tRL8tRL8tRL8iwtBdVYEftmmtkXoNBD8tRHstRL8tRL8tRL8tRL8tRL8iwtRTPBXmR5nseWrc391vYWIyd56iNZ6iV56iV56iV56iV56iV5lhZprBQZpSAeS8gKF5pInvpIlnpJnnpJnnpJnnpJnnpJnqVFGitCCCGEEEKIgiSNFSGEEEIIIURBksZKkTFNg/r62u67mIrRkjz1kSz1kjz1kjz1kjz1kjz1kjxLi6wGVmQMw6Cysnyiq1EyJE99JEu9JE+9JE+9JE+9JE+9JM/SIj0rRcbzPDZu3CorXGgieeojWeoleeoleeoleeoleeoleZYW6VkpMkpBOp2RFS40kTz10ZFlZ2eaeMxBIX8Qz1U074jjs+OYlgxlGC3JUy/JUy/JU69CyrO6OkgwaE1oHYqdNFaEEAVBKUUsKg3HHkoplOr+vycXL6MleeoleeoleepVWHnKm9poSWNFCFEQHCf75mKYUFcXmujqTDjP9eiK2kyZEsK0ZMTuaEmeekmeekmeehVSnpb0lI2aNFaKjGkazJxZLytcaCJ56jPaLDMZFwCfz8TnkzdrZRs0NEzDH7AwDDk+R0vy1Evy1Evy1EvyLC3SWCkyhmEQicinzrpInvqMNstMOjsR0ueTsb0gx6ZukqdekqdekqdekmdpkY8vi4zreqxb14TrygoXOkie+ow2y3Smp7EipyWQY1M3yVMvyVMvyVMvybO0yFVBEZKl+PSSPPUZaZZKKRxprOxFjk29JE+9JE+9JE+9JM/SIVcFQogJl5tcb0hjRQghhBC95KpACDHh+k6uF0IIIYToIVcGRcY0DebMmSGrV2kieeozmix7J9fLKamHHJt6SZ56SZ56SZ56SZ6lRa4MipBtyyJuOkme+ow0y0zPfBW/nJL6kmNTL8lTL8lTL8lTL8mzdMiVQZHxPMX69U14ntwRVQfJU5+RZqmU6m2syLLFOXJs6iV56iV56iV56iV5lhZprAghJlTfyfW2LV32QgghhOgljRUhxITK9FmyWO40LIQQQhSGJ554guOOO47jjz+e888/nx07dqCU4nOf+xxHH300xx9/PN/85jcB2LFjByeccAJHHHEE//rXvwD4y1/+wo033jjqesiAPiHEhMqkZSUwIYQQopB0dnby0Y9+lH//+9/U1dXx9NNPc+2113LmmWfS0tLCc889B8BVV13F3/72N9asWcM111zDaaedxuWXX85xxx3Hrbfeyp///OdR12VSNlacdALHt/cnuIZpYtmBfuXyMQwDyxccWdlMElSecZSGgT1IWaUUc2ZPwXOSKM/sV9bNJFH5tgvY/tDIyjop1CA3VxpOWcsXzH167jpplOdqKhvAMLIXu56bwXOdIZVFOb15unsfE5btxzCtoW23X1kHz83kLWvaPkzTHn5Zz8FzBilr+TCt4ZdVnovrpAcpa2NavkHL9hybKAfwdz/n4WZSg263p2fF9u3jdWRaWHbPdhVuJqmp7DBe9+N4jlCeN/CxuY9zxB4blnNEN9P2s2BBA6ZpDOscMbzX/eQ5R/R7L3KNIZ0jerfbp+wQzhFDLVvM5wjTNAZ9L9J5HTFY2VI5R/Qcn30768fqOqJQzxGDHXtDsXbtWhoaGqirqwPg+OOP533vex91dXWceOKJuXInn3wyTzzxBPPmzSMWixGNRvH5fNxxxx1ceOGFhMPhUdUDJmlj5dFbTydg7/0Cq194HMdc+L+5x3/73ql5T2C1cw7n+Mvuyj1+/AfnkI63D1i2asaBvPXKe3KP/3H7e0h0bB+wbPmU+Zz8kd/mHj/500vp2rVhwLKhyumc9oneFuvTv/gQ7dtWDVjWH67ijE8/kXv8n3s/TsumFwcsa/mCnP2Fp3OPl//2szSve2bAsgDv+MrzuX+/+IevsO31v+cte9bnn8qdlFY+/E02r/xL3rKnX/c4gUg1AK8+disbn/9d3rKnfvxPhKtmAPD6P25n3X9+mbfsSR++n4qpCwBY+/TPWfvkT/KWPeGDv6B65hIA1j/3G1Y98YO8ZY+79MfUzT0SgI0v/p5X/vqdvGWPft/3mbboeAC2vPJXXvrT1/KWPfL8bzHzwFMA2L56Gc8/8Pm8ZQ8796s0HHoOADvXPctz912bt+zSMz7L/KMuAKCl6SWeuefDecseeMrH2e/YSwFo376aJ//vsrxlF51wFQeceDUAXbsa+eeP35u37MI3X0LNkisBcOK7eOKO8/KWnXvkezjkzM8BkI6387fvnZq37OxDzubwd9wAZN9QH/7WW/KWnXHA2zjqPd/OPR6srJwjsorxHHHKxx7CDk/B7/cN7xzx1M9YI+cIreeI/U+4isXDOEcsOfUTACQ6dvD4D87NW7bYzxF//9E7yCTaBywr54hewzlHvP1TjxEsqwHG8DqiQM8RKccApuT9+X1ZsGABq1atYt26dSxcuJCHH36Y9vZ2li5dyh/+8AcuuCB7bnj44YeprKzkwgsv5KKLLuKuu+7itttuI5FIcMwxx4z49/c1KRsrQvQY7FMhMTLDydT1ZHK9GB+ep9i0aRsLFjRMdFWE2IvnKbxBehPEyMhqYCNXXV3NnXfeycUXX0wgEOCkk07isMMO44Mf/CCrV6/mmGOOYe7cufj9fg4//HCqq6t55JFHePbZZ5kyZQqXX345yWSS22+/nYMPPnhUdTHUJLpai0ajnHjiifz5j78kEtm7W6oYhoG5rkdj42bmzZuNZVsl2X07srIj677NpFOsX9eYzdPae87EZB3isXfZfQ/x6Dk2Fyych8+ffR3ta9hGMgWdnR4+v0ldXaBkh3gMu2wmieu4va/1vsemDPEYUVlMHxs2bGHBggYM3KIf4pG37DidI/q9F1mmDAMbSdk+r3vX9Xhjzdq870UyDKzXUF73PcfnwkX7YdvWoGV7t1taw8BisTjnnHcJy5Yto6ysLO92huqSSy7hnHPOyfWoAOzevZtjjz2WFStWEA6HeeGFF/j5z39OOBzm3HPPZc6cOXz605/m/vvvH9XvnpQ9K7Y/1O+FMVi54WxzyGX7nBiGW9ZwPUw7iO0P7XVCs4ax3WGV7XPi1VvWPyZls2+wvqGXzZPn6LZr597ktZY1bUy//rKGaQ35GM5XtufY7JuRYZiDbtdNpAGveyWwwcv2+12GMSZlYQxf98M8Rxhm/tf6nmWHajKfI1y39+Jn2OeIMSlb3OeIwd6LhnU+GdbrvrTPEUN9L4LRXUcMplTOET3HZ98VJsf0OqIAzxF2Rl9fxK9+9StaW1s5//zzc89lMhkuu+wyvva1r+Xmpdx0003ccccdfPvb36a8vJzy8nLS6fwfXAzVpGysFDvTlFWTdJI89RlulplM9lMuv9y5fkBybOoleeoleeoleeoleerxox/9iEceeYT77rsvl2lHRwcXXXQRp59+Ou9///sBWLZsGYsXL2batGlcddVVXHzxxTiOww9/+MNR12FSDgP76yMPDDgMTAgxvrZvj6E8mDI1JEsXCyGEEJrEYnHOOPN8bcPAJpJcHRQZpRSxWEImhmsieeoz3Cwdx0N5Mrk+Hzk29ZI89ZI89ZI89ZI8S4sMAysynqfYurWZBQsasCy5wBstyVOf4WaZTvfcX0XuXD8QOTb1kjz1kjz1kjz1STgZtkY72LBpK7NnTx/SHKCxNCNcQZlv6PNlxN6ksSKEmBA9N4OU4V9CCCF0iGXSbIq247gujvLIeC4uE9u7Ir07oyeNFSHEhOiZXC+NFSGEEKPVlU6xOdaBpxRh28fMQDlzy6uxJniifXCIK3qJ/CTBImMY4Pf7kFEzekie+gw3S+lZGZwcm3pJnnpJnnpJnqPTnkqwNd6JUlDu8zMzXMGW9hRlPr+sClYCpLFSZEzTZO7cmRNdjZIheeoznCx7JtdjSGMlHzk29ZI89ZI89ZI8R64lGWd7vAuAqkCQmeEKDMOQPEuIXCUUGaUUHR1dMgZSE8lTn+FkmetVsWVyfT5ybOoleeoleeoleY5McyKaa6jUBsPMilRiGIbkWWKksVJkPE/R3NyC58kLUAfJU5/hZJlrrMjNIPOSY1MvyVMvyVMvyXP4tsU62ZWIATA1FGF6uDz3PcmztMgwMCHEuEunZXK9EEKI4VNKsSXWSUc6CcCMcDk1QbnRdymTxooQYtzJ5HohhBDD5SnF5mg7XZk0hgEzwxVUBUITXS0xxqSxUmQMA8KRkKwYoonkqc9Qs5TJ9UMjx6Zekqdekqdekue+uZ7Hpmg7cSeDaRg0lFVS5gsMWFbyLC3SWCkypmkya2b9RFejZEie+gw1S5lcPzRybOoleeoleeoleQ4u47ls6mon6TqYhsGcsioig9wVXvIsLfKxZpHxPEVLS7tMGtNE8tRnqFnKELChkWNTL8lTL8lTL8kzv7Tr0NjVRtJ1sE2T+eXVgzZUQPIsNXK1UGSUyr4AZTk+PSRPfYaaZSYtK4ENhRybekmeekmeekmeA0s6GTZ0tZF2XfyWxfzyaoK2b58/J3mWFhkGJoQYV9KzIoQQYl9imTSbou14ShG0bOaUV+EzrYmulpgA0lgRQowbx/Gy3fIG2LY0VoQQQuytK51ic6wDTynCto85ZVVYprxnTFbSWCkyhgGVlWWywoUmkqc+Q8my7+R605TQByPHpl6Sp16Sp16SZ6/2VIKt8U6UgnKfn9llVZjDDEbyLC3SWCkypmlSX1830dUoGZKnPkPJUoaADZ0cm3pJnnpJnnpJnlmtyTjb4l0AVPqDzIpUjGjVSMmztMgVQ5HxPI/m5t14njfRVSkJkqc+Q8lSJtcPnRybekmeekmeekmesDMRzTVUaoNhZpdVjnh5e8mztMgVQ5FRCjo6osgCF3pInvoMJUvpWRk6OTb1kjz1kjz1mux5bo93sTMRA2BqKML0cPmotjfZ8yw1MgxMCDEuZHK9EEKIvpRSbIl10pFOAjA9XE5tMDzBtRKFRhorQohx0dOrYsvkeiGEmPQ8pdgcbacrk8YwYGa4gqpAaKKrJQqQNFaKjGEY1NZWjXgcp+hP8tRnX1nKELDhkWNTL8lTL8lTr8mWp+t5bIq2E3cymIbB7Egl5f6Atu1PtjxLnTRWioxpZl+AQg/JU599ZdnTWPHL5PohkWNTL8lTL8lTr8mUZ8Zz2dTVTtJ1MA2DOWVVRHx+rb9jMuU5GchVQ5HxPI8tW5tlhQtNJE999pVlbiUw6VkZEjk29ZI89ZI89ZoseaZdh8auNpKug22azC+v1t5QgcmT52QhPStFRimIxxKywoUmkqc+g2Xput2T65HJ9UMlx6ZekqdekqdekyHPpJNhY7Qdx/PwWxZzy6rwW2NzGToZ8pxMpLEihBhz6e5eFdsnk+uFEGKyiTsZNna14SlF0LKZU16Fz7QmulqiSEhjRQgx5mRyvRBCTE7RTIqmaAeeUoRsH3PLqrBMeS8QQyeNlSJjmgb19bXy6bQmkqc+g2UpjZXhk2NTL8lTL8lTr1LNsyOdZEusA6WgzOenoawKcxxW6CrVPCcraawUGcMwqKwc3Z1dRS/JU5/BspTGyvDJsamX5KmX5KlXKebZmoyzLd4FQKU/yKxIxbgtJVyKeU5mcuVQZDzPY+PGrbLChSaSpz75snRdD8/NznKUxsrQybGpl+Spl+SpV6nluTMRzTVUagIhZpdVjus9T0otz8lOelaKjFKQTmdkhQtNJE998mXZe+d6Q7rkh0GOTb0kT70kT71KKc/t8S5aknEApoQi1IfKxr0OpZSnkMaKEGKM5YaA+WXlFyGEKGV9GyrTw+XUBsMTXCNRCqSxIoQYU3IzSCGEKH2eUrSmsg2VmZEKqgOhCa6RKBVy9VBkTNNg5sx6GU6jieSpT74s0zK5fkTk2NRL8tRL8tSrFPKMZlIoBX7LmvCGSinkKXpJz0qRMQyDSEQ+rdBF8tRnoCxlcv3IybGpl+Spl+SpVynkGc2kASiz/RNck9LIU/SSq4ci47oe69Y14bqywoUOkqc+A2Upk+tHTo5NvSRPvSRPvUohz65MCoByX2CCa1IaeYpe0lgpQrIUn16Spz57Ztl7fxWZXD8ScmzqJXnqJXnqVcx5plyHjOdhGBDxTXzPChR3nqI/aawIIcZMbnK9X041QghRqnqGgIVt/7jcoV5MLnIFIYQYM3LneiGEKH29Q8AKo1dFlBa5gigypmkwZ84MGf+vieSpz55Zuq7Clcn1IybHpl6Sp16Sp17FnKenFHEnAxTG5Hoo7jzF3uQKogjZtizippPkqU/fLGVy/ejJsamX5KmX5KlXseYZd9J4SuEzTYK2b6Krk1OseYq9SWOlyHieYv36JjxPTXRVSoLkqc+eWWYyLiCT60dKjk29JE+9JE+9ijnPrp4liwtgFbAexZyn2Js0VoQQY0Im1wshROmLynwVMcbkKkIIMSZkcr0QQpS2tOuQct3sksUFMl9FlB65ihBCaCeT64UQovT1LFkcsnxYppzrxdiQI6vImKbBggUNMmFZE8lTn75Z9vSqWDK5fsTk2NRL8tRL8tSrWPMspLvW91WseYqBSWOlCDmOM9FVKCmSpz49WfZOrpdTzGjIsamX5KmX5KlXseWplCLWs2RxAc5XKbY8RX5yJVFkPE+xadM2WeFCE8lTn75ZynyV0ZNjUy/JUy/JU69izDPmZPCUwjZNQgW0ZDEUZ54iP7mSEEJo19NY8ftl2WIhhChFPauAFWKviigt0lgRQmjluQrXkcn1QghRynom1xfKXetF6ZIriSJkyoobWkme+pimKZPrNZJjUy/JUy/JU69iyjPtuiTd7JyQQroZZF/FlKcYnD3RFRDDY1kmCxc2THQ1SobkqU9Pll1d2U/bpFdldOTY1Evy1Evy1KvY8ow63UsW2z7sAmwUFFueYnCFd4SJQSmliMUSKCWTxnSQPPXpyTKTlpXAdJBjUy/JUy/JU69iy7PQ71pfbHmKwcnVRJHxPMXWrc2ywoUmkqc+PVmmUj0rgcnk+tGQY1MvyVMvyVOvYspTKdU7X6VAh4AVU55i36SxIoTQxvMUrivLFgshRKmKdy9ZbJkmIUtmE4ixJ1cTQghtXDf7KZZlGViWTK4XQohS03PX+jLbj2HIeV6MPWkSFxnDAL/fh5wf9JA89TEMMA0bjJH3qryxtp3XX2tDOu4BpYhG47z+6kbkANVA8tRL8tSriPLsTCdxlSJi+3jRap3o6gysgPI85s311E8LT2gdip00VoqMaZrMnTtzoqtRMiRPfUzTZNq0ehIJB59/+I2VdNrlgfvXk0q5Y1C7Yhaf6AqUGMlTL8lTL8lTr4nP88Al1dJYGSVprBQZpRSdnVEqKsqk+1UDyVMfpRStrZ0Eg6ERTa5f/XobqZRLeYWPNx1dPwY1LC5KKVKpNIGADLXQQfLUS/LUq1jyTDgZOjMpbNOkNlC4F+CFlGdtbXBCf38pkMZKkfE8RXNzC2VlEZkToIHkqY/jeOza1c6sWcERDQNb+dJuAA4/YgpveesM3dUrOq7rsX59EwsWTMeyZHrhaEmeekmeehVLnpujHXSkk0wJRagPlU10dfIqljzF0MhfUAihRc+d680RTK7v6Eizfn0nAIccVqe9bkIIIUZHKZW7GWSZXZj3VxGlSRorQggtehorI+lVeXnFblAwZ245NTXSZS6EEIUm4Tq4nodpGIRt30RXR0wi0lgpMoYB4Uhoohe3KBmSpz6O4xEMBfAPc3K9UooV3UPApFellxybekmeekmeehVDnrkli30TPw9kX4ohTzF0MmelyJimyayZMvlYF8lTH9dRTJ1SSyAwvNPKli0xWnYn8flMlhxUM0a1Kz5ybOoleeoleepVDHkW+l3r+yqGPMXQSc9KkfE8RUtLO54nd6LQQfLUw/MU6YxHR0cX9jAnM/ZMrD9gSTWBwPBXEStVcmzqJXnqJXnqVeh5Op5HwskAUO4r/PkqhZ6nGB5prBQZpbIvQKXkBaiD5KlHJuOBUnR1RTGGcVbJZDxeebkFgENlCFg/cmzqJXnqJXnqVeh5RruHgAUtG59Z+B8qFXqeYnhkGJgQYtR6JtdbwzyjrFndRirpUlHpZ+68ijGomRBCiNHKrQJWBL0qkG2suErhKg+8ia2LaRgFP8en0EljRQgxapl09t3AHuaSxbmJ9YfWYZpyMhdCiELUVSTzVbbGOvn52hd4oPFV4k4GVk50jeAnb3knb50+b6KrUdSksVJkDAMqK8tkhQtNJE89MhkXDKiuKR9ylp2dada/0QHIELCByLGpl+Spl+SpVyHnmXAyuSWLI3mWLG5tbaO9vWOv56uqKqmpqR7rKvJ6+y7+b/VyHt68BleGfpUcaawUGdM0qa+XCztdJM/R8zyF4yhMw2T6zDpMc2iTVl5Z2YJSMLuhjNo6ubfKnuTY1Evy1Evy1KuQ8+xdBSz/ksWPP/EPfve7P5BJZ9i1ezdT6urw+X285z3v5L0XvHtM6qWU4rldm/nJ6uU8tWNT7vlj6xu4cv8jWVJdGKuBReQGmqMmjZUi43keu3a1MmVKzZAvCkV+kufo9cxXMQzF7t1Dy7LvvVWkV2VgcmzqJXnqJXnqVch55u6vMshF96mnnMxRRx7B5s1b+Na3b+FTn/oYs2fPoqqqUnt9XM/jsa3r+Mnq5bza1gxk54WcPmsRV+5/JAfV1Bd0nmL4pLFSZJSCjo4odXVyPwodJM/R62ms2LZJW/vQsty2NcaunQls22DJUsl+IHJs6iV56iV56lWoebqeR8LNLlk82HyVmprq3HCvSCTM7NmzmD9/rta6JJ0Mf9i4iv9b+zxN0eyQs4Blcf68g7h80RE0lFXlyhZqnmJkpLEihBiVnsaKzzf0T696elUWH1hNMCinISGEKERRJ41S2UaB35qYJYvbUwnuXb+Se954idZUAoAqf5CLFh7KJQsPpSYYnpB6ifFTVFcJN9xwA1/72tf2el7W0RZi4uQaK/6hNVYcp++9VaaMWb2EEEKMzkTetX5brJO7177Ibxtfya7sBcwMV3D5/kdw/ryDCOeZ7C9KT1E1VgA++MEP8v3vf3+iqzFhDMOgtrZK1uzWRPIcHc9TON2NFb/fGlKWa9e0k0y4lFf4mL9A7q2SjxybekmeekmeehVqnj3zVcbzrvWr23fx0zXP83DT6tzKXourpnDV/kdyxuz9sYcwB6VQ8xQjU3SNlalTp1JWVjbR1Zgwppl9AQo9JM/RcZxsQ8W0DHw+a0hZrnhR7q0yFHJs6iV56iV56lWIeSadDE73ksXhMV7RSinFf3dt4Serl/Pkjo2554+ZOpsPLT6K4+rnDKvhUYh5ipErusZKdfXYr9ddyDzPY9v2XcyYPkVWuNBA8hyddLp3vspQsoxGM7zxRjsAh8gqYIOSY1MvyVMvyVOvQsyz5671EduHOUY9FK7n8cS2ddy1ejmvtPau7PX2Wftx5f5HsrRm2oi2W4h5ipErusaKUoqzzjqLV199lSOPPJJbbrmFOXPmDFg2lUqRSqVyj2OxGACu6+G6PcutZtc39zyPvlNfDMPANI29njdNA8PI/3zPdvs+D9nhMkN53rJMlFL9nu+po1IK1/WIRuO535Otu+o3b6fY9mmg58drnzwvm6fnKQxDlcQ+7avuOvcpnXLxPA/LtHBdj1g0jlLk3aeVL+1CeTBzVoSamgBKqYLbp0L5OymliHW/1vtup5j3aSL/Tn3PnUqVxj5N5N+p59zpul7J7NOedRzPffK83vNnoexTVyaNpzxCpq/PNdPQ9qnnOivf3ymj3OzKXmteoCnWDkDAtHj3vIO4fNHhzApnlzzu+bnh7pNS7HX+nGzHXikpqsZKKBTi5z//OXfccQd1dXV85zvf4cwzz2TlypXY9t67cvPNN/ebkG+aJocddhiNjZsJhUJA9o6x9fV17NrVSkdHNFe2traK2toqtm3fRTyWyD1fX19LZWU5TU3bSaczuednzqwnEgnR2LgFz+s9gOfMmYFt26xf39SvbgsWNOA4Dps2betXv4ULG4jHk2zd2px73u/3MXfuTDo7o2zfsZu21g7WA2VlYWbNrKetrYOWlvZc+WLbp+bmltzz4UhoXPfJU4q21g7SszMEAv6S2Kce4/F3amnpoKWlk7JyC9tnEI9n6zvQPtXUVPL88uy2Z8w0Wb++qSD3qVD+TvPmzcJ1PdZv2Jz7VLPY92ki/07bd+zKnTtNwyiJfZrIv1PPuXOz38f8ebNKYp96TMTfyVMKJ+MAFMQ+lVdEiAc82ts6sZw47aY1pH3atm0n8ViCpqZtKGXu9XeKOmkeadnAX1obcyt7lVk+zq5bwNl18zli8SIcx+m3ryPZp+nTppBIpPqdPyfbsRcMls7NKA1VZEtpeZ6X69JLJpPU19fzyCOPcNxxx+1VdqCelXPOOYe//Pm3RCLZpe6KraXtOC7rN2xmwfzZWJYpn1xp6FlZv2EzCxc0YFlmSezTvuqua5/AYPu2GEoppk4NYZiwYcNmFi6ck/tkq+8+Ne+Ic+ftr2HZBp/89CGEQnbB7VMh/Z2UUqxf38T8+bNz57xi36eJ/DtlMk7u3GmaZkns00T3rPTk6fPZJbFPe9ZxvHtWes6fe5qIferKJNkS78I2DParqOtTfvB9WrduA5/7/Ff41s1fZ/78ubnnt3R18Is3XuR3ja8S775vy4xwOZctPJx3z1uSu8u7rn1SCtat29Tv/DnZjr1EIsEZZ57PsmXLin6ud1H1rAD93rSDwSANDQ1s27ZtwLKBQIBAoHe5vZ6ftSwTy+o/hjHfmMbhPr/ndnufH7hLbqDnDcPI+7xtW0yfVodtW7luvuwLYe/yxbJPAz0/XvtkmgbTp9VhWWbeumTLF88+7f382OxTOu12P2/iD2QvVqZNq8udyPeUu7fK4mrKyvp/4lMo+5StS2H8nXry7Pta71Gs+zTY82O9TwOdOwcrXwz7NJF/p55zp21b/Z7fuy7Fs09DfX4s9sk0jUHPn/nqnu/50e5TPJnt5anwBwfMeLB9Moze66y1Hbv56ern+UvTahyVvbjfv7KOqxYfxRmzF+EzB753y2j3abDz52Q69kpFUTVWnn32WZYuXUokEgEgnU6zZcsW5s6dO7EVG0eGYVBZWT7R1SgZkufI7XkzyMGydByPl1d231vlcJlYPxRybOoleeoleepVaHn2Llk8gvurKFjZsp2bt77Ev7Y35p4+Zupsrlp8FMcPc2WvkSi0PMXoFFVT7Ctf+QoXXHABq1evZvPmzXzsYx9j0aJFHHnkkRNdtXHjeR4bN27tN05SjJzkOXKZnpXAum8GOViWb6ztIBF3KCvzMX9B5bjWs1jJsamX5KmX5KlXIeWZch0ynodhQGSY91d5ra2ZF3Zv5brnHuFf2xsxDYMzZi3igVMu5J4T38Nbps0dl8nfhZSnGL2iaqw88MADzJo1ixNOOIHFixfT2trKn/70p5Jb9WAwSkE6nek3NlGMnOQ5cuk9elYGy3LFS7sAOPjQ2rxd5KI/OTb1kjz1kjz1KqQ8e+5aH7b9w1qyuCud4kvLH6Mzk8JnWrx/wcE8evoH+N9jz+bgES5BPFKFlKcYvaIaBlZRUcGdd97JnXfeOdFVEWJS8zyVuyFkT2Mln1gswxtrOgA4VO6tIoQQBW2kd63/1boVRJ00YdvPvSddwBEHHDgW1ROTUFH1rAghCoPjeKCyk/1se/DTyCsrW/A8xYyZEabWh8ephkIIIYbLU4q4k12tq2wYd62PZdL8bPWLZHbMoNY5kV2bapERWEKXoupZEdmLw5kz63NL4YnRkTxHZs/J9ZA/y55VwKRXZXjk2NRL8tRL8tSrUPKMO2k8pfCZJkHbN+Sf++bvm2i86x2wZQrb2h2+9KU67rvf5MNXJzjmGGcMazywQslT6CE9K0XGMAwikdCkmqczliTPkdlzcj0MnOWO7XF2bI9jWgYHHVwz7vUsZnJs6iV56iV56lUoeXZ1z1cpG8YqYE8+Y3DXt2aT2TSD6TUWodAOyssdVq708YUvlvHss+P/uXih5Cn0kMZKkXFdj3Xrmva6GZEYGclzZAbqWRkoy56J9fsvriIcHvqndEKOTd0kT70kT70KJc/oMOereB5cf2uGdFeAyPQOZlX7MQxFOOwxf75Le7vJnXeFxn1IWKHkKfSQxkoRkqX49JI8h0cpRSbP5Pq+Wbquxys991aRIWAjIsemXpKnXpKnXhOdZ9p1SLludsniIc5XWfkqvPa6iVnZxZzyKow+Nyw0DKiv91i92mbVqoFv/jiWJjpPoY80VoQQw5LJZCfXGyaDTq5f90YHsZhDJGKzcD+5t4oQQhSyniWLQ5YPa4h3RP/T6iYyaYNAyGN6eO+bMIZCilTKoL1dLjfFyMnRI4QYlp4hYH7f4J+UrXgxO7H+4EPrsCw51QghRCEb7l3rM57LX1tewrAdplk1A96TJZEwCAQUVVXSyyFGTq4gioxpGsyZM0NWuNBE8hy+gSbXQ/8s4/EMa9a0A3CIDAEbETk29ZI89ZI89ZroPJVSxHqWLB7ifJU/b1pNS/UGwrNaobNirxswKgXNzSaLFzsceKCru8qDmug8hV7SWClCti0rTuskeQ7PQJPre/Rk+crLrXiuYtr0MNOmyb1VRkqOTb0kT70kT70mMs+Yk8FTCts0CQ1hyWLX8/jx689hmIrLr+yiulqxYYNFPG6ilEE8brJhg0VVlcfVH0owxFFlWsnxWTqksVJkPE+xfn0Tnqf2XVjsk+Q5PINPru/NcsWL2VXADj1celVGSo5NvSRPvSRPvSY6z55VwIbaq/LXLWvZGG2nyh/kC+9q4OZvRjnkkAxdXTaJxDS6umwOPTTDzd+MTsh9ViY6T6GXNDuFEEM2lMn1O5sTbN8WxzQNlh5cO841FEIIMVw9k+uHMl/FU4o7Vj0HwAcWHU6Zz88xxzi86U1dPPZYM9/57t189jMf4LTT6iekR0WUHjmMhBBDNtgQsB4vr8hOrF+0fxWRiNxbRQghClnadUm62d6PoSxZ/PjWdbzR2UKZz8/FCw/NPW+asGhRgpqaV1i0aGKGfonSJD0rQogh622sDLwSmOcpXnm5DZCJ9UIIUQyiTveSxbYPex8tDNWnV+XShYdR4Q+Oef2EGFZjpbOzc8hlKyoqhl0ZsW+mabBgQYOscKGJ5Dk8uWWL/Xu/oZmmAaqSaHQX4bDNfovk3iqjIcemXpKnXpKnXhOZ53DuWr9seyOr2ncStn1ctujwsa7aiMnxWVqG1VipqqrCGGAd7YG47vguUzeZOI6D3y/Da3SRPIdGKbXPYWA991ZZekjtoDeMFEMjx6ZekqdekqdeE5GnUio3X6VsH/NVlFLcvupZAC5ccAjVgdCY12805PgsHcO6mmhsbGTDhg1s2LCB+++/n6uvvpo33niDbdu2sW3bNtauXcvHPvYxHnnkkbGq76TneYpNm7bJCheaSJ5D5zhq0Mn1sViGtd33VjlUhoCNmhybekmeekmeek1UnvHuJYst0yRkDf759b+bm1jZuoOAZXHF/keMUw1HRo7P0jKsnpU5c+bk/n322WfzyCOPMHv27Nxz9fX1fOpTn+Lss8/m7W9/u75aCiEmXDqd7S3N16vy2iuteB5MrQ8xbbrcW0UIIQpdz13ry2z/PkfO3P56tlflvfMPpi4YGfO6CdFjxOM01q9fTywW2+v5WCzGunXrRlUpIUTh2dfk+pdXtgBwyKG1Qx4uKoQQYuL0TK7f1/1Vlu/awvJdW/GZFlfuf+R4VE2InBE3Vk499VSuvPJKXnjhBdrb22lvb2f58uVceeWVnHLKKTrrKPZgynqAWkmeQzPYfJVdOxNs3RLDMOAgubeKNnJs6iV56iV56jXeeWY8l6STXbJ4X42V27rnqpw/bwnTwuVjXjcd5PgsHSP+S95zzz0ccsghvO1tb6O2tpba2lpOO+00Dj30UH7xi1/orKPow7JMFi5swLLkRaiD5Dk0SimcQRorK17KTqzfb/8qKiv3fVMxsW9ybOoleeoleeo1EXn2TKwP2jY+c+Aec4AVLdv4d3MTtmFy1eKjxqt6oyLHZ2kZ8V+xsrKS2267jfb2dnbv3s3u3btpa2vjtttuo7q6WmcdRR9KKWKxBErJpDEdJM+hcRyF6p5cv2djxfNU7kaQiw+okCw1kWNTL8lTL8lTr4nIc6h3rb+9+74q75hzALMixbEkvRyfpUVLk7O6ujrXQPE8jyeffFLHZsUAPE+xdWuzrHChieQ5NJlM9+T6AVYB27C+g66uDKGQRSickCw1kWNTL8lTL8lTr/HOUynVO19lkLvWr2rbybLtjZiGwdUHvGlc6qaDHJ+lRXv/WCKR4KSTTtK9WSHEBMqku4eA+fceKtAzBOygpbVYlkysF0KIQpdwHVzPwzQMwnb+e5H03FflrNn7M7dcRs2IiTEmg/mk202I0pJvcn0i4bB6VRsABx8qE+uFEKIY5JYs9uVfsnhtx24e25pd3fUjBxw9bnUTYk/Dus/KySefvM8yjuPIsqVjyDDA7/chEeshee7bYHeuf+3VVhxHMWVqiBkzw2ze3ClZaiLHpl6Sp16Sp17jnedQ7lr/49ezc1XePms/FlYW14dRcnyWlmE1VpYtW8b3vvc9/P784xtTqRTPPPPMqCsmBmaaJnPnzpzoapQMyXPfcpPrDbDt/mf+ld1DwA49rA7LsiRLjeTY1Evy1Evy1Gs883Q8j4STAaA8z5LFjV1tPLJ5LTC0XpXW1jba2zvYvHkLsViczZu3AFBVVUlNzfgPH5Pjs7QMq7FiGAZXX3014XD+u1PHYjE+85nPjLpiYmBKKTo7o1RUlEkPlgaS577lJtf7zH4Z7d6dYHNTFMPIDgGTLPWSPPWSPPWSPPUazzyj3UPAglb+JYvvfP2/eEpx0vT5HFg9dZ/bfPyJf/C73/2BTDpDR0cHt9zyQ3x+H+95zzt57wXv1lr/oZDjs7QMq7HS0NCwz5vsmKZJQ0PDqCol8vM8RXNzC2VlEZnMrIHkuW+5yfV7DAFb+VL2jvUL96ukvNyP63qSpUZybOoleeoleeo1nnnu6671m6MdPLRpFQAfPXBoc1VOPeVkjjryiL2er6qamKWO5fgsLcNqrDQ2Nu6zTCgUGlI5IURxyM1X8fc2VjxP5YaAHXJY3YTUSwghxPB17WO+yl2r/4urFMfXz+GQ2ulD2mZNTfWEDPcSk8OoVwPbtGkTjz76KOl0Wkd9hBAFpP/k+t7hAo0bOunsTBMMWuy/WN6ghBCiGCScTG7J4sgASxbviHfx+42vAfCRIfaqCDHWRtxY6ejo4KyzzmLp0qWcffbZ7N69mxUrVnDggQeyceNGjVUUfRkGhCMhWeFCE8lzcPkm1/f0qhx0cG1ueJhkqZfkqZfkqZfkqdd45bmvJYt/sno5Gc/jTVNmcdSUWWNbmTEkx2dpGXFj5ROf+ARz586lra2NqqoqAA499FDe/e5389GPflRX/cQeTNNk1sz6fc4dEkMjeQ6u75LFPW9syaTLqu57qxzaZwiYZKmX5KmX5KmX5KnXeOWZW7J4gLvW70rE+G3jK0Dx96rI8VlaRvxX/P3vf8+XvvQlLKv/ShLXXHMNTz311KgrJgbmeYqWlnY8T268qYPkObiB7q+y6rVWnIxH3ZQgM2dFcs9LlnpJnnpJnnpJnnqNR56u55Fws0sWDzRf5WdrnyfluhxaO51jpxb3QklyfJaWETdWwuEwu3fv3uv5xsZGysrKRlUpkZ9S2RegUvIC1EHyHFwm3b1scZ/J9Ste7J5Yf2hdv2EEkqVekqdekqdekqde45Fn1EmjFAQsC/8eHzS3phL8Zv3LQHYFsGJf7leOz9Iy4sbK1VdfzVVXXcXKlSsBaGtrY9myZXzwgx/kIx/5iLYKCiEmTsbpP7m+tSVJ06YuDENWARNCiGIy2F3rf7H2ReJOhiXVU3nrtHnjXTUhBjWspYv7+trXvkZNTQ3nnHMOLS0tLF26lNmzZ3PdddfxsY99TGcdhRATIJPxUF7/yfUrV2R7VeYvqKCiYuA1+oUQQhSensn1e961vjOd5JfrXgKyd6sv9l4VUXpG3FiB7CT7T3ziE3R1dQFQXl6upVIiP8OAysoyWeFCE8kzv575Knb35HrPU6zoXgXs0MOm7FVestRL8tRL8tRL8tRrrPNMOhmc7iWLw3tMrr/njZeIZtIsqqzllJkLx6YC40yOz9IyqsZKD2mkjB/TNKmvl+E3ukie+e05uX7Txi462tMEAhaLD9z73iqSpV6Sp16Sp16Sp15jnWfPXesjtg+zzxV8NJPmF2+8CMCHDzi63/eKmRyfpUX7mm7pdJorrrhC92ZFN8/zaG7ejed5E12VkiB55pfJdE+u726s9PSqLFla0291sB6SpV6Sp16Sp16Sp15jnWe+u9bfu24FHekU88qrOWPWojH53RNBjs/Sor2xkslk+MUvfqF7s6KbUtDREUUWuNBD8syvp2fF77dIpVxWvdYKwKGHD/xplWSpl+Spl+Spl+Sp11jm6Xoe8e6elb7zVRJOhp+tfQGAqw94E1YJ3ZNEjs/SMqxhYPfddx+1tbWceuqpPPnkkwOWicfjWiomhJg4jpOdXE/35PqVL7WQSXvU1AaYPVuWJhdCiGIR616y2G9Z+K3ey777N7xCayrBrEgl5zQsnsAaCjG4YTVWPvShD7F48WJOPfVUTjzxROrq6mQNayFKUDrd/871fSfWy0oxQghRPAa6a33Kdfjp6uUAfGjxUfhMa8CfFaIQDKuxsmLFCkKhUO7xxo0bCYfD/cpEo1EqKyv11E7sxTAMamur5IJRE8lzYH0n17e1pdjY2AUGHHxobd6fkSz1kjz1kjz1kjz1Gss8e5cs7p2v8mDja+xMxpgWKuNdcw/U/jsnmhyfpWVYAxTnz5/P9OnTBy1jGIb0towh08y+AE1TXoA6SJ4D6zu5fmV3r8q8eRVUVe19M7EekqVekqdekqdekqdeY5VnynXIeB6GAZHu+Spp1+Wu1f8F4KrFR/UbGlYq5PjU44knnuC4447j+OOP5/zzz2fHjh1s3LiR8vJyjjnmmNzXa6+9xo4dOzjhhBM44ogj+Ne//gXAX/7yF2688cZR12PEs6m++tWv4vfvfVM4v9/PV7/61VFVSuTneR5btjbLCheaSJ4Dy91jxTZyjZV8E+t7SJZ6SZ56SZ56SZ56jVWePUPAwrY/tyzxQ5tWsS3eRV0wzHvmHaT19xUKOT5Hr7Ozk49+9KM89NBDPP3001x77bVce+21ABx77LE8++yzua8lS5Zw//33c8011/D3v/+d73//+ziOw6233sp111036rqMuDmdr0Hi8/kKvrGinDjKGeAbholhBfuVy8swMKzQyMq6ccjX+WSAYYXzlvVcj3hXK15dBMM29yibYLClLwx7pGWTZGdbj74sVijXLavcFChXU9kghpFteysvDd5Af+C9y3puujdPa4C2uxXAMKwhbrdv2Qx4mfxlTT+GaY+grANeepCyPgzTN/yyygU3O1TAcT2UkwBg+5Yuujo6CAZ8HNB9b5W+ZfvKHZtTKzHNYHdZD9zkIHWwMUz/0MoaFoYV6C6rwE1oKjuc1/34nSM8xxv42NzHOaL/dvcsO3nPER5+4rEESg3vHDG81/3kOEfAHu9FlrnHa3ngc0Tvdofxup8k5wilGPy9aITXEV2ZFIaboDxgopw4judx9+qnCZLmQ/u9iYCRAXx9tlsa54jc8VlfR88iZ2N1HVGo54hBj70hWLt2LQ0NDdTVZT+oPP7443nf+94HQE1NzV7lbdsmFosRjUbx+XzccccdXHjhhXtNFxmJETdWfvGLX3D++ecTiURGXYnx1vXPQ3ADe78Q7ClvI3Lkr3KPO/9xUN4TmFXzZsqO/n3vNpcdhcq0Dly28hDKjv1bb9mn3opKbBmwrFm2iPK3/Cv3OPrvM/Cia/uVqQdijWCEZlFx4vLc87Hn3onbsXLA7Rq+GipOea237PMX4bb+Z8CyWCEqT9uQexh/6UqcXX8fuCxQecb23rIvfwxnx1/ylq04dT10n5QSr32WzNbf5i1bfvIrGIHsiyS5+gbSTXfnL/vW/2KEZ2fLrv0W6cY78pYtO34ZVvn+qHSC1Os3U7/tJ8QaBy4bPOgXWGVLAEhvu4dM0w/ybjd4wI+xKo8EILPjt6Q3fidv2cD+38euPj5bduefSW/4Wv6y+30Lu/YUAJyWJ0i98fm8Zf3zv4pv6jnZsm1Pk1pzbf6ycz+Lb9oFALgdz5N8/cO570X6/P9jb4Z1iaswYw04MXCjr5F89bIBt1kPpFJXQkN2W158PYmX35u3Dr7pl+Cf84ls2eQ2EivOzVvWrn8PgXmfA0Bl2oi/cGr+snVnE1h4Q7asmyC+/C15y1o1byO46Nu5x7Fnj8xftuo4gov/t7fsf48Hb+CLJ7P8cEJL7uot+/wp4LQPXDZyIKGl9+Qex188B5Xennut92WE5hM+pPd1E195ASqxgYEY/umED/9z7nHilUvxYqsG3jm7isiRT/SWfe1DeF0vDlzWDBJ509O5h8nVn8Btf2bgskDkmOd7y679HG5r/vNJ+KinchdlqXU34OzOfz4JH/E4hi/biE41fhun+Xd5ywYO/iNGF7htFqktPySz/Zd5y4YOvh8zvACA9OY7yWz9Sd6yk/UcAfQ7Pn0NH8c/49Js2UHOEQC+mVfhn301IOeInnOE53pM2XgescbOgcvmOUcMpOcc4SlFZ1c709dfiS+1iZ4t32sA5cDG/6VrW+meI+oBt/JRCGbnWu7rHBE69E+YwRkApDf9r7ZzROSoP2LXHZ0tu/GnJNfkHxYVedOD2LXHdm/3VyRXfTFv2fARv8Q3Nfu6z2z7PYlXru33/XjKBA7J+/P7smDBAlatWsW6detYuHAhDz/8MO3t7QA4jsO73vUumpqaOOOMM/j617/OhRdeyEUXXcRdd93FbbfdRiKR4Jhjjhnx7+9rxI2Ve++9l0984hOcc845XHrppZxyyikykUkUBeWkcHZvwou3o1KDf/Kg4u14KjsMSqVig5b1Eh0YZnfZZHTw7SY68Oyesl37KNuJ17U79+9Byya7+pTt2EfZaK6st4+y02rcPtttH3y7qUTvdpNtg5dNx3vLpgdu7PeW7d2uynPRnyvrJHvL5rlQ6C2bypXdF+Wk+5cdbH6emxlyWbVX2UE+/fOc/mUH+5ROuf3KKneQT+mU6r/dYZRVziCfzsMeZQf5xB3woi0YPT1zzuB/Oy/agmFns1LpQT4ZB1S0HeIKryuASg/+uvdibeB2Hz/7KCvniO6yqdjQzxF9X/dyjgDAc9WgvQkjOUd0OQ5uMo7hDVK25M8RrRiZ7N9gX+cIL9YKme5ePJ3niMFyKmDV1dXceeedXHzxxQQCAU466SQOO+wwampqOOqoo/j4xz+OYRicd955/Pa3v+W9730vjzzyCM8++yxTpkzh8ssvJ5lMcvvtt3PwwQePqi6GGsVs+O3bt3Pvvffy61//mp07d3LRRRdx6aWXsmTJklFVaqxEo1FOPPFEHvnTPUQiA3RLFcEwMKUUXV1RysvLMExDhnjkyu67S1Y5SdyOXXjJeK4sgTCxZJKySGTgxrbp798lO+D4wZGU9WEY9vDLKmfwbmHD7jNsYzhl3dxwkNb2DOmUYtuOFI8ta6e6wuZDl8/CtPx7le1LKUU0FqOsrLJPWQ+8Qd54+tVhX2WtPsNBVN5PK4df1sQwexcOUPsaDjLUshj9zyfDLJvLc4Bjs//5ZPA34P5lk+Q/+YyirJca/BwxjLKYwd7XvZce/HU/jLLK8BONJSgvi2Rfb4O+5gJ9zic6X/elcY7IPt7j+Byk7ODblXNETx26Onfnfy8a1vkk+5rbnozRmk5RZSlmBMM83ryZz736bypsHw8fdw4R25cr27vd0Z0jPKVIdzeOJvIckT0+45SV12Ca5qBle7c7nNf90MsGKqfhC5T31mGchoHFYnHOPPdSli1bRlnZ6O+Pdskll3DOOedwwQUX9Hv+xz/+MZs2beLmm2/mhRde4Oc//znhcJhzzz2XOXPm8OlPf5r7779/VL97VEtATJ8+neuuu47rrruOVatW8atf/Yrjjz+e+fPnc+mll3LhhRcyZcqUUVVwLBh2uN8F9mDlhrPNIZe1Rl7WACprBh561/fFvu/tDqdscN+FRlQ2/8pSoypr+sHsXfxBZVK4nTuzn5oAhmFihiqxKusx/CH2XiZicnPTMcwgrPpPE44XZMnhM/HVzhzSz1YPPgdfDJPkqVf13sOsxSjI8alXdfXgq60OV6JjN6bfpaqsEtMX4PbnnyKJnw8uOobK+kVaf5dSirZ0kp2JKM5Ak9ot397P5aOrbFUlLRNdB2CO4c/NCtrz+mQwhukDc2j1GKisoXGRt1/96le0trZy/vnn89///pfnn3+ej370oyilWLZsGe95z3sAuOmmm7jjjjv49re/TXl5OeXl5aTTg/eqDYWWXdm6dSsPP/wwDz/8MFVVVbz97W/nmWee4atf/Spf+tKX+MxnPqPj1wiyK1w0NW2noWF67tMCMTDlpHE7mrPdtd2f/pjBCsyqekx/thEoefbXc+f6aDTNxo3ZoSeHHDa0KxIdWTqOh+PI6i3QvZrNlmZmzaqXY1MDyVMvyVMv3XmmXZdoPINhgOWYPLrtDdZ07CZs+Xhfw8Ekk4N8uj9MMSdNcyJK0s1u0zQMJnpSgKcUzc0t1NfX5lZBmyiDdRIVgx/96Ec88sgj3HfffZimyZIlS7jzzjs54ogjsG2bU045hXe/+90sW7aMxYsXM23aNK666iouvvhiHMfhhz/84ajrMOLGSjQa5YEHHuCee+7hpZde4p3vfCf/+7//y4knnpgrs3PnThYsWCCNFY2UgnQ6M+gw2MlOuZlsIyXaSk8jxQiWY1VOwwz076mSPPvrWbJ4/bpOUDB3XjnV1UPr1Rpplum0SzKZ/XIyRX5W18jzPFpbkoRDKbkY1EDy1Evy1Et3np3pJNFkhqBl0+6kuX3VcwC8Y9oS3C6DVgafFzIUac9lVypK1M1+cm5iUOsPU+0LTfgcZs/zSMVjTMmUT/jx6cea0N8/Wtdccw3XXHNN7nEkEuH//u//9ip34okn5toABx54IC++mGfxhREYcWNl2rRpvPnNb+byyy/nL3/5y4BLk1VVVeWWPBNirCnXyQ73irbkPsowAmXZRkqw+FatmwiZjIdSijWrs5NeDx1ir8pwKKVIpz2SCYdk0sV1+7RuDLBtc8I/lSsErgeWZWD7TCy5GBw1yVMvyVMv3Xmm0g6WbVIRDPJSdCtrorsImDYXzTkEn29023eVR2s6Tms6geo+Z1f5gtT5I9gFciwU0vE50Q23UjDixsrrr7/O7NmzBy3j9/tpbMyzJqwQmijXwevahdu1u08jJdLdSBn9pLLJJJP2aG5O0N6Wxuc3OWCJnkH+nqdIp10SCZdU0sXzehsohgGBgEUwZBEI2FiWnNgBXNejs9NmypQQ1kD3XRDDInnqJXnqpTNPpRS7fF1UKB+zy8v46lOPAfD+hQezaFbtqLbblk6yOxHH83lURQKU+fxMC5URtIcxx2McyPFZWkbcWNlXQ0WMDdM0mDmzHtOUCzrluXidu3C7dvU2UvzhbCMlVD6kbUxknq2tbbS3770caFVVJTU11eNeH8j2rKxd3Q7AgUtqCASG3n29Z5aep7qHdzmkkm6/4WGmaRAIWgSDFoGAJcfzAOS1rpfkqZfkqZfOPGNOBk8pbNPk5bYdvLh7G37T4oP7578/zL5EM2l2xLty81IClsW0UDnl/qEvfjOe5PgsLRrXChDjwTAMIpGhr+RVqJw1rXiv7hrRzyrPQ6WieIko0N1IsX2YoQrweThsG9b2AvMqMQ4f/0wff+If/O53fyCTzrBr926m1NXh8/t4z3veyXsvePe418dxPNJpl/Xrsw2o4Q4BMwyDYDBAPO6QTLik0m6/VS0tyyAYtAiGbPx+U7rG96FUXuuFQvLUS/LUS2ee0Ux2PkqZz883VywD4Px5B1EfGv5Ig7TrsCMRpTOd3aZpGNSHyqgJTPy8lMHI8VlapLFSZFzXo7FxC/PmzSrars30XzeQvOFp8ApjVnvirdOoO2TquOd56iknc9SRR7B58xa+9e1b+NSnPsbs2bOoqqoc13r0yGQ8NjZ2kUl7VFb5mTN3aL1TmYxHMukQj2XYuHEHM2dOzU1otG2DYMgmGLTw+4t7kuF4K4XXeiGRPPWSPPXSmWc0k53wvqGzlWd3bsY2TK5afNTw6uN57ErGaEnFUSo7XLfaH2JqqKxg5qUMRo7P0iKNlSLkDbSGeZHIPLGR5NeyDRVzXiVGxVC6kBXKdbJ3ge0ZS2QYGHbvDZFGSqHITJ+YT19qaqpzw70ikTCzZ89i/vy5E1IX6B4CtqZ3Yv1g3ee5FbwSDo6T/Zt4nodSHj6fSTjiIxi0Rz2Rc7Ir5td6IZI89ZI89dKRZ9p1c0O1fvHGSwCcN/dAZkYqhvTzPfNSmhNR3O76FOq8lH2R47N0SGNFjJvMv5pIfOUpcBX2cTMJfvckTF/+T9uVUnjRFtzOneBm78xq2AHMiqmYkepRdUErzyWz5VWSjS+Rbn6N2L/WTtjY1vj2Fpzdm4k/91uiTSOf/Dhau1ph6+aDAIP9Uv8kuqz/3apdV5HJeNkVw/q+BxhgWwZ+22BKRwehRA2GaZACDYtjTl6ep7B3txHbUi3jrjWQPPWSPPXSlWfMyeBPJ2lUBk/FXEzgko6NRJftvdTsnlKuQ2c6RUZ5WEDAMKjwBQnaNg4QHXGtxl8hHZ/Bpadh18o879GQxooYF5n/bCXxxX9BxsM6evqgDRWlFF6sFa9jJ6p7/XbD8mNWTsWM1IyokaI8D2f7GpJrnyG19mlSbzyLSmTnZviBzhHv2eh4ymDllgPZvXEKK3/zGBWzVmEaEzM8bnXg3ajwUqZlXoOHv0j7MH420/0VYOKyLEUTeWyWIslTL8lTL115hoH7lpwHdftxcvNrlP/rkSGfz33dXz2S3V/FqFCOz9opc6WxMkrSWCkypmkwZ86MCf+kYDic5dtIfPafkPawDq8n9L2TMWwTL92K6e9dGjfbSGnD69yJcro/k7d8WBVTMctqh9VIUUrh7FxPas0zpNY+Q+qNZ7pvEtnLCJbhn3ckBMq68xzfTJ9v3J9fPHkmr22dwbYOj++8ZvJw+zYuO+ERjpy3Zlzr4nmKtVvOARcWT92NNfcsPFf1nR+fvROyaWBaBqZpDPD3UHiempAsS5PkqZfkqZfkqZeOPBWd6RTrrSDPVO2HoRQfLAsTOvzcgUsrRcpzSLlu7rmAZREw7YKePD80hXN8WhVTJ/T3lwJprBQh2y6eP5uzopn4df+EpIt58BRC3z+FdPR1tj3zGbxMkr823QqYKOWB5/TOScEA08IwAbZ2f+2Dm4Z0DCMdhXQUw3MACzgBjBOgwkT5wuAvQ/nLwBeCDKjM+J/KNjVV8vDfFhFP2IQCXWBvIGXP599Nh/PSgwdz1ulrmdOw97LGY8VT0OGmsCyDue+6GuW3MMgO7+qdID/4Cl5K9b45FP8b3cSTPPWSPPWSPPXSkWcsk2Z7Vxu/fuVpaN7E6bP354hjrxvwd7WlEuxMxvrNS5keLidgFc/1xWDk+CwtpXFUTiKep1i/vokFCxoK/uZ5zqu7iF/7d0g4mAfUErzlGBLrvkx686+p9Tk4lg8zuYZdsfkD/LQCnO6v4Qhnv8ypMNDcbo8+/doTM6NCKfjnv2YQjVpUVcbIOOnsfWKMNOVlMdo7wix7cgZnnb6T8T7Hzp1X3j053hr2Cl7FdGwWA8lTL8lTL8lTLx15dmVSbIl18O/mTQB85MCj9ypTbPdLGSk5PkuLlsZKIpGgtbWVmTNn9nv+tddeY8mSJTp+hdBEeS5evJ1+d+gbA+4bHSSvexZiDiwow/rMVmLLT4BMC6YBG1qPpCN4NUcdMT37A4aJGSzP3nE+z7KIXqITb8dqvObVeDvWoLqa+xcwLMy6eZj1izGnL8asW4Cxj9VLPFexa1cLU6bUYo7TCW39+gB/fLiWOXNcQqEQyaRBNGYxZUqIYDBIRZVBNFrLQYfsz4IF49egsiyD/RZVEQ4X14ovQgghIOqkebDxNRTwthkLWFw1Jfe9Yr1fihCgobHywAMPcO2111JXV4fnefzkJz/h6KOzrflLLrmEF198cdSVFHooN4PTvAHljO10OXdTgsxX10HUhYPa4OJfkN7yOgAdyaks23AVdbOO4ZSjfGBYWBVTMMvrMMz+n+K70VbS6/5Dcu2/Sa15GmfH2v6/yDDxNRxMcNHxBBYdi3/+mzCDkWHVNZHJsG59lPnzq7HGaR5Qe9SPadrU1oFlWVg+B9s2iJTbhEM+whGIx21q66s48JD0vjeoWdLJjOjnXE+R8rLLZlpK3vxGS/LUS/LUS/LUa7R5ukqxsbONp5o3AvDR7l6Vge6XUhMIMyUYKYr7pQgBGhorN910Ey+88AL19fW88MILXHbZZXzxi1/kwgsvRI3xp/di6JSTxtm5ITtx3fJhBoZ3UT9UblOMzNdfQ6Xi8M5lcNiTkHZR2Czf8m6e3fxuFswt5+S3VmKFwtmJ891jZL1EJ6l1z2VX61r7bzJbX9urB8g3cwmB/Y8jsOg4AguPyd61fgQ8pdga66QtGWdLshPV2ZK7keFY6/QFwC6jNeoSjngknAyOUsSdDMqxicdMsKHT18a6zuJZ/NfzvHHPspRJnnpJnnpJnnrpyPP3G1/DU4q3TJvLQdX1tCbjNJfwvBQxeYz6iM1kMtTX1wNwxBFH8OSTT/LOd76TdevWSdfiGDBNgwULGoa1Gljfhoph+bGnzsfw6R+f6m7uJPXl51AzXoSzH4aydgDSwTfx4IsfYkfbFKbPCHPOexYRLPfjpeKk1jxFau2/Sa59mkzTy/S/gQfY0xYRWHQcwf2Pw7/wzVhlNQP85uFJuy5NsXaSjoNhGsyZ3b262jgdr/stzjBvvxRrXgsSjmQwMMiuV5L9b+tum8UHJdlvcaaoLgIsY/yzLGWSp16S5+ilXZctsQ6aou1sirYTTacw1myWPHVQKtvzMcI8lVIs294IwOWLjmB9Z2vJz0sZzEiulUThGnVjZerUqbz88sscfPDBANTU1PD4449z2WWX8fLLL4+6gmJvjuPg9w9tXoHKpLINFTeNYQeyDRXbr71O7vYosS/cgzrjt7DwjeyTdh1R30X88b/HsqszSKU/xmn270jes5V4RzOZHW/kbvbYw54yL9trsug4Avsdi1Wpd8m/aCbN5lgHrudhmSazwhX4lYHf7xvXxvVnP+bxhS+a7NwcorLCw8TCSAfYuTvE1BqPz1zjsaRmyr43VECUUqTTmXHPslRJnnpJnkPneB5N0Xbe6NzN2o4W1nbsZm3HbjZF2/FkxERBO7R2OlX+IEnXmfTzUoZzrSQK26gbK7/85S/3WkrX7/fzm9/8hmuuuWa0mxd78DzFpk3bhrTChcokyezcAG4Gww5i18/HsEb3wlWZJG7HTtyOHbgdO/E6m3E2b8FY/zK89zmwXZQL6fWQWrebf4T87PIHCXhdnLbrM/iat/dbg8uqnklg/+yck8Ci47CrZ+b93aPVkoyzI9GFUhC0bRoiVVgYE7JiyDHHONz8zSg/vjPEKy/bJBLT6OqyOfTQDFd/KMExxwx3FbSJN5xjU+yb5KmX5Lk3pRTb412s7dzNGx0trOnYzRsdu1nf2Uracwf8mQpfgLnl1cwIl0MiQ2VF+aS8ENZNKUVnZ5SKirIR52mbJidMmyfzUpDXe6kZdmNl9+7dtLW1sd9++wEwa9as3PfWrVtHZWUlU6ZkPxE+7rjjNFVTDFe+hsru2FaearwPx+0/cVu5DqTjkE6gUglUOg49/08nUKk4Kp0Ap+/PKaZHPA6syxA6OtsE2Rn18+ouP3Esdiw+kJ32LgweZJr/DVZGZmMG98fwh8AfxghX8M4jb8A3Bj09fXlKsS3eSXsqu7BApT/IzEgFpmHgut4+fnrsHHOMw5ve1MVjjzXzne/ezWc/8wFOO60+32JoQggxYq3JOGv79JS80ZH9d8wZeBGPkGWzsLKWRRV1zC2vZnq4nLpAmHJfAMMwsnMstuxg1qxpRTVctVDpyrPc52eazEsRJWZYR/Nzzz3H2Wefzf/8z/9www037PX9X/7yl9x222088sgjvOlNb9JVRzFMKp3INlQ8B8MXxJ66IDeJ/Tf//QIbul4f2obs7q9wzxOB7i+oJcMZVjsLzWwjpV1Z/NWtYk0gCLN6PsXY3P0F/e7Hnu7+isI7kp/Cs8ZuHG3addka7yTRvcJVfThCrWVCMooHeK4HqRheogvDmpg33IUNu6iufImFDWdBKszENZ9GpxCyLCWSp16TJc+ok2ZdVxtvdLbxRlcba7taeaOzjZZ0YsDytmEwr6yK/cprWFRezX4V1exXXsOUQIhOJ01nJtV7h3PlYmaSlPv8lFk+fKaPeYEgVgnnOV5c1xt1ngYGpmFAOlG07yO6FNLr3fCHctdgYmSGld61117LV7/61bzDu772ta8xdepU/ud//ofly5drqaDY22CfunjpOM7OxmxDxR/CnjI/9yJ5/T+3s6HrdQxPcXhTFGPPocemBYEwhj+MEQiBP5TtBel5zh/C8tnMj7/A3PgrmHh4nknjtoVsWHg8ZZEQhzge8bhH04YkSkFtnY/6eptQwAXPBddBeS7Zmz6Cu7tpryWLdUk42XXlPc/DZ5rUhyKEnWi/20x6rsLqbMbdlUFNUFex27oNlY7jtm7GKRt46EUxKIQsS4nkqVep5Zn2PDYkYqxLxHgjHmVdPPv/bemBl6Y3gFmBEPuFIywMl7EwFGG/cBlzg2F83e8pac+j00nQsXsja73ey13TMCizbCptmzLLxkwbeK7C39UMu52SyHPCachTwaRvpPQopNe7PWUexghXLhVZw2qsvPzyy/zxj38ctMz555/PZz/72dHUSQzCskwWLmwY8HteKo6zcwMoF8Mfzk6mNy2Um6HjoW/yj5bfQX2IA7uCvOPAK7Eqp2JWTsOqnIpVUY8RzD9WVilFZtsDJNfchErtzD65dn/MZe9i6dffz5zp5SSTGTpbO/nTP7YTTHo0zLA4eY5JXbWB37fHdk17nzdsHI2OVJJdmTTK8hPwW0wPl+Oz9m4UWUDDgnljVo/BtLV30t7RxZZd7cSTGbbsasfwBamqLKe6qvhObBOZZSkqpTyVUsQ9l7jrEHd7/u8Q6/O459+x7u/1/jv7/aSrqSHfvlnPdiZQ0nPZnIjjMvBk96n+AAsjFewXLme/SDkLI+UsCJcRHuDT3Yzn0epk6HAyJLpXj8LyYVoGEdum0vZRbvuw9nhvKKXjsxBInnoVVJ7G2HwgO5kMq7Eyb948li1bxnvf+968Zf75z38yZ86cUVdMDEwpRTyeJBwO9mtY5GuouB3NtPzf1WxtfoF1x00DBaefdRflNQcO+Xc6natIrvoibttz2SdiNfDQWbDpYPw3H0VboJ3Mli1kkmmeeMogkYTaKjjhCIPyiIE/4MPs7pnJfY3RPBWlFNviXbT5E1AOFf4AsyKV2a7xAcpu7GqjLRYjFAyM+/Kbf/vPv3n0oUfIZBzaogm++dPf4fPZvP0dZ3L6O88a17pooRSJZGpCsixJBZKnUoqU6xB3MkSdNHEnQ9xJE8tk/x1z0sScTO7f2e9ly/Q+l8lzWS1Go8IXYFFlHYsq69ivsjb7/4paqgKhQX/O8Tw600k6Milimd45KzYQ8fmp9Aep8AUGnZyd771IjIzkqZfkWVqG1Vj55je/yaWXXsry5ct529veRn19PbZt4zgOzc3NPPHEE/zsZz/jl7/85VjVd9LzPMXWrc39VrjwkjGcXRtAeRiBSLbL0bRIrv03rT/7MF7XLp47NLsE8AH1xzFriA0VLxMl9cbNpJvuAeWAYcOrJ8Pvj8cwA1ifb6Aj0oHbqVDAshdNWjoUkZDBaSfXUV4XoXpGFeYYT6DvkfFcmqIdvfNTQmVMCQ1888vt8S6uf/5xntyxcVzqNhBPJfBO2T/3uL37/+vUVu54TF5DovQYQNj2E7F9RHx+wraPiL33/yM+X3e57ud8foKWzWguOTxPsW3bTmbMmFr0916wTZN55TVMDUaGfCHmeh6dmRSd6SRRJ93vfrth25dtoPgD+IY4LHeg9yIxcpKnXpJnaRlWY+Xcc8/l6aef5rbbbuPTn/40TU1NJBIJQqEQDQ0NvOUtb+Hpp59myZIlY1VfsQcvGcXZ1djdUCnDnjIPDIPOx35E559uBuXROXcRa+sTgOK0/a8cdHvKc/FScTJbf0eq8RZwWgAwggfBH94B/ykHv4H16Tl0zS7HtQKYkTDLX06xcVsHPp/J28+aS/nUEDVTQpj2+ExsizsZmqLtOJ6HaRg0lFVSNsCNL5VS/HbDK3xr5ZPEnDS2YVJu+bBsq/umjOMoOHBDqlgpFK7jTkyWJaiQ8gxYdraB0d14CO/R2Ih0N0DCtp+wb4+GR65stsExUC/neHBdj/VRgwX1DZNmQrinFF2ZFB3pJF2ZVL8GStC2qfIHqfAF8Q8wRFYIIQrFsJcnOOigg7jjjjvGoi5imLxEF87ujdmGSrAcu24uKtlF6y8/QfLlRwEIH/0entg/gGpexn51RzK3+qDczyvXQaUT2a9M9v9O11oy23+ISryaLWTVYE/5IN6P56Je7AKfgXX9UXQeNANl2Ni2wYZ1Hbz4UnYey0lvm0ndlBAVFX58vvG5IGhNJdge78zeP8WyaSirxD/A2OwtsQ6+tPxx/rOzCcjePOumw0+FXdHuT18mxwXMWHFdr889ayTL0ZI8xUgopYhm0rR3N1D63sQxYFlU+oNU+oOytK0QomjI2arIGAb4/T5UshO3pQlQmMEKrLo5ZLauouWnV+Hu3gi2n6r33ETskBN4ZVl2jtGpi67ES3ThxVqz903pc68Vz03gNN+N2/YwkB3yZddfgG/udWRuXIV6cSvYJvZXj6Pj4HqUBz6fSWtrksf+lp2w+ubjpjF3XgX+gElZ2djfNbbnhmatqeySnBX+ADPDFVh7jLP2lOLedSv5f688RdzJELRsPnnQcVy632EYQFNHSqZYaNBzbEqWekieepVynkopYk6GjnSSjnSyXwPFZ5pU+oNU+YMENS5qUsp5TgTJUy/Js7RIY6XImKZJw9QynN2bAIUZqsSqm0P8P/fR9tsvQiaJVTub2it/gr/hEB568St4ymVu1VLmeTXZuS19WX7czn+R2XobKrM7+1T10QQP/BZW2f4kvvQk7lNbwTIwv/Bm2pfWgwf+gImT8Xjwd+tRCg5aWsNBS2swTKiqGrv7pvTIeC6box3Eu+enTA1FmBoq26vcpq42vvj8YyzftRWAo6bM5BtHnsbc8upcmblzZ455fScD0zQlS40kT71KMc9YJnsflI50EqfPUsN2dwOl0h8kPEarLpZinhNJ8tRL8iwt0lgpMm6sjY5Na4hEQliRKszyKbT9+jri//kNAMElb6Pmsh9iRqppjW/npa2PA/C2mrfhJTsBA7O8FjNUiZfaRPL1L+K2PQuAEZhKcP/r8c14NwCJrz6N88RGMMD8zNF0HjEdFASDFrbP5Jd3ryGd8miYU8bRx9ZjGAaVlX7sMZ6nsuf8lNmRSsr9/RtIrudxzxsvceurz5B0HcK2j+uWHs9FCw/tN2ZeKUVnZ5SKivzLNouhkSz1mux5Op6H47k4yiPjebhqdHeQUErR1RWjvHzok9ILleN5dKSTZPo0UCzTpMIXoNIfJGL7xnwfJ/vxqZvkqZfkWVqksVJEvFgbmV1NtLS0E6mbhlKKXbe8g8yWV8EwqTj7M5Sf9nEM00QpxWOv3oarHGaF5rCo4qBsL0zVNJThklr7LdJNvwCVAcOHv+EyAos+j2lHUEqRvOnfOH/dkF2+55NH0XnMLADCYZtwxOaen6+moz1NTW2AU06dhWWaBEMW4fDYDv9qSyXY1j0/JWBZNJRV7TX2en1nK19c/igvtWwH4M1TG7jpyFOZXVa5d6aeorm5hbKyiKwYMkqSpV6lmKdSiozn4ajuhojnkVFermHS829Xef0mg+vgeR5btu1g1qxpg95Yt5iYhkGFP0ClL0iZzz+uF2WleHxOJMlTL8mztEhjpUi40Vbc1s2gFIQqyWx9nY5fX4tKdGKW1VJz+R0EF78FAC/eQWvza7zQ/HcATp5xHvbUBZjBMpzWZ4mv+DAq1Qz0DPn6JnZFdjljpRTJ7z5H5k/rsr/4o4cTPSF735yych/l5T4e/O16tmyOEQxZnHvePGyfhWkZVFaO3fAvpRQ7ElFaknFg4PkpjufxszXP84PX/kPac4nYfj53yAm8d/5S+WRFiDHkKZVtbOQaIh6Z7l6RbEMk2yhxveH1jlimic8wsU0TyzBHNf7ccz06LD9V/iBmkS9YYGBQ7vNT5gtM2OpqQggxXqSxUgTcaAtu65bsg1AF9sv30v5C9j4c/nlHUvPBO7GrZ+Cl47ht21GpKMu2PYSjHKZF5nDIARdimiaemyL+8sdRqeZ+Q776XsinfvA8md+tAcC78hDip84HoKLST1mZj2X/2Mqrr7RimgbvOn8Bfn92ycuqKv+YfXrheB6bYx25m5dNCUWo32N+ytqO3Xz+v4/yalu2EfaWaXO56chTmR4uH3TbKdch6TkknAyWKu4LmInmup5kqVEh5el2D8Vyuhsjme5ekZ7GiDeMbhDDANswsU0Ln2l2/7v7ce7f2ed1fsjguh7JQAczI5WyupoQQhQRaawUOLdrN25bdnK4Ajrv+zS+N/4DQNlJV1J53vVgGDgtm/FirQDEnBjL254B4JT9r8wNeUhv+BEqsRnDV0XZ8f/A9Nf2+13J218k/atV2d976UEkzt4PgKpqP+Gwj1dWtrDsH9m6nHnOHCor/biuIhy2CQbH5lBKdM9PyXTPT5kVqaDCH8x9P+O53PX6cm5//VkynkeFL8AXDz2Rd849cNALna50iuZklHgmzW4jDdFWTEMuYEbDU55kqVGx5WkaRq6RYZsmPtPq828z10AZ7K7oY8kwIBwJyepAmkieekmeekmepUUaKwWsb0PFadlC++++hNfRjBGIUH3RLYQOOxuvaxdu507onnxqhqt5cvs/SHsppkQaOGzmadltJbaRarwdAP/CT+7dUPnpStI/fyX7u953AMl3LQYDqqsDhEI2m5u6+OMfsiuJHXv8NBYsrCQRd7Bsg4rKsblDfXsqwbZ4F55S+C2LOXvMT1nVtpMvLH+U19t3AXDyjPl87YhT9up16SuaSbMzEc2tImabFjPqp4xJ/ScfU7LUqnDytPfo8fB1Nzqy/842Qgp9OJJpmsyaWT/R1SgZkqdekqdekmdpkcZKgXI7d+G2b8vOIXnlMboe/QF4Lva0RVjvuRX/zLk429fk7pVi+MNY1TNJmg7P/vdPAJy88NLcJ7Kp1TeAG8cs25/AnP53sU/d8yrpO1cA4LxzEcn3LcEwoaYmSCBg0daW4je/fgPXUex/QBXHvWU6He3Z31tVFcA09V6kKKVoTkTZ3T0/pdznZ1akMjc/Je063L7qOe5avRxHeVT5g1x/2Emc3bA4b29KLJNmZzKWG0pmGgY1gRA1/jBdHV1UV1dq34/JxvMUbW0dkqUmkqdekqdekqdekqdekmdpkcZKAXI7mnE7duClYkQfv43ka/8AIHTkOyk77ys0rVlNeaAJ0zIwLD9W9XTMcBUA/3r9xySdKNWh6Rw1+ywAnJZnyez4CwDBA27E6DOkJHXfKlI/fAGAzFkLSF26FNM0qKkN4PdbJJMu9/5yLfGYw7TpYc575zw6OrK9EmXlPgIBS+u+DzQ/ZWqwd6nRl1t38IX/PsobnS0AvH3Wfnz18JOpC0YG3F7CybAzEaWre3uGATWBMHXBMD7TwnU9WlraqaqqILv0mRgppZRkqZHkqZfkqZfkqZfkqZfkWVqksVJg3PYduJ3NOLsa6Xjo5uxd6i0fle/8CsGDTsFt3wGZJBgmVuU0zPI6jO4eh5QT5+mNDwBw0sKLsUwbpTwSr38ZUNhTT8dX95bc70r/fg2pW5YD4Jw2j9SVh2LZJrV1QWzbxHUVD9y/jl07E5SV+3j/xYuIJ1w8T+HzmZSX612mOOlk2NRnfsrMSAWV3fNTUq7DD179N/+39gU8pagJhLjh8Ldx+uxFebe1MxmjM50Cso2UKn+IKcEIfktvA0sIIYQQQowNaawUELd9O27nThKvPkHXYz/K3o2+eiZV770Zq7IelejIFgxVYs/YH2uPGyE+teF+4pkOKoNTeHPDOwFIN92D1/UamEGCB3w9Vzb95zdIfutZUJA5sYHURw7H9lvU1gZyK+U8+tcm1r3Rge0zef/F+2HbBrGoCwZUVQe0rtTTkU6yNdaZm5/SEKkk2H3n5Rd3b+MLyx+lsasNgLMb9ufLh51MTSC013ZSrsPORIyOdDL3XFUgyNRgBL8lh7sQQgghxL7cfffd3HvvvTQ1NXHhhRfy17/+lYaGBu6//36+973v8eCDDwJw2mmnccMNNwDw8MMP841vfAOlFBUVFfzyl79k6tSpAJSVlfGJT3yCxx9/nPLycn7/+99TWbn3/e8GMimv3lJOAtvZ+0LbNEx8VqBfuXwMw8BvBUdUNu0kUfRf6tNt347bvo3oP36Ku/JRAAKLjiPw9mtwA2FcN4kRiGDU1BMMJMng4DkKv53dbsZN868N2bvYHzv3fFzlkEm0EFv7/1DKwN9wBVZ4drbs3zbQ9e2nULaHc8xMkv9zED47TVllEEelcBxY+Xwn/302uwzwue+aRXWtwa5dHSiVXcbYM1KknGzdA3ZvoyHjpvAGudO03wrmGjmOm8bxHHYmo7Qks/mV+XzMDJVh4BDPKL7/2r/5xdoXMXCZFgzxxUNP5KQZC/bKXGGxO5WgPZXE9TJ4yqXC72dqsAy/ZaNUhlT3pHqfFcjN5XFVhlCZTdpNYA6wPKzP8mMa2Z4Yx8vgek7efetb1vUcHC+Tt6xt+rBMu2DKesol0z3/aSCWaWObvkHLep5HqMzGVRksAt1lPTJuaojb3UdZw8K2sos5KKVIu0ktZYfzuh/Pc4TruQMemwZG7nXfU3bP80nesm4SNcgyw31fy8Mpu6/X/WjOEa5ytZS1DB+VlWUYxlBey73niOG87ifTOaLn9d5zfA7lHNFjWK/7SXKOMAwGfS8aynVErqycI3LHJ332e1/niOG97gv/HDHYsTdUS5cu5bvf/S5XXHEFzz//PLNmzeKJJ56gsbGRZ555BsMw+NCHPsRDDz3EO97xDurr6/n73/9OKBTirrvu4tZbb+Xmm28GIJlM8pGPfIRvfOMbfOxjH+OnP/0p11133ZDqMSkbKzc8dgZWYO8X2AFTj+NDx3w/9/grj56W9wS2oPZwrjnuztzjG584l1i6fcCys6sO4FMn3JN7/K1/XkBbYvuAZWvLMnzAMIi85TLCR7+HW9Z+jZ3JbQOWrQ5N5yunZifTP7PxAaLpbM/DX1ffwV9X39FdKgTMJLLun3z52XfgvdGG888mfvX+h9g4t3u7L/ffrm0EKfvv9wB426mzeDb2LX7+2DMD1gHg1nOX5/796xe/ysrtf89b9ltnPpk7Kd2/8ps8v+XhvGVXWZfRGMu+4Z1dsxEv/l8eXfELHl2xd9n3HvV/lAWyK3+8suVeXmj6Xd7tfvbE+5hekW3w/GPdL3h07U/ylv3kW+6moXoJAE9uuI8/r/pB3rL/c+yPWVh3BAD/2fR7Hnzlu3nLXnn0rSypPx6AF7b8ld+s+HrespcdeTOHzjgFgFd2LOMXz38hb9n3H/oV3tRwDgCrdz3LT5/7ZN6y7176GY6fdwEAG1pWcNu/P5y37DkHfpyTF14CwJb21dz61Afyln37oqs4ffGHAGjuauQ7y96Xt+xJCy7m3CWfAKA9sYMbn3hH3rLHzT2f8w/+HACxdDvXP3pa3rJHzT6LCw+7Aci+oX7+kRPylj1k+tv4wFHfyj0erGwhnCPqy+fx+ZN+m3t8y1OX0tzVOGDZvucIgB898yE2t78+YNmIv4qbTn889/iuZz/B+pYXByzrt4J8+6ynco9/vvxzvL5T/znity9/k+Wb858jbnz7Y5QFqgH442u38kz3MNiBXH/KQ9TXzwDgL6/9kH+u/1Xesn3PEU+s/bmcI5BzxFifI0zT5M6XL5dzBGNwjrCGfo6oCWfPEY+8fnvRnyPclAHU5f35oSgvL6eyspLy8nIMw8Dn8/G3v/2Nxx9/nDe/+c0AxONx5s6dyzve8Q46Ojo466yzSCQStLa25soABINBZs2aBcBhhx3GihUrhlyPSdlYKWiGSeX5NxKYfySYNoa57z+R42b41/pfD1pGRTOkb3+p93F5/uWGHcdDKTj40FrefHw9r/xn8LtOp92eTyrUoJ+GQHYuiYeNqzy6Mvk/IQPYGutkWqiOG488lV27fsszG/+bt6xSUObzMzVUxgZfIG+5vX9u6DezE0MjmYpC5Hkezc27mTKlZqKrIsRePM/D8wZ//xTDJ5nqp5Tiy1/+Mpdccsle3/vABz7AsmXLWLBgAX/84x/54x//OOA2TNMc1t/GUJPoyiIajXLiiSfyxz/9kkgkvNf3x3OIh6c83JYmup64ncR/sy19q34/Ks/5LKGq2ZjldViV9WS8TL/uW9f1aGzczNzKOljXgbUmyvL2R/n9ot8RigW55scX4s/4UBf8GhatgQ0L4N5LcWuCePVVxGeF6ZpbRstRlQQjFpGy3kZLKu6y7Lc7SHS5TJlewQnn1+N5ivbdMRQe4XIbf2jvyem+PvvmeGnUIA0W2+yd6+J6GSxDMbt7fsqzO5v4+gv/YFuiC4B3zTuUzx/yVsr9gVz3ret57E7FaEslc3fNDts+ZkRqKO+ejD+c7ttUJsW69Y3Mmzd7wLtaT9YhHnsayhCPnmNz4YJ5BHwyDGy05wjHdWls3LzXsSlDPEZW1sRH44YtLFjQgDLcoh/iMd5l93zd97zee45PGQY2/LJ9X/eu67H6jbV534tkGFivobzue47P/Rfuh21bg5btUWrDwGKxOOedewnLli2jrCz//efyufvuu9m4cSMf+MAHco2QuXPn8uMf/5hbb72Vv/zlL/h8Pj75yU9y9dVXs3jxYmbMmMGqVauoqqri85//PDt27ODuu+8GsnNWotFobtvPP/88P/rRj4ZUl0nZsxKwQ/1eGIOVG842h8pnBcg0vUzH/Z/H2bQCHxA6/BzKTroKq3wKVtV0jO6LPdsFb10b3ustuG+04a1vY8b6NtzO7EGZQfHUh58A4LhnDyPslJE6agPB/VejlMnGadfS8YOD8fZYuasiYhMO9z7nOorlDzeT7LApqwzy5nOnYJgQa3OwTD++gEmkrLd837n1Rp9lAf19TtI9J5O+s4P6/rvCX8aMcAUJJ8ONK57ktxuyN6WcGa7hpqNO5bj6OX22ZdOeTtOSjOMphWUGKLN91IcilO3Rk2Kbvtyb277Ypg+fGSRghwZ8gxjpdi3Tzp1EiqGsaVhDPobzlXUND58Z7JeRaZjD2O7QyxqGMSZlYexe98Mp67eDWN157uvY7Huhsc/tWmNTtu/Fmc6ytuUf8pvUvsq6bu/Fz3DPEWNRthBe96M5R7iDHJ/DO5/IOaLHUN+LYJiv+0l4jug5PvsuBDSs80kJnCMce2z6Ik4//XRWrFjBMcccg1KKE044gf322w+A73znOxx//PFUVFRw5ZVX8tBDD/HAAw9w/vnnj+p3Tsqelb8+8sCAPSvjQSlFYsXDtN/3ObxoK9gBKs64ltChZ2JkqlEbErhrWnHeaMVt7ICtXRjOwH+iVI2fFUdt5JE3/R6fF+TM8u/BtEoO2HYhQWcbuyvOo2P2VwjZNgGfTcjnI+izCPp92JaRa2QopXjowUZefbmVYNDiig8dQN2UEJ0daWLRDJZlMGVKCMve9wl0uP61vZHrn3+cHYlsa/uihYfw6aVvIeLLfuLleh4tqTi7uxspAEHbpj5YRrl/6Ce0fFzXY/36JhYsaBjSG4TIT7LUS/LUS/LUS/LUS/LUS/LM9qycceb5I+5ZKSSTsmdlonieR9dD36Tr8Z9gJmrwqZOxqs8gc28E9zvPY3X178Lr+TzADZgkZoRJzAwTnx2hdZoPtX8tdkWQpzf8FlJw4IwzWbjfYsLbb8dytoFdybyjvoHp3/f47H/9cyuvvtyKaRpc8P6FTJ0aJpVyiceyXZWVVX4My8D1PBSgUGTbDb0dy0qp7u/1/ptcue6f6fO9pOvw/Vef4Q8bVwHQUFbJN488jTdNza5Y5ilFayrOrmQct3tcY9CymRqKUOEf+qc5+2IYBrW1VVqXYZ6sJEu9JE+9JE+9JE+9JE+9JM/SIj0r4+TVp1fwzeeexud4mJ6BMkAZ4PX8H4VrguszcQImbveXCloov7nnuCtAkcjE6Ei1ACaVwamgFG5qJx6g7HKUGcRT2WaCp7LjfT2l8LobEQpQnsLzFMro/hVG38bG2DOAyxYdzicPOo6Q7UMpRWsqwa5kDKe7keK3LKYGI1T6g3LiEUIIIYTYB+lZEcO2be2rPD87/4TDvDLdX3mVAxBPxLofdx+QGQX0n9inPANn21S8WBgzEseesRPDVNDdQ6py/xkf+1fW8bUjTuHwuhm9jZRElEx3I8VnmkwNlVE1ho0Uz/PYtn0XM6ZPwTQnZ1exLpKlXpKnXpKnXpKnXpKnXpJnaZHGyjg58Jyz+PCPfk1XeQWd5TXEDJNMUuGkFQYGhuqeqK6yvQ09/zZNg1DYIhS2CZfZRMpsHDdJsGYXL+78ORY27z/8RioyO/Be/wImHqEl38FffTimYWBiYBgGK58P8ZufV9P4hp90ysCyPUxrNwccvI7jTnA4753zMQxIpVw629OAQU1NgGDAznbkGEZ3vbKM3GOju9On+7HRO92+/+NsOWOAcm3dPSk9SyDbpsnUYITqQGjMe1KUgngsweTpXxw7kqVekqdekqdekqdekqdekmdpkcbKOJk1pZpPfe0aIHsfk3jcIR53SCddOjpTtHWkiMYyxGIZujrSdLSl6erI4HlAR3YbHpBd1DfCrsU/oaZiN6GWE1nzsOLMmd+i1reDndZJtKSWEEgbRCJ+bNNk5fNhvvfVctrbDOrqUtRUuDQ1pensLCPadjAfukQxPeLhuh67OpLU+n2UlfuoqMh/LxYdOtJJdiaipLobKVafRoopw72EEEIIISY9aaxMANs2qajwU17uI5l0iZT5qK3tXd7QtAzCYZtg0CIWc2hrTdLS0vu1qf0l3Io3wLOwm05hStVj1PrWkHaD/HH5JcSezN6Z3hcwCZXb/OGPB9PYGMdTa2ltV6QSCsMwMA1FIn0A37/TpubALXR1pUmnXGzbpDrsh7axbTD0rO5lGgZTghFqg2FppAghhBBCiBxprEwgwzAIhWxCIbtfb4vnKqJdGaJdGQIBi+kzIsybX4FhGCil+N8nvwMdcPD0kznlkKWE13wKFDQ5F1I9rQFaU8SiDpmUx+amIBvXR7AMB7wDSadMMhmHqqoks+dbKGwa1wZ47WWLqTMcMCBSbuONwwQW0zCoC4apDYSxJmhMqWka1NfXYprSSBotyVIvyVMvyVMvyVMvyVMvybO0SGOlQOzZ2xKPOaRSbu6rp7dlZ/I1NnW8jIHJmQdeRUXTD0mrVozgDA479UvMaY+wdq3NqlUGr7xi8MrrPuKJAD7bwVMeCg/IEA4HqQgbmIbF9k4bu72ceQuzQ7/KysbnsLBNa8J7UgzDoLKyfELrUCokS70kT70kT70kT70kT70kz9IijZUCM2BvS6y3t+Uva38CwAFT3kJFOs2qZ//Luq3nssn7HOvvr6elpX8PRVmZQTBoYFlJMplmfL44Pl8nyaTN6tdNampmY9sBaiqhLOSjplLfPUyKged5NDVtp6FhuqwYMkqSpV6Sp16Sp16Sp16Sp16SZ2mRxso48TxYtcqivd2kqsrjwANd9vX62bO35YU1a3jueUX7tvfSmfwof13XhJu+GcNXhV11GHTfK2XOHJf9F7ksWuSwcD+XL30pwosvBpk5Y0q/27UoBVu2hFi0JMWi/TNUVYXyV6ZEKQXpdEZWDNFAstRL8tRL8tRL8tRL8tRL8iwtRddYUUpx/fXXc9dddxGPxzn77LO54447qK6unuiq5fXsszY/vjPEmjU2qZRBIKDYf3+HD1+d4JhjnAF/JpOBxkaLtWst1qy1WbvW4qV1lXSlPkLQqsQOgpnupDzUxeyD9mP/pV0ctMRjyRJFKNR/aNWHr07whS+WsaO5nPp6j1BIkUgY7NhhUFnpcvFFXVRX+7Ft+fRBCCGEEEIUjqJrrHz/+9/ngQce4O9//zvV1dVcc801XHnllTz44IMTXbUBPfuszRe+WEZ7u9ndUPBIJAxWrvTxhS9a3PzNKMcc4/x/9u47von6j+P465K06UhboEAnLbRlg+wpSwUFlCkbBPyJONmCIi4ERMWNCxQBUUABcbAcDEGWKC42tJQyy4buNsn9/gi9NnTQwkHb9PP00Yfk8r277/d9l2u+vbvvce6cwoErnZL9B4wcjjGSYc3qdKRmJJGYfg7fikdpV7sG7fwnEllhI/6R7UgLbU7moMaXLilkZJjw8jJpnY/mza1MfyVR6zCdPm3A7K5Ss2YaA/tfpmVLK15epevyLyGEEEIIUfwpqlqyTpJVqVKFjz/+mHvuuQeAixcvEhgYyMGDB6lUqVK+8yYmJtKuXTtWr1qKt7fXTa+r3Q7/e8iHf/5xIyLCpl2CpdohKUkhOsaIv7+d226zcv58zrMaFotK9WpWqlWzsc/6FqeMi6gRVIcHylZGPfIuilsZLG02YzeUISnJSkqyFbs9a3OaPYx4e5swm40oiuJ0KZrJlEZoSAomk0KFip4YjaVzxAxVVUlOTsXLy+OmP4DS1UmW+pI89SV56kvy1JfkqS/JE5KSkunUuRcbNmzAYrEUdXVuSIk6s3Ly5EliY2Np06aNNq1MmTLUr1+frVu35uispKWlkZaWpr1OSkoCwGZzPAARHPd4GAwG7Ha707WNiqJgMCg5phsMypUv/rlPz1wuwO7dJvbvN+Hrm8SpUylcvOhBaqqJtFQjqqqgAgkJJnx97fj6qoSF2ahR3U7VahlUjbISGGhHUeBs8lG2bFiASbXRoVJX1H0jAHCLGIPBvRzYVSwWE97eRlJTbaQkW8nIUElJySAlOcMxkpinCW9vN+rUgZSUVM6dTQXAx9es3TtTkDZlTneUVws03Wg0oKqq0/TM3POabrerZO9H38zt5OFhBshRl5LcpvzqfjPb5OlpzrWOJblNRbmdvLw8rkzPeq+ktym36beiTaqq4uFh1vJ0hTYV9Xby8DCjqqo2rL4rtCl7HW91mzK/WLtSm4pyO3l6Oh8/XaFNhdlOrqREdVaOHTuGxWLB09P5RvDAwEDi4uJylJ8+fTqTJ0/WXhsMBho0aMDhw0e1Zfj5WQgIKM+ZM+e5dClRK+vvXwZ//zKcOHmG5KQUbXpAgD9+fj7ExZ0kPT1Dmx4SEoC3tyeHDx/DbnfswLt3+5Ca6seFC7GcPHkBm60WkA6Aotjw9gZPD3/atz9Gx3vO4+WlEBUVRlJSCsePxxMT41j2+lMfYFdtVPKtjW/sl2BLJsOtCgnuXQgFLly4xLlzF7W6+PlZqFCxHHFxpzl7JkHbgf38fKgYUIbjx8+QnJSK2WwgOcVYqDYBhIcHYzKZiI52zjwyMgyr1cqRIyecMo+KCiM5OZXjx+O16e7ublSuHMLly4nEx5/Tpnt5exIaEpBrm27GdrKrKhcvXOa226pjNru7RJsy3ertZFdVUlNSqVu3OmfPukaboOi2U5UqoURHHwUFbYjvkt6motxOx47Hc+L4acqU9cWgKC7RpqLcTpnHzooB/kRUCXWJNmUqiu1kV1XsNjvVq1dxmTZB0W2noMAK7N59EHezu3b8LOltKux28vBwx1WUqMvANm7cSNeuXbl48SLDhg1jw4YNHDp0iF69elGvXj2ef/55p/K5nVnp0qULK374WrsM7GafWXnkUT/c3ZNRlCTOnPbC7GHDw8OKu7sdVfUiLc2L2bMuUbu240b7q3vaF5JP8uqG3tjUDB6r9TABB18CVNwbLMRcse01e9p2u0pqio3kZCvpGXYMioJdtWM0GChfwQODQSnxfz24ke1kt9uJjjlKVGQYRqPBJdp0rbrfrDbZ7XZiYo4SFRWOouASbXKefmu3k6qqREfHERFRiexDb5bkNhXldsrIsBIdc5TIK3m6QpuKcjtlHjsjIyrh5mZyiTZdXcdb2absx8+rldQ2ZZ9+q7eTqsKhQ0ecjp8lvU2F3U4pKSlyGVhR8PT0xGazARAWFkaNGjUAsFqtOc62AJjNZsxms/Y6c4c1Gg0Yjc73iOQ1Dndhp2dfbp06dqpXt/LPP95ERHhQvnxWOVWFmBgj9etnUKeO3Wl5iqJo95CsjZ6HTc0g1Lc6Qae+wo5KqlcbLBXaavM4Pgg5T/k5fiGDxceIxcedjAzHc1sy0m34+rnj5mYsdJucp+d+mjG36dnbVJDp+bUpNzeynQyK48CTV10c5UtWm5yn37o2ZZ56dqU2XauON6tNNpv9yi/RnMerktqm/KbfijYZcsmzpLepMNP1blNmnldPd65LyWpTQabfrDZlHj9dqU1Zdby1bcrv+FlS2+SoS+G2k6soUZ2VkJAQEhMTSU1N5YUXXtCmx8fHExYWVoQ1y53BkDlssJGYGKPTsMHx8Y7nrTwyPIW89rFLKWf449hqALqVq4T9+FoweJBQfgzlc58lX25uBvz8XOe0oBBCCCGEcG0lqisWHBxMeHg4Gzdu1KZdvHiRv/76i+bNmxdhzfKWOWxwvXoZXLqkcOSIkUuXFOrXz9CGLc7LL4fmYbWnUcm7EhVP/wCAe+WHqRTVUDutKG6MwaAQHh4seepAstSX5KkvyVNfkqe+JE99SZ6upUSdWQEYNWoUo0ePZsmSJZQpU4aRI0fSuXPnYnlmJVPz5laaNk0o1BPsk9Iv8nuco4PSw+KBev4cikcw7hGjwFDiNluxZjJJnnqRLPUleepL8tSX5KkvyVNfkqfrKFFnVsDRWenZsyd33HEH1atXx83NjTlz5hR1ta7JYIA6dWy0apVBnTr5d1QA1h5aQLothUiv8pS7sAkAj+rPgcGT6Oi4HDdqietjt6uSp04kS31JnvqSPPUleepL8tSX5OlaSly302AwMHXqVKZOnVrUVblpUjIS2Rr7DQDd3FIgw4qxbFPcgrrLB08IIYQQQpQaJe7MSmmwIfpLUq2J1Dd74Ju8HxQjHjWnudxDfoQQQgghhMiPdFaKmTRrMr8dXoIRlY6G8wC4hfTD5FeniGsmhBBCCCHErSWdlWJmU8xXJGdcorW7HQ/reRS3MnhUn6S9bzAoREaGyQgXOpE89SNZ6kvy1JfkqS/JU1+Sp74kT9cinZViJMOWzsbDX+GNjVacA8A9agwG97JO5azWvIc7FoUneepHstSX5KkvyVNfkqe+JE99SZ6uQzorxciW2GUkpJ3jHrcUTGo6Bkt1zOHDnMrY7SpHjpyQG+11InnqR7LUl+SpL8lTX5KnviRPfUmerkU6K8WE1ZbBhugvCVbSqctFADxqTkFRZBMJIYQQQojSSb4JFxPbj/7ApdRT3Gu8jAKYKnbErXzroq6WEEIIIYQQRUY6K8WAXbWz/tDn1FWSCVFSweCBR82X8yxvuNYTJUWhSJ76kSz1JXnqS/LUl+SpL8lTX5Kn6yhxD4V0RX8cXUVC8lE6mC4D4F55OEavSrmWNRoNREWF3crquTTJUz+Spb4kT31JnvqSPPUleepL8nQt0u0sYqqqsu7Q57QxJOCj2FA8gjFHjcm3fFJSCqoqN43pQfLUj2SpL8lTX5KnviRPfUme+pI8XYt0VorYPyfWkpF4kOaGBAA8qj+HweiRZ3m7XeX48XgZ4UInkqd+JEt9SZ76kjz1JXnqS/LUl+TpWqSzUoRUVeXng59xj/EiJgWMZZvhFtS9qKslhBBCCCFEsSCdlSK0J/43vBL+o7ohFRUjHrWmoSjytFUhhBBCCCFAOitFau3+T+hovAiAe2g/TL61rzmPooC7uxvSp9GH5KkfyVJfkqe+JE99SZ76kjz1JXm6FhkNrIjsP72dwITfKW+0opp88ag+qUDzGQwGKlcOucm1Kz0kT/1IlvqSPPUleepL8tSX5KkvydO1yJmVIrJp34e0NTiGKvaoOg6De9kCzaeqKpcuJcgIFzqRPPUjWepL8tSX5KkvyVNfkqe+JE/XIp2VInD43D9EJvyGh6Ji86yCOXxYgee121Xi48/JCBc6kTz1I1nqS/LUl+SpL8lTX5KnviRP1yKdlSKwY/erNFCSAfCp8xqKIptBCCGEEEKIq8m35Fss7sJuaiVsQVEgvWwr3Mq3LuoqCSGEEEIIUSxJZ+UW2/fvRCoZ0snASLnb3ir0/IoCXt6eMsKFTiRP/UiW+pI89SV56kvy1JfkqS/J07XIaGC30Inzf1Mr6U9QID2oD0avSoVehsFgIDQk4CbUrnSSPPUjWepL8tSX5KkvyVNfkqe+JE/XImdWbqHj/4zFR7GToHgSWPeV61qG3a5y7txFuWlMJ5KnfiRLfUme+pI89SV56kvy1Jfk6Vqks3KLnD69gYiUvQBYKz+OwehxXctRVccHUIbj04fkqR/JUl+Sp74kT31JnvqSPPUleboWuQzsFklOPolN8STN4EnN6uOKujpCCCGEEEIUe9JZuUUqV+6PrVIvEhMPo8gdX0IIIYQQQlyTXAZ2CxmNbvj5VbuhZSgK+PlZZIQLnUie+pEs9SV56kvy1JfkqS/JU1+Sp2uRMysljMFgICCgfFFXw2VInvqRLPUleepL8tSX5KkvyVNfkqdrkTMrJYzdbic+/ix2u72oq+ISJE/9SJb6kjz1JXnqS/LUl+SpL8nTtUhnpYRRVbh0KREZ4EIfkqd+JEt9SZ76kjz1JXnqS/LUl+Spj3bt2lG/fn2aN29O8+bNef311xkzZgzNmjVjzJgxAKSkpNChQwesVutNq4dcBiaEEEIIIYTIYfXq1QQFBQFw8eJFBgwYwPbt2+nevTsXL15k5syZPPHEE5hMN69LUSo7K2pKBqohI+cbBgOK2ehULk+KguJhur6yqVby7O5fo6xqs6Ok2hxtMBkLvlxA8XS7vrJpNsjnVGphyuJh0kZDU9NtYNOprNmEYrhSNsMG1oKX1fI05nKi0d2IcmX6NZebvazVDhm2vMu6GVFMxaiszQ7p+ZQ1GVDcjPmW1fbNDBtk5mBXIS2fv7ZkX+61yhoNKO5XyqoqpOpUtjCf+1t4jFCteeybOh5PchR34WOEasrKsLDHiAJ/7kvRMcLpd5HRUKBjhKYwn/tSdIzI93fRzfrcu+gxQts/s39/uonfI4rjMSLffa+AFEWhXLly2muj0UhaWho2m420tDROnz7Nli1beP755294XfkplZ2VxE5LsOOWY7rp9hC83mmPzWbHarOROPgHSMt9RzHW8sdzcmvtddLDq1Avp+da1hBZBq9X22WVfeJH1DMpuZcNteD1dnvtdfLYX7AfS3QqUw64xE6UCp54f3hPVtmJG7BHX8x1uYqvO95zOmuvU17ahG3PuVzLYjZi+aKL9jJ1+lasO+NzLwtYlnTPKvvW71i3nsizrPcX96GYHbtd6vt/Yv31aJ5lveZ0wuBrdpT99B+sPx7Ou+wHd2Oo6AVA2oJdZHx/KO+yb92JoZKvY7lf76Xc0v1cYmfuZae3xRBVFoD07w+SvmB3nsv1fKkVxtqOG/oy1sSQNuffPMt6TGyOqWGgo+z6ONI+zH39AB5jm2BqEQKAdetxUt/akWdZ8+MNcbsjzFF25ylSp2/Lu+xDt+HWMQIA2+6zpLz0W55l3R+ojXvXqgDYD10geeKvuZYrByT1SsKjb01H2aOXSR67Ls/lunWNwvxAHUfZ08kkP/FTnmVN91TBY1g9R9nLaSQ/tDrvsm0r4fFkIwDUNCtJg1bkXbZFMB5jm2qvE/t+m3fZBhWxvNAa45VfJgl3f53nlxxjwwC8Z3XMWm7XZagX03Ita6jpj+Xz+7LK9vkW9WQSAUDy1WWr+GH5urv2OmnwCuyHL+W6XCXIG5/ve2WVHb4G+97cP/dKGTM+P/fTXieP+gVbXp97DxO+mwZqL1OeXo918/HcywK+O4ZklX1xE9a1R/Is67NxAFz54pL6ylYyVkbnWdbyU1+Uso4H7Ka+vYOMpfvzLOu1vCf+/mVQFIW0D3eS/kXen2XvxV0xRjo+92lz/yP9k3/yLjvvXu1zn754L2nv/Zl3HT6+B1OjK5/7bw6QOmN7nmU9374Lt1ahjrKrY0h9eXPeZae3xa19ZQCsG+JIyePzCeDxwu24d4lylN12gpQxa/MuO74Z7n1qAGD7+zTJj/7o9H72/dM8slHWZ3nfeZKGrsxzue4P18NjeH1H2cMXSer3fd5lB9XGY1RjANRTSSR2W5ZnWbde1fF8urmj7MU0Eu/+Ku+y90bi+VIrx4tUKwltFuZZ1nRXuNPv8HzLXvkeoZUt4DFCURQqjv2d5Eu5H4fzOkbkWlaOEYBj/1TWBIO/p6PsNY4Rlu/uRwm2AJD24V8l/hiRTAZ45Tl7gXh5eTFjxgx++OEHAgMDee+99+jQoQONGjWiX79+mM1mPv744xtbSQGUys5KXlTg7NnLJCQ6Dr/2cfUcE3PjbsBwMusDbR9RF+x5FHYzcDF72UdqgS2PsibFueyD1cGaR1mjwqXsZQdGQUYePXbDVWV7V4H08NzLKnA5e9muYXBPSO5luapsxxBoF5h32bOXtDul1LuCUFtWyLPspcsJKEmOjpraqgJqw7J5l01LRjnp6ACqTf1Ra/vmXVZNQ7lSZ7VBWdSqDfMu62bNKlvTB3ViPmW97Vllo7zyLauUNWSVDTPnX7aMKatsgCn/sn7mrLJlDfmX9XXPKuttz7+sT7aybtcoa8lWVr1GWW+3rLJWNf+yXtlysF2jrGdWWexgz6csHkbnz3J+Zc1Gzh89jY/FC39/n7zLiWLHYFDw9y9T1NUQIlcGg4JBUfL8yiGuT+bZD3F9+vbtS/369Xnuuef4/PPPefTRR1m9ejV9+vTBx8eH1157jXXr1jFo0CDGjh170+qhqGrpuf0oMTGRdu3asWrZIry9c3Y3z15OIjEllbJlffAwu5F3TwVAcXq4o6rmN+LE1WXVfJZ9jbIqWDNsmNyMjtO3BV4uKIqhyMtmb1/xKGvHmp6ZZ0mobzEum7lvuhu1faJY1zeXso7y+VxKpCqkpWdw4UKCo8Pi7ZnPYm/sMjC7zcbJU2cJCiyPwSCXgd1oWbubgZPxZwkOqoBiU0v8JR63vOxVl3bZ7Xbn/VMuAyt82WyfT7vdzonDJ3N+3nMpC3IZ2LU+99r+WTkQo9GYb1mNi10GlpSUTOf7+7NhwwYsFkveyymg1NRUqlSpwokTJ7jnnnuYOnUqs2fPZtasWdx7770sXbpUl/XkplSeWVE83Zw+GAA2m13rqJTx8y6iml2bqqqgpGM2uzt9wRLXx/FFVvLUQ2nZNz093QG4cCGBsmUt2iVh13L1MSffsh4msBlItmWAh5v2yyvPsoVZ7s0oazYCxmuWK3RZdx3L2uwkJ6WgqmBwM4JbAZd7s8qaHF/wS0xZowE8s5W12fPcP3OUzW+5BkW7pEfXssrNKQuF/CwXsKyqUqDPu7bc4vC5L87HiMz9M9tfIQt1PHGBY4RiL/h+mhur1cr48eOZMmUKFouF9evX07hxYxYvXsx9992H2WzGx8cHo9GIh4cHNls+HasbVCo7K7mxXgnZcUZFCCHylnmcsNpsBe6sCCGEECWFyWSiQYMGtG3bFrPZTNmyZfnwww956KGHWLVqFW5ubpw8eZK6devSoUMH/Pz8bl5dbtqSS5orZzJd+S/CQgh9aMeJUnMRrRBCiNJm8ODBDB482GnaL7/8ov178eLFt6Qe8ifBEuhmjmVdGkme+pEs9WMwKAQE+GOQG0R1IXnqS/LUl+SpL8nTtUhnpYRRFAWTyaj9Zbdjxx54WwJy/GzZkvdwd0Xln393ERxSVbflTZs2g779hly7YLbyV+dk8QnktdfekjNqNyA4pCr//Lsrx74pboyiKPj5+UieOpE89SV56kvy1Jfk6Vqks1LCqKpKWlq604OOpkx5nvhTMU4/zZs3KcJaFk/jx48i/lQMf+zYCMDBA39z6mQ0I0c+RikaFO+myW3fFNfPbrcTG3sce36j4ogCkzz1JXnqS/LUl+TpWuSajRLo6i+D7u5uWCzFdwSzTMeOHivS9bu7u+Pu7o6Xl2O4WS8vLywWb9LScn+Yp7i2c+fOk5yc9YBT6ajoR1UhPT0jv5FBRSFInvqSPPUleepL8nQtcmbFxS34YjFVq9Xn8uUEwPHXhjZt7+Gtt9/XytSs1Zj5ny+kY8celPMPo90dnYiOdn5a/KxZn1G9RkP8y4fTq/cgTpw46fT+qfjT9O03hPIVKhMRWZe33/lAe2/4IyPxtgTQp+8QLl267HQZ1pEjcVq55ct/oF79FpTzD6NDh67s23fAaR2//vob9eq3oHyFygwZ+ggpqam65QSOy8Qef2IM1ao34PZWHfhl7QZCK1Wna7e+TmWGDBnO5MnTCQ6pSkRkXeZ/nvU04wVfLNbaVrNWY3bu/Jumzdrh4xvE8uU/AJCcnMzjT4whKDiK4JCqPPnkOJKTs55T3qv3IGbN+sypbhOefp4XXpyqvT569Bg97x+If/lwqtdoyNy5C7T3Nm7czN13d6NT556Eh9di8+Zt1Kvfgtp1mnDy5Cmncs1b3EnZcpVo3uJOtm3b4bTOmrUa88EHs2nbriMBgRH06zeUCxcuOrUzLLwmGRkZtGx5FxafQPzLh/HFF7fmhjshhBBCuD7prORDVVXsacm3/EfPv04/MKgftWvX5PnnpwDw0UefYjQaGTXyMadyK1eu4e23X+XvvzZTpUplHn98jPbeihWref+DWXw250N27fqdxo0a0r1Hf6cxtYcNe4KKFSrw187fWL58EZ/PX8iPP60FYOZ7M4g/FcM33yzEz8/X6XK1sLBKAPz9z3+MGfsMr702hT17/mDAgN7ce18vEhIcT7BPSUlh8ODh9Ovbi//+286jjzzEmjU/65ZTpqNHj7Nh/SrSUtP44ftVbNn8C//8/R8HDhzSymzb/gcNG9bjr52beeWVFxkz5hmtc9e/Xy/iT8XwxYJPAfh6yXIWfvkZJ08comvXzgA888yLnDlzlt82/cymjT8Rf/o0kya9rC2/a9d7WbnqR6d6rVy5hm5d7wUc+2W//g9St24t/vt3G19+8SkzZ85i2bLvtPKHomOY+d4bdOrcgWcmvsjKFUuJiKjCqlU/AXDyVDyDBg1jzJgn2Lv3TyY+M44+fQZz9KqzXxt+3cQns99n82+/cCTuKK9Mf8OpnfGnYgBYt3YFp05GcyR2L/369brxDSGEEEIIgVwGli81PYUTYyNv+XqD34pGMXvl+b6bm/OzYF5++VVef+0dp2m7dv2Or68PAO/PfIOmzdrRqlULXp/xDj//9L32RNdMAwf0pWbN6gDMfO8NQitV58iROMLDw3j33Y+YNvVFbr+9OQDPPDOWJUuW89tvW2nbthUHDhzir7/+4ZtlX+Lu7k6lSqH8+OO3VKxYAQCz2YzZbMbTwwMg10vWZs78mHHjRtDxnvYAPPjgA3z/w2qWf/sDgx/oz08/raN8eX8mThwHQFBgAF27dGb3nr0FyjQ/2fNs1rQxwcFB3FavDo0aNyAsrBJVq0Vy5sxZqlWLAuC222rTpYuj49Gvby9Wr/6ZxYuXMmnSeEwmExaLCQ8PMydOnOTpCWMoW7aMtvzExCQ+X7CIfft2EhhQEYAPP3ibatUbMGXK81gs3tzb+R7GjZvI5csJ+Pr6sGvXHqxWG40aNQBgw4ZNWK1WJr80CYDg4CAmTRrP7Nlzuf/+bgBUjYokKiqC5s2aYLPZCQ0NoXGjBpw5cxaAT2bPpU/fnvTtcz8A3brdy/r1G5k/fyHPPTdBq2+f3j21dj/66EPaGZ/Mdmby8PTEYvHGy8tLRl/RicGgEBISIHnqRPLUl+SpL8lTX5Kna5HOSgmjKApGo/OHb/SoJxgyZIDTNB8fi/bv0NAQpk55nqEPPsq0aS9qXz6z87xyHwc4OhMBARWJjXV0Vvbu289jj4/mySfHaWUuXb7MgQOHrnRWDhIaGoK7u7v2fmZHpaD27t3PypVrmPH6u9q0xKQkateuCcCRuKNERFZ2msfLO+8OXUFdnWfmyCEmkynr30aT01kkL09Pp2VERUYQm+1ytkyBgQFOHRWAmMOxmM3uWkcFoEKF8nh5eXI4Npa6dWrj71+OJk0a8dNPa+nVqzsrV66hS5dOWvm9e/dz4MAhwsJqatMyrBmYzeYc7TBmb4cpqx179+5n7boNfP3VN9o8ySkpdO7Uwam+Hh5Zy6xYobx2GVhucts3xfVTFAVvb89rFxQFInnqS/LUl+SpL8nTtUhnJR+KuyfBb0UXyXrzkjniktnsrn0J9fXzISQkON9lnj17Djc3N06dir+uOs359APq1q3tNC3zaaWqqupy6dq0qS/SsWN7p2kWiyWP0vrInqfeDIbCXWWZPcJuXe9lxco19OrVnRUrf+SVaS86lW3RoimfzJ55Q+t74vHhDBvmPPSzx5WzX9cjt31TXD+bzc7hw8eoUiUUo1Gu2L1Rkqe+JE99SZ76kjxdi2zBfCiKgsHsdct/9P6it3fvft5/fzarVi5j/vwv2b59R44yKdlGdEpMTCI+/jSVK4cBULNGdeJPnyEkJFj7OXP2nHY5V1RUJMePnyA9PWtUrZOn4p1uGr+WmjWrc+LESad1nD13XruULTysEjHRsU7zJCcVfPl6Sk5JcXp9KDqGyuFhBZq3SuVw0tLSORV/Wpt2+vQZkpKSiahSWZvWtWtn1q7dQFzcUY4dO65dggeOrGJjjxAUFKhl5Tir4XxpX35q1qzO0WPHnfK+ePESfn6+BV6GuPlk2E19SZ76kjz1JXnqS/J0HdJZcQHp6RkkJiY5/WR+SG02G489PprxE0bRsmUzJk0az6OPjib1qpG05s3/kr179xMXd5QRI5+iSeOGhF/5Aj5q1GNMmfIaP/+yntOnz/Dxx3Po1q0viYlJgOOLb/36tzF27ETi4o6yd+9++vcfyldfLXNaR2bnJjU1VfvJPCMzYsSjfPTxpyxb9h2nT59h6dJvuffe+4mLOwrA3XffyZkzZ5k+/U1Onopn69bfWfPjL4XMKZ3ExCRtqN3k5GQSE5OcOlkF8eeff/PDD6s4ffoMi79ayg8/rKZvX8e9H1arlcTEJFJT01BVVdseaWlpgOPyvMEP9GfEiHFERx8mOvowTzw5lgeHDnK6lycoKJCoqAiefXYynTvf7XTWpF271pQtW1bL+79duxkw8H/Mn/9lgdvw8MNDWblyDXPmfM6p+NP8snYD93XpzY4dOwuVBYC3txcZ6enaNs1+yZwQQgghxI2QzooLeP75KQQERjj9ZA5DO/P9WWRkWHn8sYcBePyxh/Er48vLU15zWsY9d9/FyJHjqVe/JYcPx/Lhh29r7913XycmjB/NyJHjqVmrMUuWLufbbxc7fbn+YsGnXLx4iYaNWtOxUw/uvKMtQ4cOclpHvXp1adiwPhUqVsG/fDj+5cO1zkj9enX58IO3mTr1dWrUbMQbb77H/PmztQ6Tp6cnc+d9zMJFX1O3bjM++XQe993bsVA5zZjxLgGBETRu0gaAqtXqExgUydvZhnEuiCZNGvL7jj+5rV5zJk58ibfefIWoqAgAFi1eSkBgBIMeGMbRo8e07TFi5Hht/unTX6JChfK0at2B1m3upmLFCkyb9kKO9XTtei/Lv/2BrldGAcukKAqLF83l6LFjNGzUmq5d+9KubWvGjh1R4DYEBQXy9VefM+ezz6lZsxFPPfUsr746mRYtmhYqC3BcTnb3Pd0pX6EyIaHVWLRoSaGXIYQQQgiRG0UtRU9xS0xMpF27dqxetRTvq27OTkvL4MTJcwQH+WM2u+WxhKKXeX+Ioii6XS5Ws1ZjXn/tZW2Eq9KksHlOmzaDf//bxVeL59+C2pUsN2PfLK5uxfFCVVXS0zNwd3dz+TxvBclTX5KnviRPfUmekJSUTKfOvdiwYcNNv//3ZpMzKyVQaf3g3SySp34kS32ZTDIGip4kT31JnvqSPPUleboO6ayUQGlphbvHQuRP8tSPZKkfu10lOjoOu73UnPy+qSRPfUme+pI89SV5uhbpdgr27vmjqKtQYkyaNP7ahYQQQgghhC7kzIoQQgghhBCiWJLOihBCCCGEEKJYks5KCXQznrZemkme+pEs9WMwKERGhmEwyKAFepA89SV56kvy1Jfk6Vqks1IClaLRpm8JyVM/kqW+rFZrUVfBpUie+pI89SV56kvydB3SWSmB0tMziroKLkXy1I9kqR+7XeXIkRMymo1OJE99SZ76kjz1JXm6FumsCCGEEEIIIYol6ay4iFdffYvIqNsIDIqkW/d+HDoUU6T1Gf7ISMZPeK5I6yCEEEIIIUo26ay4gNmz57Lgi0V8seBT/tq5mWrVoujeox9paWlFXTUhxA0wGOQQrSfJU1+Sp74kT31Jnq5DHgpZwiiKgoeH2Wnahx99wuuvTaFFi6YAvP7aFCKqVCYjw4rZbM5tMeKK3PIU10ey1JfRaCAqKqyoq+EyJE99SZ76kjz1JXm6Ful2ljCqqmKz2bVRl86cOcvBg9G0a9daK6MoCo89NgyLxZtp02bgbQnA2xJAx449+OnnddS9rRnelgB27vwbgAsXLjL0wUepGFCF8Mq1mDHjHex2u9N6Z836jOo1GuJfPpxevQdx4sRJp/eXLFlOteoNCAiM4KmnnnWaf8uW7VSr3iDHMus3aMmvv/6mZzyFdnWe4vpJlvpSVZWkpBTJUyeSp74kT31JnvqSPF2LdFbyoaoq6em2W/5zrQ9XRkbWiEtHjx7D29sLb2/vXMuOHz+K+FMxTJ8+mZTUFNav38iqlcuIPxVD/fq3AfDYY6Nxd3fnjx2O9378aS3vvPuhtowVK1bz/gez+GzOh+za9TuNGzWke4/+2Gw2AE6ePMUjj45i4jNj+fefbbTvcCcbN27W5m/Zshlms7vTtB07/iQ1NY02bW4v/IbRWfY8xY2RLPVjt6scPx4vo9noRPLUl+SpL8lTX5Kna5HLwPKRkWHnlZf/vOXrffaFRri7GwtUNiUlFZMpazPWqduUy5cSAPjqq/m0aNEUd3d33N3cOHr0OC9PnoSbm5tWPiYmli1bthMT85+2nFenT2bQAw8zdsyTALz77kdMm/oit9/eHIBnnhnLkiXL+e23rbRt24olS7+lbdtWPPjgAwB0vKc9rVu3dKrngP59WLR4qXYGaNGipfTrez+KIg9sEkIIIYQQuZPOSglnNrs7Pfjo55++x263c8ed9+b4K3dUZIRTRwVg7959XLx0iYiIuto0u2rnwoWLJCcn4+Xlxd59+3ns8dE8+eQ4rcyly5c5cOAQbdu2Iu5IHJERlZ2W6+3l5fR6wIDetGh5F++8/Spubm4s++Y7fv7p+xttvhBCCCGEcGHSWcmHm5uBZ19oVCTrzU/2sxFBQYEkJSWTmpqKh4cHQUGBANolWtnlNTJGRERlVq5YmmO6p6en9u85n35A3bq1nd738/PLt57ZhYeHcVvdOqxc+SPe3l5UrhxGtWpRBZ7/ZpKzO/qRLPWjKODu7oZEqg/JU1+Sp74kT31Jnq5FOiv5UBSlwJdj3SqKomA2u2uvQ0KCCQoKZNNvW+nQ/g4ATp8+Q3z86QItr0aN6pw4cRJfX198fCwAJCQkcubMWe2LZ80a1Yk/fYaOIcHafH//8x8hV16HhYexbt2vTstNSk7GfNXIUAMG9uGrr5fh5eXFgP59Ctnym+PqPMX1kyz1ZTAYqFw5pKir4TIkT31JnvqSPPUleboWucG+hFFVFavV+Sb8B4cO4ukJz7N3735iY4/w7KTJlCtbFoD09HQSE5NIz8jAZrORmJjkeJ2eDkBkZBXuvKMtw4eP4ODBaKKjD/Pg/x7lrbdmassfNeoxpkx5jZ9/Wc/p02f4+OM5dOvWl8TEJAB63d+NX3/9jblzFxAff5o1P/7C77//kaPuPbp3YcuW7fz88zp69ep+E1MquNzyFNdHstSXqqpcupQgeepE8tSX5KkvyVNfkqdrkc5KCZT9HhWAp54aSYuWTWl3Ryc6durJ/T274m1xjA42Y8a7BARGMHHii2zZup2AwAgCAiOYMeNdbf6PPnoHD08PWrXuQNt2HQkKDGTGjKna+/fd14kJ40czcuR4atZqzJKly/n228VYrqwjODiIjz56m2mvvMFt9Zqzfv1G2rVtzdV8fCy0b38HbVrfjr9/uZsRzXW5Ok9x/SRL/djtKvHx52Q0G51InvqSPPUleepL8nQtilqKup2JiYm0a9eO1auW4u3tfAN4WloGJ06eIzjIH7PZLY8lFD1VVUlLS8dsdi+R9we0bnMP458aRdeunYu6KkDJz7M4KU1Z3orjhc1mJzo6jsjIMIxG+bvSjZI89SV56kvy1JfkCUlJyXTq3IsNGzZgsViKujo3RO5ZEbdEamoqhw7FEHfkKB07ti/q6gghhBBCiBJAOislUF6jehVn/uXD8fPzZcaMabi7F6+bsEtinsWVZKkfRQEvb08ZzUYnkqe+JE99SZ76kjxdi3RWShjHCGXF9zK1vCQlxhd1FXJVUvMsjiRLfRkMBkJDAoq6Gi5D8tSX5KkvyVNfkqdrkT+DljCOEZesMsKFTiRP/UiW+rLbVc6duyg3iOpE8tSX5KkvyVNfkqdrkc5KCWS15nzgo7h+kqd+JEv9qKrjl610/vQheepL8tSX5KkvydO1SGdFCCGEEEIIUSxJZ0UIIYQQQghRLElnpQQqrWOG3yySp34kS/0oCvj5WWQ0G51InvqSPPUleepL8nQtMhpYCaMoCm5uMuKSXiRP/UiW+jIYDAQElC/qargMyVNfkqe+JE99SZ6uRf4MWsKoqkpGRoZ201jNWo354YdVTmXCwmqycePmoqjeDdm//yCdOvWgfIXK3FavOZ8vWHTT1jVw4EP4lQnB2xJAjZqNctyEt2jxUgICIzh8OPaay/K2BPDPv7tuUk1vjgVfLMbbEqD9VKvegI8++vSGlnn1vnk9Nm7cTHBI1Ruqh6uw2+3Ex5/FbrcXdVVcguSpL8lTX5KnviRP1yKdlRLIZnO9D19aWho9evanabPG/P3XZt5++zWeffYl1q77Vfd1nTwVz7ffrWDvnj84dTKaLZvX5ihTrlxZqlaNwsPTU/f1Fxe1a9ck/lQM8adi+Hz+bKZOe53t23fc0DJdcd8sKqoKly4lIoPZ6EPy1JfkqS/JU1+Sp2uRy8BEsfD996soU6YMk1+aBEBoaAivvz6VjPR03deVnpYGgJeXFxaLN2lpOddxz913cc/dd+m+7uLEYDBgsXgD0Lx5E+66sy3r12+iWbMmRVwzIYQQQggHObPi4jZu3EyViDp8++0KqtdoSEBgBOPGTXQ6NVqzVmPmf76Qjh17UM4/jHZ3dCI6+rDTcmbN+ozqNRriXz6cXr0HceLESe297JcU1azVmJ07/6Zps3b4+AaxfPkPBarn5s3baNeutdO0Af1707FjB+11dPRh7uvSm3L+YVStVp/3Zn7sVH74IyMZPfpphgx9hIoBVWjV+m527drj9L63JYBatR1fxkNCq2HxCaR+g5ZamY4dezhdHnW19PR0Hn1sFBUqVqZ2nSas+fGXHGX+27Wb9h26UM4/jHr1W7By5Rqn9zt27MG0aTPo0rUPFQOq0KlTD44ePeZU5vff/6B1m3so5x9Gw4at+PEn57M/R48eo+f9A/EvH071Gg2ZO3dBrrkWhsFoxGq1aq9Pnz7DwIEPUaFiZcIr1+KFF6dis2U9R2X4IyMZP+E57XViYhL+5cM4ciQOgCNH4vC2BLBs2XfUqt2YSmE1eO75KTnacc893SnnH0bbdh0LdNmdEEIIIUoP6azkQ1VV1JSMW/9zjfOWJpOxUO1ISEgk9kgcv/66hm+WLWTlqp/44suvnMqsXLmGt99+lb//2kyVKpV5/PEx2nsrVqzm/Q9m8dmcD9m163caN2pI9x79tS+u/fv1Iv5UDF8scNzz8PWS5Sz88jNOnjhE166dC1THo8eOUbFihTzft9vt9O07hObNmrB71+98+cWnzJkzn2+++d6p3K+//sYjw//HP/9so1atGgx7+EntvZnvzSD+VAx/7NgIwMEDf3PqZDS/b9+glVm+fCHxp2LY+KtzByPTBx9+wrZtO1i96ht++fkHdv75t9P7KSkp3H//IHr26Mru3Tt45+3XGDlqAjt2/OlU7pe165ky5Xl2/vkbbu7uPDV+kvZeQkIivXsPZuiQgezd8wdTpz7Pw8Oe5Pz5C4Bjv+zX/0Hq1q3Ff/9u48svPmXmzFksW/Zd3gFfw8mTp9i2bQf33tdRm/bw8BGUKevHXzs3s3LFUjZt2pKjg1gQu3btYe3alSz88jPmzJnvdI/VqNFP41fGlz//2Mgns99nzZqcnb/SSlEU/P3LoMhwNrqQPPUleepL8tSX5Ola5DKw/KRaSWiz8Jav1mfjAPDMfVQlRVEwmQq32dzcTIwe9TgAgQEVGf/UKBZ++TWDH+ivlRk4oC81a1YHYOZ7bxBaqTpHjsQRHh7Gu+9+xLSpL3L77c0BeOaZsSxZspzffttK27atMJlMWCwmPDzMnDhxkqcnjKFs2TKFqmNKSmq+nbB16zdit9t57rkJAAQFBfLiCxN5/4NZ9OzZVSvXunVLWrZsBsDEZ8ZSp24zLl9OwNfXB7PZjNlsxsvLcR+Kl5cXPj4Wp/V4XrlHxcPDI9d6LFq0hOefe5rGjRsCMG7cCF597S3t/a+//ob69evy+OMPO+oZGMATTwxn9ifzaNKkkVbu3ns7Ur9eXQDGjnmSQQ8M095bsuQbGjVuwEMPDQagc+d72LHjV8qVKwvAhg2bsFqt2iVzwcFBTJo0ntmz53L//d3yzPBqe/bsIyysJgAXLl5kzJgnaFD/NgAOHozm99//YMnXe3B3dyc0NIQ3ZkyjT98hjBn9RK7Ly/ylcPUvh0cefYjAgIoEBQZw770d+W3zNrp06cy5c+f56ae1xET/p3VUhw9/kF83/lbgNrgyg8Hxy1boQ/LUl+SpL8lTX5Kna5HOSgnjGHHJipubCUVRMBhy/6uB0Zj1xf/qL96RkVWIvXKpTiZPr6wbyS0WbwICKhIb6+is7N23n8ceH82TT47Tyly6fJkDBw7Rtm0rp+UEBgYUuqMC4OnpgdVqy/P9/fsOEBFZ2WlaVNVIDhw45DTN7GHW/l2hguML8IULF/D19cl1uVfneS1xcUeJiKyStT6z2anzuGfvftau/VXrBACkpadRo0Y1p+V4ONWzPBcuXNRe79t/kIiIyk7lAwIqav/eu3c/Bw4cclpHhjUDs9lMYVSrGsV33y0G4MzZc0wY/xxvvPkeT40byf79BwgNDcHd3V0rHxUVyalT8Vrn72qZZwSvPjPoYXZu67lz5wGIO3oMi8Xb6Yyat7dXodrgyux2OydOniE4qAIGg5wEv1GSp74kT31JnvqSPF2LdFby42FynOUogvXmJ/v9Jh5mDzIyrE7vp6al4umZ+5mB6zXn0w+oW7e20zQ/P78c5a73oFApNJTTp88Uer4bGSY3k95DG95/fzdefOEZp2mFef6IqqpcawiTFi2a8snsmU7TCpu9yc1ESEgwACEhwYwdN4Jx4yby1LiR166fuOlUFZKTUmQ0G51InvqSPPUleepL8nQt0t3Mh6IoKJ5ut/6nENdYBgYFcPTYce316dNnSEpKJvjKl1CA1NRUp3miow9TOTzMaVpKcor278TEJOLjT1O5sqNMzRrViT99hpCQYO3nzNlz2khSemjZshkbNmxymrZw0RLWrPkZgGrVqxJ9yPmm/0MHo6lWLUq3OhREWFglog/FaK/T0tKcbkqvVbM6sYePOGWVkpKKl1fBzxhUjYokOibWaVr2G89r1qxObOwRgoICtXUoiuJ0Nu16ZH+oY7VqVTl27Djp2UZjO3QomoCAivj5+QJQpowfZ8+e095PSUmhMMIqhWr7WqakpOQbaYIQQgghXIx0Vkq4Dh3uZPbsz9izZx+nT5/hpcmvUKtWDQKzXTaUkpLK2+98wKn402zZsp0Zb7xL//69nJYzb/6X7N27n7i4o4wY+RRNGjck/EqHZtSox5gy5TV+/mU9p0+f4eOP59CtW18SE5MAsFqtJCYmkZqahqqqJCYmkZiYRNqVIYILolu3e7l48SIvvfQKx44dZ936X5kw4TlMV74833VnWwwGA1Onvs7JU/H8/vsfvDzlVUY8+WiB15Genk5iYhLJVzpmycnJOeqZkpJypS2ODl5mWzI7JP369WLqtNf588+/OHkqnnfe+cBpHb179yDmcCyvvvoWJ06c5Pff/+D+XgNZuSr3G/Zz069fL3b++Teffjqf+PjTrF+/kTvvuk+75K1du9aULVuWsWMnEhd3lP927WbAwP8xf/6XBV4HOM4oZbbvyJE4Zs36jE6d7gagWrUomjZtzJixz3Ds2HF2797LU+MnMWJEVt63t2zOmjU/s3nzNk6eimfW7M8KtX5//3J06HAnI0Y+xeHDsRw8GM28QrZBCCGEEK5NOislUPZ7JB5/bBh3tGvD3fd0o0bNRuzZs4+5n33kVN7Ly5NKoSG0atWB7j360bnT3Qwa1M+pzD1338XIkeOpV78lhw/H8uGHb2vv3XdfJyaMH83IkeOpWasxS5Yu59tvF2tnVjKf9j7ogWEcPXqMgMAIAgIjGDFyfIHbZDabWf7NIrZt20G9+i0ZMeIppk19gfZ3tQMclzh9/fXnbNu+g9q1mzBw0DD+97/BTjfXX8uMGe8SEBhB4yZtAKharT6BQZE89VTWSFw9egwgIDCCNm0do2JltmXR4qUAPPH4wzRu3JB7Ovagffv7aNS4odP28PLy4tvli1i37lfq1G3G4CGP8PDDQ+nb5/4C19PX14eVK5fy+YKF1KjZiFGjJ/DGjGnaWSRFUVi8aC5Hjx2jYaPWdO3al3ZtWzN27IgCrwNg9+69WvuaNb+D8uX9eW5S1jb7ZPZMLpy/SIOGt9O58/20bt2Skdk6K127dubBBx+gX/+htG9/H/Vuq1uo9QO88/arnD9/gYaNWjP8kRHcd2/Ha89UShgMCgEB/nnelyYKR/LUl+SpL8lTX5Kna1HUUnQBemJiIu3atWP1qqU5buRNS8vgxMlzBAf5YzYX/P6C4m7jxs306z+UE8cP5lmmZq3GvP7ay3TpUrBhhoUo7Vz1eCGEEMI1JCUl06lzLzZs2IDFYrn2DMWYnFkpYVRVJS0tXW5y1onkqR/JUl92u53Y2OO6DwBRWkme+pI89SV56kvydC3SWSmB5MugviRP/UiW+lFVSE/PkNFsdCJ56kvy1JfkqS/J07XI0MUurk2b2/O9BAxg754/blFthBBCCCGEKDg5syKEEEIIIYQolqSzUgIV5gGD4tokT/1IlvoxGBRCQgJkNBudSJ76kjz1JXnqS/J0LXIZWAnjePiffPj0InnqR7LUl6IoeHt7FnU1XIbkqS/JU1+Sp74kT9ciZ1ZKGFVVtYcvihsneepHstSXzWbn0KE4bDYZzUYPkqe+JE99SZ76kjxdi3RWhBCimJJhN/UleepL8tSX5KkvydN1SGdFCCGEEEIIUSxJZ6WE69ixB96WALwtAVh8AqldpwnzP1+o6zqmTZtB335DbmgZHTv24P0PZhWobP0GLRk5crzTtI0bN2vt9LYEsOCLxXnOHxMTS0BgBF99vSzX9/v2G1LgulyP/3bt5o47O1POP4x69VvwzTff51pu06YtVK5Su0Btyu7qLDJ/OnbsoWczSp2bvV8IIYQQovCks1ICubs7j7g0ZcrzxJ+K4eSJQ3z04Ts888wL7Nmzr4hqd+OqVo0kNDTYadrttzcn/lQM8adiqFevbr7ze3p6ULVqFOXKlSvQ+q7O80YkJSXRo8cAOne6mwP7/+KVaS/yxJNj+fuf/3KU/frrb+jRvYvWrv79ehVoHdmzqFQplHlzPyb+VAzLl+vbSb0eemZZ2hkMCuHhwTKajU4kT31JnvqSPPUleboWGQ2sBFIU5w+fu7sbFos34HgIZMuWzdi0aQu1atUoiurdsCVfL8gxzWg0am00GPLvYwcFBfLbpp9yfS8jI4P4+NNO067O80Ys/3YF4eGVGD9+NAD33tuR4cMfZPbsz/jwg7edyqalp+Ph6aG1q6CyZ6EoCh4e5kIv42bRM8tbKbf9ojgwmeQQrSfJU1+Sp74kT31Jnq6jxJxZiY2NRVGUHD/z5s0r6qrdcmlp6fm+bzQaybBmAI5LuLJfJvTTz+uoe1szvC0B7Nz5NwCnT59h4MCHqFCxMuGVa/HCi1Ox2Ww5lvvKK28QHFKViMi6zJ3r3KF4972PqFW7MRUqVqZ9hy78t2t3jvmTk5IZNGgY/uXDadSoNb///of23tWXNk2bNqOwsTi11dsSwMaNm7X3jhyJw9sSQJmyoezYsZOnn35Bu3Ru2MNPArBo8VLuvOtep2WmpqYSHFKVw4djC1SH7dt20LpVS6dpbdq0Yvu2P5zq4W0J4Msvv+LDDz8p9GVg17Jx42buvrsbnTr3JDy8Fps3b6Ne/RbUrtOEkydPaWWqRNTh229XUL1GQwICIxg3bqJ2Q2L2enpbAvjrr3/o1r0f5fzDGDt2oraud979kKrV6uNfPpxu3fuxf/9B7b133/uIQYOGOdVtxYrV3HFnZ+11WloaY8Y8Q0hoNYJDqjLh6edJS0vT3ve2BDB58nQqVKzMV18vo3efBwitVJ2ffl6nlTl69Bg97x+If/lwqtdomGPfHP7ISEaPfpohQx+hYkAVWrW+m1279ji18+r9wtsSwPBHRt7oprghdrtKdHQcdruMrqYHyVNfkqe+JE99SZ6upcR0VgA8PDxISEhw+hk0aNBNW5+qqqRZU275z40M/XrkSBzbt/1Bs6aNARg/fhTxp2KYPn0yKakprF+/kVUrlxF/Kob69W8D4OHhIyhT1o+/dm5m5YqlbNq0hfdmfuy03D///JsaNarx187NvPLKi4wd9ywHD0YDsG/fAVav+oklXy9gz+4/uKNdGwYOfChH3Vau+pFRox5j13/buadje4YMfVTrFGW/tKnLfZ2uq+2ZbY0/FYP/VZeAhYVV0t5r2aKZduncqZPRvPXmdAC6de3Mnj37iImJ1eZbsWINtWvVpEqVygWqw/ETJylbrqzTtPLl/Tl67FiOevTtez/DH36w0JeBFcSh6BhmvvcGnTp34JmJL7JyxVIiIqqwalXWGaeEhERij8Tx669r+GbZQlau+okvvvzKqZ4x0Y7L1xYsWMwzT4/lSOweXn11MgBLlixn7twFfPnFp+z6bztNmjRk0APDtA5Pt66d+WXtetLTszrXK1auoWvXrA7h8y9MJfZIHOvXrWLzbz8Td+QoTz/9glNbWrRsxhtvvMLYsRN59tnxPPrIQ3x5pZ6qqtKv/4PUrVuL//7dxpdffMrMmbNYtuw7p2X8+utvPDL8f/zzzzZq1aqhdVDz2i/iT8Uw873Cd5iFEEIIoa8SdY6sbNmyWCyWW7a+dFsqz6xqc8vWl+nVzhsxmwr+MKOXX36V1197BxWVlJRUxo55kiZNGgHg7u7u+HFz4+jR47w8eZLTU8YPHozm99//YMnXe3B3dyc0NIQ3ZkyjT98hjBn9hFauZs3q9OzZFYB+fXuxevXPfPXVMp57bgI1alRjzZrlWtknnhjOK9PfID7+NAEBFbXp993bUavX1CnPs2TJcn77bStt27ZyurTJaDReR2pZbc2NoihOy8+8dE5VVe1MlZeXF92738fixUt59tmnAFi0eAkDBvQucB1SUlIwGp3/BmAyGklJSc1RD5PJhMnNdFMu4aoaFUlUVATNmzXBZrMTGhpC40YNOHPmrFbGzc3E6FGPAxAYUJHxT41i4ZdfM/iB/k71BOjQ4Q5atGjqtI6PPv6U5yZNoOmVjvFzkyawfPkPrF+/kfbt76By5XCqVKnMhl9/4+4Od2K321m9+mcmjB8DQHJyMnPmfM6B/X/h7+/oXL733gyqVqvP669P0bZlh/Z3EBMTi4+PDw3q38aFCxfYsnU7ABs2bMJqtTL5pUkABAcHMWnSeGbPnsv993fT6tq6dUtatmwGwMRnxlKnbjMuX07A19cn1/1CCCGEEMVDieusiJxGj3qCIUMGYDAYqFixQp5f9qMiI5w6KgD79x8gNDTE6Ut+VFQkp07Fa1/mALy8PHMsK/ZIHOAYy/y1197mu+9XcupUPPYrD2FKTU11mscz2zIMBgNVKocTeySOttfZ7pth4IC+PDliHM8++xRnz55j8+ZtfDbnowLP7+npmeMhVFabDU9PD72rmq/Me0eMJpP2b5PJ5HR5n4eHc50iI6to2/RqNWpUyzFt//6DREVFXLWMCPYfOET79ncA0K3rvaxcsYa7O9zJtm07CAwMICKiMgDRMYdJS0ujQYPbnZZhtVqJiYnV1qkoCiaTMasdRpO2j+3du58DBw4RFlZTmz/DmoHZbHZaptkj63WFChUAuHDhgrZ/CyGEEKJ4KlGdlXLlyvHaa6/x0UcfERAQwPjx4+nVK+9LZ9LS0pyuf09KSgIcTzbN/EKpKI4vznbVjqo6LivJvAzL3ejB9E6/5liuoii5XqqV1/TCUBQFN4M5x3KyLzuzY5H52tfXh+DgIK2sqqo56qKiolwZFcNperbVZE7P/H/m5TwqKqjkWB44spo370sWfLGIDz98m4gqlUlNTaNBw9u1LBVFyXUZmRXILTOVnNOz2qQ6zZdb7pmv8twe2eqSPc/bb29ORkYGv//+J3/u/IsOHe7E19cn3+2RXXBQIOfPX3B67+yZs1QKDc217XnVseD7mKptQ237Zf7n2KG1rFSy1pf931cH47x/5J2xtqxs0w0Gg9O0Ll070b17f95++9Url4B1ziqvOjpMW7euzbHsihUr5LKOrHao2r+hRYumzJ71ntP8mfVQFCVHztn/n3OfLtj2cMzr+Lfdbnf6HBkMjvvp8pp+dWc2c7Saq6+tVhSIiKiEqqpO8xiNjrZlL595HMtrut3u3Nas6c51VBQFgyHvut9om/KafivaBCpVqoRqebpCm4pyO6mqI0+yfW5KepuuruOtbJOqqkREVMJgcJ02ZZ9+69ukUKWK8/Gz5LepcNvJlZSYzorJZGLXrl1069aNn3/+mc2bNzN48GCCgoK4/fbbc51n+vTpTJ48WXttMBho0KABhw8fxdPT8Vd+Pz8LAQHluXD+ElarlfT0DEDFZDJiMpkwqG5OT0E1mUyYTEbS0tKddhg3NzeMRgOpqVmdI3CM1KUoSo6b4s1md1RVvbK+bNM9zNhsdqfr/BVFwWx2x2azY7VatS9hmaNi2e12p+UbjQbc3NywWq3ah8lqtWnf4DMyrFqbKlcO59ix46Snp2udtT179hNQsQI+Po6/OtusNhKTkrR1uLu7ER19mCqVw0lLS+evv//lrrvuoG2bVqiqyvHjJwFIT88gLS0djyt/1b6ckKgtQ1VVDsceoVKlSk51z2yTalfzbJPdrpJhtZGWlq5tp+xtclC1Oly9nRx5WJ3qYja7oygK6ekZ9Ondk4WLvuavv/7lmafH5LqdPDzMjnpkZE1XFIVmzZswb94XTnXf8OtvNG3WCJvN5tgOV9iv1Cv7dgLybFPmvpe9TZnbDLIGXshIt6JmO6DZruwftmzrRoWUlFSnekZHHyY8PMxpWma7bTY1x3aqVi2KAwejqVUr66zGoYPRDHtosNamyIgIPD09+ePPv1i16kfmzv1YW05ISAg2m4309HSCg4Ov/FKxsW/fAYKCsjrfaWnpV9qcraNxZf+Iiorg8OEjBAUFatvvxMlTuJlM2r6nAjabTVtvXm3S8rpqO+X2eUpPz9o2J06eITkpRSsfEOCPn58PcXEnnfabkJAAvL09OXz4mNN2DQ8PxmQyER3tfFYrIqISKSmpnDh5GgVFyz0qKozk5FSOH4/Xyrq7u1G5cgiXLycSH39Om+7l7UloSAAXLlzi3LmL2vTM496ZM+e5dClRm+7vXwZ//zI3rU2RkWFYrVaOHDmhTbtVbTp58gyXE5IwGg0oKC7RpqLcTiqOL4Genh5UcZE2ZSqK7aSiUrFCOcqU8XWZNkHRbaeQ4IqcPXeey5cTteNnSW9TYbeTh0ful8WXRMWmsxIXF0etWrVyfe+FF15gwoQJnDt3TvsyW7VqVbZu3cq8efPy7KxMnDiRsWPHaq+TkpLo0qULVapUwtvbC3D0SgHKlvMjNe0C7u5umM1Zl0q5ueUeUV7PkzCbc985cpue2Qm5msGQ+3Sj0YDB4E5aejru7u5a3Q0GQ67lTSYTdvuVL3p2Oza7ncTEJFRVxd3dDXd3d+rUqUnTpo0ZM/YZnnl6LJcuX2bSpJcYMeJR7a8BRpOR/fsPsnLVGlq1asGG9Zv4/vtVbNu6DrPZnbp1a/Hxx3M4dCgGo9HIm2++h8lkwmqzOtXrxx9/pv1d7QgNDeb992dhMBho06YlRqMRm82m3dfh+LJoJSMjA4NBwcvLC5vNptUdwG63kZGRgc1mxWQy4eZmIj09PdsBRSElNZX09HTc3ExOlwV5WxzbXr1yNs1qs2kdKrPZnQce6E/rNndjNptp3/6OQm2nnj26MHnydD78cDaDBw9gx44/mTNnPitXLsNoNGI0GklMTLrSBjvWDKvWwfX29nL6a0he+57RaNCyApW09HQSE5MwGBQ8PT1xczehXPnLD4Dxyv5hNGW7PFBxXKb30Uef0L9/b6KjDzPjjXd55umxWkc6KSlZG1UuLT3VaXsAPP7Yw0yd+jpVKocTFhbKp5/ORzEo3HlnWwwGA5mjRnbvdi/vvvshqqpSP9szcsxmdx5+eCjDh4/krbemU6aMH9Onv8nRY8f5/ruvnMo5Ov1Zfy1SrmTfof0dlCtXlrHjJjJ2zJNcvpzAiBFP0bnzPYwfPyqzqRiNRm1bZXYwjUbn7edjsWC12rK9b3S6bNLRWcwKMPNYFBxUIcdf3QDCwoJyne74a3TO6ZGRYU7TVVXlxInTV/7a6nwflJeXh1P5zN3G19fidM+Ndnwr60eZMr45pleoUI7y5ctlm67c1DYZDAru7m45pt+KNgUElCcxKYWIKo48XaFNRbmd7HY70TFHCQ0JcJk2XV3HW9kmu91OTMxRfH19XKZN2aff6jbZ7SqXLyU6HT9LepugcNspJSWr41XSFZvOSlhYGImJifmWufoXdrVq1Vi3bl0epcFsNjt9Sc2c32g05LgJ2qAYtC9D2b8w5nUqrbDTCyP/Zaso4PTFDSX3eRRF4Y033uOV6W9o0wICHfcYPDvxKSZNcjwl/pPZMxk9+mkaNmqFl6cXQ4YOYOTIx7K+GKLQqFF99u09wJNPjsNsNvPGjGlUr14VgKFDBvLnn3/Tpu09eHl5MXXqC6BA06btOHZ0P2XK+KGgcG/ne3j33Q9ZveZnKoeHMX/eLG0c9C1bttOpc0+tnj+sWM0bb75HWFgl9u75I8f7o0ZNYNSoCdr7ubW1Z88BAAwc2NfpMqGH/jeYh4ePYNJzLwPQr18vPv3kfa29kZFVqF69Kk2aNMpxj8+1tpO3tzfLly9k5MjxTJ02w9Exm/kmDa6MvAYQGBTpNM/sT+YCsGf3DsLDsx+0ct8Prs7iwQcfBaB1q5asWbMcJfM/x04CV/bpzL8uZf7by8uTSpVCadX6bi5fvsyggf144IF+KIpCXNxRatVuoq2jSZO2AFreAL179+D4iZMMHPQQ589f4Pbbm/PFgk8xGAxOde/W7V7atO3ImDFP5mjTlJefY+LEl+jUuSdWq5UO7e9k7mcf5fgMOl5ntSOzfYqisHjRXEaPeZpGjdvg42NhyOABjBs3ItvnI6vdV/8/+3oeeujKfjHJcTb26v0mZ50c/87ruT95Tb/62JM13Tkbm82unUG9eh5FUXKUz2+645dobtMLV/cbbVN+029Fmwy55FnS21SY6Xq3KTPPq6c716Vktakg029Wm7Q/MLlQm7LqeGvblN/xs6S2yVGXwm0nV6GoN3qTxS1y+fJl9u/fT5MmWV+gnnjCMVrVBx98UKBlJCYm0q5dO1avWqqdWcmUlpbBiZPnCA7ydzqzUtxkjl6VedmSuDG55Wmz2aharT7ffLPQ6UyAK9m4cTP9+g/lxPGD1y5cQKVp37wVxwubzU50dByRkWF5/lIUBSd56kvy1JfkqS/JE5KSkunUuRcbNmy4pSPp3gwlZguuWLGCzp07s2rVKs6cOcOyZctYsGABjzzySFFXTbgIVVVJTU3lp5/WUr68v8t2VETJ4ep/LbvVJE99SZ76kjz1JXm6jmJzGdi1DBgwAKvVylNPPUVMTAxRUVEsXbqU22677dozuxBFUbT7K8SNy57nkSNx1KrdhIoVK/DppwU7WyeyyL6pL6PRcQOm0IfkqS/JU1+Sp74kT9dSYjorAIMHD2bw4MFFXY0ilTmcXebQeeLGZM8zPDyMpMT4a8/kAtq0uV3XS8BA9k29qapKcnIqXl4ekqcOJE99SZ76kjz1JXm6FjlHVgJlHy5X3DjJUz+SpX7sdpXjx+NzjM0vro/kqS/JU1+Sp74kT9cinRUhhBBCCCFEsSSdFSGEEEIIIUSxJJ2VEkiuv9SX5KkfyVI/ioL2MExx4yRPfUme+pI89SV5upYSdYO9yPup9+L6SJ76kSz1ZTAYqFw5pKir4TIkT31JnvqSPPUleboWObNSwqiqitVqo4Q8y7PYkzz1I1nqS1VVLl1KkDx1InnqS/LUl+SpL8nTtUhnpQSyWq3avxd8sZjmLe4swto4nobubQnI8XPvfb2KtF556dtvCO9/MEt7nT3P6+FtCeCff3cVqnxuP67gRrO8Xu9/MIu+/YYUybpvFrtdJT7+nIxmoxPJU1+Sp74kT31Jnq5FLgMTuvDz8+XA/r+dpplMxqKpTDEXfyoGgJGjxuPn68uUKc8XcY2EEEIIIYonObMicpgy5TXCw2sxZ87nhZrPYvF2+vHw8LhJNbx+GRkZxMefLtI6ZOZjMpkwuZm01+L6HTt2oqirIIQQQoibQDor+VBVFdWafOt/rnGNpcFQuM328y/radK0LWXLVaJJ07asXfer0/vHjh2nd58HCAqOIrxyLVav+ZktW36hb9/7C51ZblJTU2nQ4Hbem/mxNm3Vqh+JqlqPixcvAY7L2drd0YlZsz4jvHItQitV5/XX33ZaztGjx+h5/0D8y4dTvUZD5s5dkGNdny9YRK3ajSlfoTIdO/YgOvowAEeOxOFtCaBM2VB27NjJ00+/gLclAItPIE+OGKfNf+HCRYY++CgVA6oQXrkWM2a8g91u195PT0/n0cdGUaFiZWrXacKaH3/RJaPsvC0BTJ48nQoVK/PV18vo3ecBQitV56ef1zmV+e67lbS8vT3l/MPo2q0vZ86c1d6vWauxdnnZ5wsW8dT4SQQFR9G4SRutTH77xV9//UOViDpObT937jwVKlbm8uUEbdqsWZ9RvUZD/MuH07v3A5w6Fa+917FjD56dNJnAoEjGjZvIG2++R0BgBK+88oZWJi0tjTFjniEktBrBIVWZ8PTzpKWlae9nXub41tvvE1qpOjVrNWbZsu9ytHPmzI9ZsWKN1uaatRrfyCYoFhQFvLw9ZTQbnUie+pI89SV56kvydC1yGVh+bClc/jnylq/Wt0M0mLxyfU9RFNzd3Qq8rKNHjzF06CO8P/NNWrZsxpYt2xkyZDjbtq4jNNQxUsbwR0ZSrWoUf/+1hTNnzjJw0EPs3Pk3Xbp01qU9Hh4efPTRO3Tv0Y+uXTpRvnx5xoydyPsz36BMGT+t3OGYI3h4mNnx+6/s3Pk3Dw17gmbNmtC2bStUVaVf/wdp374d7898gxMnTjJ8+Eh8fX25//5uAGzd+jsvvjiNTz/9gLp1ajF37gL+99Bj/LphDWFhlbTLr3r06E+nzncz/OEHAXBzM2lD7j722Gh8/Xz5Y8dGEhISGTV6AkaTibFjngTggw8/Ydu2Haxe9Q0hIcHMnfuFLhldrUXLZlSuEs7YsRNZsWIpK1es4csvv+LuDln3J/3081oWfjmH9PQMxox9hmcnTeaT2TMB+POPjdjtKnff043Vq36iZ8+uPDvxKTw9HWe7rrVfNGhQDw8PD3bs+JNmzZoAsObHX2jd+nZ8fX0AWLFiNe9/MIvP5nxIRGQV5s/7kj59B7N1y1qMRsclgB5mM+vWrqRN2468MWMqCxfO5eGHn+TZZ58C4PkXphJ7JI7161bh5mZi4sSXePrpF3jnnde0dh47dpwKFcqz88/f+PbbFQx/ZCQtb29OUGCA1s4Zb7zD7t17mTfXcS+SwVDyf0MZDAZCQ1zjXqbiQPLUl+SpL8lTX5Kna5EzKyWMY8Qla4FHuPh0znzu79mNHj26EBBQkR49utC7Vw8++XSeVmbHjj8ZPLg/AQEVqVOnFnfffRe//vpboep1+XICYWE1nX4mT56uvd+8eRMGDx7AiJHjeXnKq7Rr15qOHTs4LSMgsCJDhgykYsUKdOzYgYceGsyXC78GYMOGTVitVia/NIng4CAaN27IpEnjmT17rjb/rNmfMXLkY9x1Z1sqVqzA00+PZcnXjrMviqJol1sZjUbc3d2wWLzx9vbCaDSiqioxMbFs2bKdDz94i7CwStSuXZNXp092WseiRUt4/rmnady4IUFBgYwbN0L7Yq6nDu3voNXtLfDx8aFB/dtoeXszpzMnAMOGDaVy5XCqVYvi7bdeZcmS5aSnpwPg5eWFxeLtGL6xSji9e/egXLmyeHp6AgXbL7p06cSKlWu01ytXrKFb16wO7LvvfsS0qS9y+5WOw9NPj8FqtbLpty1ambZtW1GrVg3Kli1Du3atadvmdq0dycnJzJnzOZ9+8j7VqkVRpUpl3ntvBnPnfaG1A6BC+fI8MKgfFStWYPjwBylf3p+df/7l1E53N3eMRqO2jb28cu/slyR2u8q5cxflBlGdSJ76kjz1JXnqS/J0LXJmJT9GT8dZjiJYb36sVluBvyDv33eQFi2bOU2Liorgt9+2aq9r1qzOjz+upWHD+ly6dJnNm7fx4NBBhaqyj4+FrVvXOk2zWCxOr196cSLNmt/Bvn0H+GPHxhzL8PJybndkZATbt/0BwN69+zlw4BBhYTW19zOsGZjN5qy27j9Izx5dnZZRsWKFa9Y9M8+9e/dx8dIlIiLqau/ZVTsXLlwkOTkZLy8v4uKOEhFZRXvfbDZjMun/MVIUBZPJqJ3xMRlN2G12pzJenll5RUVFkJGRwYkTJ6lcOdypXI0a1XIsvyD7Rbeu9zJixFNMefl5UlNT2fDrJt57b4b2/t59+3ns8dE8+aTjMjoVuHz5MgcOHKJd29ZaOwBMJtOVNpm0S8uiYw6TlpZGgwa3O9XDarUSExOr1dvsYXZ6v0KF8py/cDGX1FyLqjp+2ZYp4wuU/DNFRU3y1JfkqS/JU1+Sp2uRzko+FEXJ83Kski77mZlPZr9P9x79efOtmdhsNnr37sGDDxaus6IoCiEhwfmWSU1NIyUlldTUVBITE/Hz8y3UOlq0aKpd5pQp+/07qqre8JjqERGVWbliaY7pnp75dyCLs8Lc45Q9vxYtmnLh4kUOHYrh0KFo6t1Wh/Ll/Z3Kz/n0A+rWra3Nm5aeQcUK5Qu8Pg8PjxydXChYJ1MIIYQQrk8uA3Nx1apHEX0oxmnaoUMxVKsepb1euOhr/vfgIPbs3kH8qWhmz3rvppwtGD/hOXr27Eqf3j15csRTOd5PTk5xeh0dHUN45TDAcfYnNvYIQUGBhIQEExISjKIoTmeYqkZFEh1z2GkZMTGxBa5fjRrVOXHiJL6+vto6fH19SUtL184QhIVVcsozLS2tyJ4tkpySldehQzG4ubkRHBxUoHkLsl8YDAbuu7cjK1auYeXKH+na9V6n8jVrVCf+9Bktq5CQYM6dPVfgkc0iI6pgs9lIT0/X5g8MDOD8hQu4uRX8viwhhBBCuC7prJRARqPzZrNmWDl+/ITTT1JSEgDDHhrCsm++Y/nyH4iPP83y5T+wZOly7eZygB++X03VqlF4enqSkZFx3WcnEhOTnH5SU1O199as+ZlNm7bw/HNPM3nyJHbv3svnCxY5zX/s2HHmz/+S06fPsObHX5gz53P693M8WLJdu9aULVuWsWMnEhd3lP927WbAwP8xf/6X2vyPPTaMmTM/5pe1Gzhz5iyffDKP+7r0wmazOa3H2+KF1WojNdVxlsdud7wfGVmFO+9oy/DhIzh4MJro6MM8+L9HeeutrLM5/fr1Yuq01/nzz784eSqed9754LpzslqtWDOs2uvC+uijT4mNPcLBg9GMGfsM99/fDXd3d8BxP0hiYhJ2u530tHRtHZnbtiD7BUDXbveyYsVqVq/5ma5dnQdcGDXqMaZMeY2ff1nP6dNn+HjWHHr3eaDAbfHy8uLhh4cyfPhI/tu1m2PHjjNi5FM8++zkQmfhbfHGbrdr2zT7iGIllaKAn59FRrPRieSpL8lTX5KnviRP1yKXgZUwiqLk+Kvz3n37qVa9gdO0d995nWHDhhAWVol582YxceKLHDoUQ9WqkcybN0sbCQygX7/7GTjoIe212Wymfft2fDbnowL/lfzSpcsEBEY4TWvXrjUrVyzl0qXLjBg5nrfefAUfH8d9LO+9+zoPDXuC9ne1084GhIVVIjExicaN22BX7Yx48lHuuKON1u7Fi+YyeszTNGzUGh8fC0MGD2Ds2BHa+lq2bMabb7zCyJFPcerUaerXr8tXX83PcX/PQ/8bzMPDRzBpkuNL8cCBfZk96z0APvroHcaOm0ir1h1wc3OjR/cuvP76FG3eJx5/mD179nFPxx4EBFTg3XdnFPos1NU5zf7EcQN/UmJ8bsXz1K5da/r2G8rBg9Hcfntzpr/ykvZeo8ZtiIs7CjgePjly1HgA9uzeQXh4WIH2C4B2bVsxdOgjREVF5LjM7777OnHixClGjhzP6dNnqF+/Lt9+u1jbxgUx5eXnmDjxJTp16onVaqVD+zuZ+9lHhcoBoHu3e/nss8/xL++4XycsrBJ79/xR6OUUJwaDgYCAgl9SJ/IneepL8tSX5KkvydO1KOqNXuRfgiQmJtKuXTtWr1qKt7fzvShpaRmcOHmO4CB/zObiewlK5mhgmTcs36h9+w4w4ennWbTwM7y9HR2TixcvMfyREdx1ZzseeeR/N7yOgljwxWI++GA227auu3ZhHemd563ibQlgy5a11LutTlFXRVNSs7wet+J4YbfbOXPmPBUqlCv0s5VETpKnviRPfUme+pI8ISkpmU6de7Fhw4YcAx6VNKVzC5ZwtqtGhboRhw/HEht7hNjYOBITk7h06TJH4o5y7NiJHDdTuyo98yztJEv9qCpcupRI6flz0s0leepL8tSX5KkvydO1yGVgpdzdd9/Fpt+20qv3A8THn8bNzUSlSqEMGNBHe9iiEEIIIYQQRUE6K6Wc0WjklWkv8sq0F4u0Hg8M6scDg/oVaR1KksLe3yKEEEIIURLJZWAlkMmk/xPTSzPJUz+SpX4URcHfv4zL3/9zq0ie+pI89SV56kvydC1yZqWEyXwKuNCH5KkfyVJfBoPjl63Qh+SpL8lTX5KnviRP1yJnVkoYVVVJT7/+Z6EIZ5KnfiRLfdntdo4dj8dul0EL9CB56kvy1JfkqS/J07VIZ6UEkg+fviRP/UiW+lFVSE5KkdFsdCJ56kvy1JfkqS/J07VIZ0UIIYQQQghRLElnRQghhBBCCFEsSWelBLr6JuaOHXvgbQnA2xKAxSeQ2nWaMP/zhTe1Dt6WAP75d9dNXcetIjeF60ey1I/BoBAQ4I/BIKPZ6EHy1JfkqS/JU1+Sp2uRbxYljGPEpZzDw06Z8jzDH34QVVX5669/6NtvCE0aN6RWrRpFUMuSI688ReFJlvpSFAU/P5+irobLkDz1JXnqS/LUl+TpWuTMSgmjqippaek5Rlxyd3fDYvHGx8dCmza307JlMzZt2lJEtSw58spTFJ5kqS+73U5s7HEZtEAnkqe+JE99SZ76kjxdi3RW8qGqKsnWjFv+c60vewX5Mmg0GknPSCcjI4MXXpxKZNRtBARG0L1Hf+LijjqVrVmrMR98MJu27ToSEBhBv35DuXDhovZ+eno6jz42igoVK1O7ThPW/PhLjvXt3Pk37e7oRNlylah7WzMWf7VUe2/BF4sZOPAhGjdpQ81ajdmyZTuRUbfR8vb2JCUlXbMtN5t8udaPZKkfVeXKUNBFXRPXIHnqS/LUl+SpL8nTtchlYPlIsVmp/83MW77ev3uOwMvkdt3zHzkSx/Ztf/D0hDFs3ryNvXv389OP3+Hl7cW0qa/z+BNjWfHDEqd5Nvy6iU9mv4/BYOCBwQ/zyvQ3mPH6VAA++PATtm3bwepV3xASEszcuV84zZuYmETP+wfy3KQJLF7cid279zJs2BNERUbQuHFDAA4eiubb5Yt47PExvPX2TDZt/JGuXfuyZevvdGh/x3W3VQghhBBCuC7prLiIl19+lddfewcVFVVVGT36CRo1agBAu3attXIPD3+QO++8N8f8fXr3pFq1KAAeffQhZs36THtv0aIlPP/c01rHY9y4Ebz62lva+19/vYx69eoybNgQAAIDKjJy5GO8/8Fs5s39GIB69eoSGhpC40YNMBqNBAcHcVu9Opw5c1bnJIQQQgghhKuQzko+PI0m/u45okjWmx83t5xnXUaPeoIhQwbQtWtfnnxyOA8++AAAycnJTH75Vdau3cCZM2exWq2kpqbmmN/Dw6z9u2KF8k6XgcXFHSUisor22mw2O436tG//QaKyvQ9QNSqCJUuWa68VxTEiR/b5TCYTNpst37beCrnlKa6PZKkfg0EhJCRARrPRieSpL8lTX5KnviRP1yKdlXwoinJDl2PdDIqiYDTm/PD5+vkQEhLMuKdGMn36GwwePACj0cjrr7/Db79t5YP33yQkJJiDB6O5r0vvW1LXknD/Ql55isKTLPWlKAre3p5FXQ2XIXnqS/LUl+SpL8nTtcgN9iWMqqqkpqbl2RHo26cnqqry9ZWzGv/+t5tevbrTrFkTQkND8PGxFHqdYWGViD4Uo71OS0vDarVqr6tXq8qh6MNO8xw8FKNdVlacXStPUXCSpb5sNjuHDsVhs8loNnqQPPUleepL8tSX5OlapLPiYoxGI2PHPMkbM97FbrdTq1YNfvrxF44dO87evft5++0PAAo1Cle/fr2YOu11/vzzL06eiueddz5wer9Pn578/fe/fPrpfOLjT7N23a+8995HjHjyEV3bJkRpI8Nu6kvy1JfkqS/JU1+Sp+uQzooLGjSoHwmJiXz77QrGjR2Br58vDRu1olfvQfzvocHceWdbqlVvUODlPfH4wzRu3JB7Ovagffv7aNS4odO9Jz4+FpZ/s5AvvlxMjZqNGD16AtOnv6TdkC+EEEIIIcT1UNRSdM1GYmIi7dq1Y/WqpXh7ezm9l5aWwYmT5wgO8sdsLl73qWSX+eA9s9ldu2ldXD/JUz+lKctbcbyw2exER8cRGRmG0Sh/V7pRkqe+JE99SZ76kjwhKSmZTp17sWHDBiyWwt8CUJyUzi1Ywrm7F9/OVEkkeepHstSPwaAQHh4so9noRPLUl+SpL8lTX5Kna5HOSgnk6n+1vtUkT/1IlvrKfrmluHGSp74kT31JnvqSPF2HdFZKoLS09KKugkuRPPUjWerHbleJjo7Dbi81V+reVJKnviRPfUme+pI8XYt0VoQQQgghhBDFknRWhBBCCCGEEMWSdFaEEEIIIYQQxZLcfaSj8+cvcPHipRzTy5Txo1y5srqtx2x2121ZQvLUk2SpH4NBITIyTEaz0YnkqS/JU1+Sp74kT9cinRUd/fzLOpYsWU5GegZnzp6lQvnyuLm70bt3D/r2uV+39aiqKqMu6Ujy1I9kqS+r1SrDQetI8tSX5KkvyVNfkufN9ffff/Pmm2+yYMGCm74u6azoqEP7O2nSuBFHjx7j1dfeYuzYEVSqFEqZMn66ric9PUP+gq0jyVM/kqV+7HaVI0dOXHmomXQAb5TkqS/JU1+Sp74kz5uvfv36t6SjAqW0s5KebsPNzeY0LSPDhnrVCHfXGvIu++lFu12lTJky+PqWYf9+D1JTm5GcHEVYWACGq+4MKuxynamoquMv2KoKnTv3ZNNvWwBwc3OjXr26vD/zTWrXrlnI5V67bGilaqxa+Q233Vbnupb777+76HxvT04cP+hoyZU25EVRsp7bUdiyixYtZczYp9myeR1VqoTnUxanPAtah9yyuJH6ukZZVcsz8+RK8a5vluv9bGRk2FCU3G/9UxQFN7es99LTbbmWy6uszWbHmqGSnm7DaHSuk7u7sUDLvbpsRoYdNZ8wikNZNzeDtu2sVnu+26MwZbNfDXKtsiaTQdvON6uszWbHZsu7rNFo0L5kFa6sis1mz6esoj3RuzBl7XYVqzWr7NX7p8GgYDLlXvZqt6KsqqpkZOhT9kY/ywUtm9fnvbDLBTlGZO6f2ZdTHD73t/IYca3tfi3z5s1j4cKFxMXFMWDAAFavXk1YWBhTp07lgQceIC0tjYyMDHbt2qXNM3ToULy8vDhw4ADHjh1j5syZdOjQ4YbqAaW0s/Lma39hMnk4TfPxNXJP5wCnafGnkvP8kuPubqB8BU/t9en4ZP74w8yCL33Zu7cKJ0+O5OlnyjFvvsKDQxLp2CnrN+WZ0yl57oAmk0LFAC/t9dkzKVituZW1ajvplCnPM/zhBzl54jJzPvuMgYMeZvXKH50uxzEYIDDIW3t9/lwq6em5H5wVBYKCs8peOJ9GWpoNu13l7NlUTp1MdiofHJJV9uKFNFJTc/+AnD2b6vT64sV0UpKtuZYFCAj01Np46VI6yUl5l60Y4InJ5Ch7+XI6Cl5UDq9CwmU1R30rVPTAzc1xYExMzCAxwQrkvuzyFTy0g2hSYgaXL2cA5JqFf3kPzGZH2eQkK5cu5f3MkXL+Zjw8HB+/lGQrFy/mXbZsOTOeno6yqak2LpxPy7NsmTLueHk7Tnunpdk4fy7vsn5+7nhbHGXT0+2cu2r7ZOfr64bFx3HGJCPDztkzeZe1+Cj4+jrKWq12zpzOu6y3xYSfnxlwfHE6HZ+SZ1kvbxNlyjjK2u0q8afyLuvpZaJsWUdZVSXHPpCdh4eRcv5Zx4P8yprNRvzLZ5WdM3svF85n5Fo2vLIPDw7L+qPBO2/8Q3Ie+3twiDfDH6utvf7gvf+4pO0TZ5zKVqjoyRMj62qvP/l4D2dO556FXxl3xjxVX3s999O9nDielGtZLy8TE55tqL3+Yv5+jsQm5FrWzc3ApBcba6+/XnSQgwdy3q+X6aWpTbV/L18azZ7dF/Is++wLjbTP3A/fxfLPX2fzLDt+YgO8r+zvP66OY8f203mWHTE6K7N1vxxjy2+n8iz7+Ig62nF4068n+HX9iTzLPvxoLUJCLQBs3xrPzz8ezbPskP/VoEqELwB/7jjDqhVH8iw74IFqVKteBoB//znHd98czrNs735R1K5TDoB9ey+wZPGhPMt261mFBg0rABB96BILFxzIs2zn+8Jp2tzxe/FIbALzP9uXSynH/tnhnkrc3joIgJMnkvjk4z15LrftHcHccVco4Pgd9+HMXXmWbdkqkLs7hgGO3wPvvvlPnmWbNKvIvV0qA5CcbGXG9L/yLFuvQXl63B8BOI5pr7z8Z55la9UuS5/+VbXX+ZWtWs2PgYOra69nTP8rz47Q1ceI7745S1ramVzL5n+McCbHiCxjJwTj6+soe61jxKhx9bTfG65wjLBa8/7dW1B169ZlxowZ/O9//+OPP/4gNDSUqlWrsm3bNmJjY7nvvvtyzFOpUiU+/PBD/vzzT4YOHcp///13w/WQ0cB08udOM9NfK8ee3e5YLFY8PE5isVjZs8edaa+UZdu2m9cvdHd3w2LxpkyZMgx/+FGiow9x6tRJXddx4cIFUlNvbMc/eSLvD7Pe2rZtx/JvvqdixYq6L1uPLIQQt57h6tPcQggh8uTj44Ofnx8+Pj5Xzu5d+x6gqlUdHfsGDRpw5Ejena3CUNT8zrW5mMTERNq1a8d3336Ft7eX03vp6RmcPnORkGB/zGbHxrDZVNLy/sO0dqrObodHHvHh3/9MVKliJyUlmX37DlCjRjU8Pb2IPWzgtnpWPv4oAYPh2peZeHoq2mU01yrbuXNP7uvSkSefeAS7XSU9PR3/8mH89+92Kld2XP60adNmnn7mBfbvP0j16lV55+3XaNo06y8eJ0+eYuy4iWz+bSvpGek0b9aUKVOfp95tdVjwxWIefXRUruv+6KN3GDSw3zUvoXnk0ZEsXPh1rsvY9d/vhIeHOZUZMKAPbdu04qXJr3Dy5CmOxO7B378cX375NW++NZOjR49RtWokr06fTOvWtwOOs0GdOmVdEgcQFhbK7l1/OK3v6izefutVmjVror1vtVp57vkpLFq0BKs1g/vu7ci7776Ol5cXCxYs4tHHRueZxQOD+qEoCjt3/s3YsRP5599dhIYE8+yz4+nbN2uABR/fQO3f3367mC++WMyqVT/SuvXtLF3yBfXrt+DNN6dz113ttLa98ca7HDgYzexZ7xXo8idVVZk67XXmzPmc5ORkunbpzOuvT9Pun3rllRlMf/VNAFq3asnYsU8ybtyzxByO5dcNa/D3L0edull/6dq08Ucmv/wqmzZtYciQAbz5xnQA3n3vQz788BPOn7/A7S2b8/bbrxEREY6iKE77TlhYKAs+/5THnxjD3r37mT9vFt27dymxl4GlpWVw4uQ5KpQvk+cNnDfr0hGQSzyup6yrXeKRd9lbcxnY1eQysOJTFuQYcT1lXe0YkZSUTLfufdmwYQMWiyXP5eRl3rx5xMbGMnToUIYOHcqGDRuoXLkysbGxANqZlasvA7vvvvvo1asXABaLhcTExEKv+2ql8jIwd3ej0wcDQFXtZLtqCoCMDIXBQ659c3xCgsI//5gwmVQuXTJgs3mTmFiNPXu8MRqNWK3w009mevQ04uNz7b7hFwsu4XHlSpOrh91TVRW73XF98NWjLhkMCkuWLqd+/duIiKgMwMlT8TzwwMPMeGMqbdu2Zvu2HfTpM5jNm3+mUiXHafhx4ybi6+vD9u3rURSF775byTvvfMDczz6if79e9OjeBYCAwAjWrV1B7dq1APDwMOeoX27DBL4/8w3efutVNm/ZxoMPPsqB/X9r73l7e6EoilbmpcmvsGfPPuLijrJp00/4WCxYLN6cO3eeT+fMY9bH7xARUYUVK1YzYOD/2L/vLywWx2Voy5cv1H7x/vzzOp6dNNmpPrlm0XcImzb+SHh4JRRF4Z133uePP/5k9apl+Pn5MmHC87wy/U2mTnme/v1706NH1zyzUBSFxMQket4/kOcmTWBxl07s3r2XYcOeoGrVCBo3dpw+jz8VA0CtWo1ZvHgpAwf25b13Z2A2u2MwKAwY0Ievvl5Ghw53aHVftGgpb775Coqi5NhPc/Phh5/w00/r+PbbxVQo78/rr7/DQ8MeZ/k3CwGYMGE0o0c/wWdzF7Bs2bes37CJVauWUbZsWby8PFEUhfhTMSQlJRERWZcvvviKZ54eyxcLPtXquWTJcubN+4Ivv/iUSpVC+XTOfPr1H8K2reswGo3avpO5LZYu+5aFX35GYGAAnp4eOfaVgrbtZpaF3PfhvLi55TyW5KWg5TLLqqpKcnIqXl4e+Y6wVpjlZv+yUxLKZn6Z1KOsqqokJaXg5eWh63Kvt6zji8bNKKtgLGDhwpQ1GBSnfS2//fPqsoVZrl5lFeXmlIXCf5YLwtFhSr/m5/1m1gGKx+dej2NE5v7p5uZxzbKFWe6tLHujx4iMjIJv9+JOzonrICPDcXYlr53KaHS8n5H7pe3XsT7nBb388quEhdUkMCiSCROe4713X9fe+2T2XPr07UnfPvcTGFCRbt3upWfPrsyfv1Arc/TYcTre056QkGCCg4N47LFhzP3sIwBMJhMWi7fWIfDw9NRem0wF6+uazWYsFm88r/TAMue3WLy1g3JmGTc3Ny5fTuDZZ58iKDBAW6+/fzk2rF9N06aNKV/en6FDB6GqKnv3Zl1D7Zmtbh4e5hz1yD2LLsyb94VWZtbsucx4fSp16tSiUqVQZs16j0nPPlXgLL7+ehn16tVl2LAhBAZU5K472zJy5GO8/8FsbR3Zl9GkcUPu7nAnfn6+eFzJp3//XqxYsZrkZMe9Ezt3/k1ScjJt27YqUN4A7773ETNnvkH9enUJCQnmrbems2XLNmJjHadk3d3dsVi8cXdz4+jR47w8eRKVKoVisXhjMDj+EmWxeOPt7ahnhw530KJFU3x8LLi7O+5H+ejjT3lu0gSaNm1MUFAgz02agM1mY/36jU55eXiYOXHiJE9PGENUVAQWi3eBvyCVZna7yvHj8dc80yMKRvLUl+SpL8lTX5LnzXPw4EGaN29Ojx49iImJoXnz5jz99NM3dZ2l8sxKQZnNjrMc17Jnj5HHHveljJ+Kt7dKcnIKe/cdoGaN6nh5eZKYpHDpksIbMxKoVevaozOYc37PztfoUU8wZMgA7HY7f/31L336DmHN6uVUrRrJ3r37WbtuA19/9Y1WPjklhc6dskZnGD78QUaNnsB3362gVq2aNG7SkDvvaFNk13fXqFEt1+mffDKPzxcs4vjxE1gzrFy+nEBKSsHvHckri3vuvguAS5cuc+pUPBERVbT3fX19ClX3ffsPEhVZxWla1agIlixZnmv53NoaHh5Gg/q38f0Pq+jXtxeLv1pG3749C7w9Ll9O4PjxE3Tp0huFrL/QJSensP/AIe3ywExRkRHXvA41t3ru33+QqKgIp2mRkRHsP3CI9u3vcJoeGBhA2bJlClR/IYQQQhStoUOHav/esGEDgHYJ2LZt23KdZ968eU6v9bgEDKSzki9FQbscKz/169uoWdPKP/+4EeFjw2BQURTV8X8DnDljoH79DOrXt+UYxlgPvn4+hIQEA1CpUihLlixn6dJvmThxHABPPD6cYcOGOM3jka1hQwYP4O6772Lzb1vZs2cfzz33MqGhwSxd8gVFIbcv5WvX/cpLk1/h00/ep3btmhiNRpo1vyOXufN3dRaqqmIwGLV/Z/+/nvJaZl4dkAED+7J48TJ69+rBkiXLWb3qm1zL5WfVqmWUK1vWaZq/f7kC16GwZTLl1la5sVkIIYQQ10O+QejAYIBHH0mhTBk7MTFGkpMNqKpCcrKBmBgjZcrYeWR4im4dlWtdz6ooYHJz9ENr1qzO0WPHCQkJ1n4uXryEn5+vVj4hIZGgwAB69erOCy88w+pV37B69c+cPp37EIpF4d9/d9GsWRM6dbqbsLBKBAUF5rgc7lpyzeJSVhZlyvhRvrw/MTFZw/9lZGRw7NjxAq+jerWqHIp2Hj7w4KEYqlWLKlRde3Tvwu+//8Hir5YRGhqS59mm3Pj6Ojqvg4kuAwAAGUVJREFU586ed2rrmbPnnDqpN6patSgOHYpxmhYdfZjqhWyryJ2iOEb6K8z9NiJvkqe+JE99SZ76kjxdi3RWdNK8uZXpryRSr14GCQkmUlICSUgwUb9+BtNfSaR587yfEVIYiqJgNrs7dVjS0zNITEzi8uUENm3awvoNm+jYsT0ADz88lJUr1zBnzuecij/NL2s3cF+X3uzYsROA8+cvUL9BSz74YDbHj58gPv40s2d/RlBQIBUqlHdat7e3Fxnp6aSmppKamorNVrgHDmXep5E5f2pqqvZX+LS0NBITk8jIyMBqtZKYmERiYhJWqyO3WrVqsHPn3/zz7y6OHz/Bc89PASAlNRW7Pe9RXLLLLYsuXfrw77+7tDwff2wY4yc8x3+7dnPixElGj3ma51+YmmNZeWXRp09P/v77Xz79dD7x8adZu+5X3nvvI0Y8+Yg2b2bbMuuf/XX2rDp3voennnqWAf17FzjjTKNGPsa4cc+yffsOTsWf5uWXX+XBoY9qeaenp5OYmER6RgY2m02rQ3q6Y9x+VVVJTEwiKclRr+TkFBITk7T7aBxZPczUaa/z++9/cPJUPNOmzcBoNGijmGVux9TUNG15iYlJpOU3xJ7QGAwGKlcOkbNSOpE89SV56kvy1Jfk6VpkK+qoeXMrn81JYNq0GOrUeY9p02KY82mCbh0VcHyJtFptTpfaPP/8FAICIwgKjmL4IyN59dWXqVvH8fCooKBAvv7qc+Z89jk1azbiqaee5dVXJ9OihWNY2nLlyrJs2Zf8snYDjZu0oV79Fmz49TeWLv0ixxmcJx4fzt33dMe/fDj+5cNZuGhJoeper15dGjasT4WKVbRlxMU5Ho40YuR4AgIj+OijT/nqq2UEBEYQEBjBosVLAbjn7rsYNKgf993Xi+Yt7qRChfKMGf0kvXs/wH+78n74WHa5ZjF9Mk2aNNLyHD9+NHe0a0PnzvfTsFErLl9K4O23Xs2xrLyy8PGxsPybhXzx5WJq1GzE6NETmD79JW0kMEBr27nz5+nZc4D2+mp9+95PSkoqvXv3KFTOAI89NoyePbvSr/+D1K3blD93/s0333ypbdMZM94lIDCCiRNfZMvW7VodZsx4F4C4uKMEBEYQEel4sFjjJm0ICIygUeM22jp69+7Bgw8+wICBD1G7dhO2//4HCxfO1daxaPFSAgIjGPTAMI4ePaatY8TI8YVuT2mkqiqXLiXclMsSSyPJU1+Sp74kT31Jnq6lVD5nZfWqpTmes5L53ITgoKznrBTW+fMXuHjxEkePHuPV197imafHUqlSKGXK+FGuXNlrL6AAVFUlLS09x9kV4Wz16p8YO+5Z9u75I99yxTnPWbM+uzIgwOdFXZUCKc5Z6k2P48W12Gx2oqPjiIwM0551Ia6f5KkvyVNfkqe+JE/Hc1Y6de513c9ZKU7kBnsd/fzLOpYsWU5GegaXLl3irbdm4ubuRu/ePejb5/5rL0DckLS0NDIyHGexUlPTcnRIS4qMK5dmLVq8hDGjnyzq6gghhBBCFBnprOioQ/s7adK4UY7pmU8NFzfXiJHj+fLLrwDw8vJk+iuTi7hG1+eJJ8fx1VfL6NSxA/fd17GoqyOEEEIIUWSks6KjcuXK6na5V37khrHczZ71HrNnvVfo+YpbntfbjuKguGVZkikKeHl7ymg2OpE89SV56kvy1Jfk6Vqks1LCKIqCu/vNuUa+NJI89SNZ6stgMBAaElDU1XAZkqe+JE99SZ76kjxdi/wZNNOV3ndxH2/AMRqYtdjXs6SQPPVTmrLU2ngT/2pnt6ucO3cRu93187wVJE99SZ76kjz1JXm6FumsXGEyOp5inppWuAcNFgWrtXDPNxH5kzz1U1qyzDxOZB43bgZVdfyyLQ2dv1tB8tSX5KkvyVNfkqdrkcvArjAaDfhYvLhwIQEAD7NbsRx+VVVV0tOtgFIs61fSSJ76KQ1ZqqpKaloGFy4k4GPxKrVDYgohhBC3inRWsvH39wHQOizFkao6ngxuMpnkxjEdSJ76KU1Z+li8tOOFEEIIIW4e6axkoygK5cv7UrasBavNBsXw7KFdtXPh/CXKlvPDoMhfdW+U5KmfUpGl4rj061acUVEU8POzuHzH71aRPPUleepL8tSX5OlapLOSC6PRUKwv7/AMrljUVXApkqd+JEv9GAwGAgLKF3U1XIbkqS/JU1+Sp74kT9dSfL+Ri1zZ7Xbi489it9uLuiouQfLUj2SpL8lTX5KnviRPfUme+pI8XYt0VkoYVYVLlxKRAS70IXnqR7LUl+SpL8lTX5KnviRPfUmerkU6K0IIIYQQQohiqVTds5I53nZScnIR1+T62Wx2UlJSSEpKLtb31ZQUkqd+JEt9SZ76kjz1JXnqS/LUl+SZ9V3XFZ41U6o6K8lXNlyvXoOLuCZCCCGEEELcXMnJyfj4lOyh9hXVFbpcBWS32zlz5gxeXl4l9qF1CQkJhIaGcuzYsRK/8xUHkqd+JEt9SZ76kjz1JXnqS/LUl+TpOKOSnJxMhQoVMBhK9tmlUnVmxTGUXUBRV+OG2O127HY73t7eWCyWoq5OiSd56key1JfkqS/JU1+Sp74kT31Jng6u0lEr2V0tIYQQQgghhMuSzooQQgghhBCiWJLOSgljNpt58cUXMZvNRV0VlyB56key1JfkqS/JU1+Sp74kT31Jnq6lVN1gL4QQQgghhCg55MyKEEIIIYQQoliSzooQQgghhBCiWJLOihBCCCGEEKJYks5KMZGcnMyIESMIDg6mYsWKDBs2jISEhALP365dOxRFcfpp167dzatwMfbSSy/lyKIwDwG9cOECffv2xWKxULFiRV544QVK861dsbGxueapKArffvttgZZR2vfPdevW4enpiaIoXLx4Mcd7t912Gx4eHtSrV48NGzYUevkzZ86kUqVKeHl50bFjR44ePapPxYup/PJcsmQJdevWxWKx0KJFC3bs2FGoZc+bNy/XfT02Nla/BhQzeeWZ12d/3rx5hVq+7J8OuR0HFUWhe/fuBV52ads/r/XdSI6fpYN0VoqJkSNH8u+//7J+/Xq2b9/OkSNHGD16dKGWMW/ePBISErSf1atX35zKlgAPPfSQUxaF6fgNHToUq9XKvn37+OWXX1i0aBHvv//+Taxt8RcWFuaUZWxsLG5ubtSsWbPAyyit++fvv//O/fffz/Tp03O8d/ToUXr27MmYMWM4duwYI0aMoHv37pw4caLAy1++fDnTpk3jq6++4vDhw1SuXJkePXq4bAc7vzw3btzIsGHDmD59OtHR0fTv35/OnTtz4cKFQq2jQ4cOOY4f4eHhejWhWMkvTwAPD48cWQwaNKjAy5f909mqVaucsuzSpQu1atUq1DpK0/6Z33cjOX6WIqoocjabTe3cubN66NAhbdqWLVtUHx+fAi+jbdu26o8//ngzqlfivPjii+rEiROva97Dhw+rZrNZvXjxojZt5cqVamRkpF7VK3EOHz6shoeHO01799131ebNmxd4GaV1/zx27Jhavnx5dd68eerhw4dVQL1w4YL2/ksvvaT269fPaZ7evXurU6ZMKfA62rVrp3788cfaa6vVqgYGBqqbNm264foXN9fKc/bs2errr7/uNE+1atXUJUuWFHgdc+fOVfv3769XlYu1a+V5+PBhNSgo6IbWIfvnBe39tm3bquvXr9denzlzRnV3d1f37dtX4HWUpv3zWt+N5PhZesiZlWLAYDCwcuVKIiMjtWlly5YlOTmZjIyMAi+nbNmyN6N6JdL1ZrF161bq1auHn5+fNu2OO+4gOjqa06dP61W9EqVSpUps27bNadrcuXMZOnRooZZTGvfP4OBgFixYwJAhQ3J9f8uWLbRp08Zp2p133smWLVsKtHxVVdm6davTMoxGI23bti3wMkqSa+X58MMPM378eKdpZcuWLdSZ1cx5SoNr5Qk3loXsn86WLFlCixYttNdffPEFDRs2pHr16oVaT2nZP6/13UiOn6WHdFaKqY0bN1KvXj3c3NwKPE9MTAyNGjWiatWqjBkzhuTk5JtYw+JNVVXuvfdewsPDuf/++zly5EiB5jt27BgVK1Z0mubp6Ymfnx9xcXE3o6rFntFoJDAwUHu9c+dO9u3bR79+/Qq1nNK4fyqKQseOHfN8P7f9LTAwsMD72tmzZ0lLS7uhZZQk18rzahcuXOC///6jcePGhVqPl5cXgwYNIiwsjI4dO/Lvv/8WtqolQkHyLFeuHK+99hqVK1emWbNmLF26tMDLl/3TWYUKFZweUng9f/SB0rN/5ib7dyM5fpYe0lkphs6cOcOLL77IU089VeB5vLy8+PLLL5k3bx7z589n48aNhb7nxVV4enoyd+5cxo8fz8qVK/H29qZz585YrdZrzpuSkoLRaAQgKiqKYcOGAWAymUhJSbmp9S4p5s6dS/fu3Z3OPl2L7J+5y9zfNmzYgJeXFxs2bCjUvpZZzmg0MmXKFPz9/UlISJD99Yrx48fTqlUr6tatW+B5PDw8WLRoEX369OGnn37itttuo3379ly6dOkm1rR4MplM7Nq1C6PRyM8//8xjjz3G4MGD2bx5c4Hml/0zb3/++ScHDhwo9B99SvP+efV3Izl+lh6moq6AcJaYmEi3bt24++676d+/f4HnW7VqFaqqaqNevf/++9xxxx18/PHHGAylq0/69NNPM378eK3ds2fPJiAggO3bt3P77bfnO6+npyc2mw2AGjVqEBYWBoDVasXT0/PmVrwESEtLY+HChSxcuLBQ88n+mbvM/c3X15caNWrg6+vLxYsXC7yvZZaz2WwEBQVRo0YN3NzcZH8F3nrrLVavXs327dsLNV+/fv3o06ePtl++/vrrfP/996xYsYKBAwfejKoWW6GhoZw7d07LomrVqmzdupV58+Zd81gKsn/m57PPPiv0H32g9O6fuX03kuNn6VF6vyUUQ8nJydx3330EBQUxZ86cQs+ffXjeatWqkZaWxrlz5/SsYomR/Quwh4cHYWFhBRohJCQkhDNnzgCwYsUKXnjhBVJTU7l06ZLWcSnNvv32Wzw9PenQoUOh55X9M6fM/a1hw4bs3LmThg0bEh8fX+B9zd/fH7PZzJkzZxg2bBibN2/Gw8OjUMtwRR988AEzZszgl19+ITQ0tNDzX92Brlq1aqFGGHIlV2dRrVq1Amch+2fuUlNTWbRo0XVdAgalb//M67uRHD9LD+msFBMpKSl06dKFChUq8NVXX2Ey5X7S6/Lly7lO/+WXX5xex8TE4O3tTfny5XWva3G3bds2kpKStNfp6ekcO3aMypUrO5XLLcsWLVrwzz//OL23fv16IiIiclzXWhrNnTuXBx54IM+zIbJ/Fk7Lli3ZuHGj07R169Y53YSbKTk5OceljAaDgebNmzstw2638+uvv+a6jNJg1qxZvPLKK6xfvz7fobVzyxNg7969Ob74xcTE5Dh+lAaXL1/O8ZyavLKQ/bPgvv32W7y8vPL9o4/snw75fTeS42cpUpRDkYksd999t9qlSxf1woULakJCgvaTlpamlZk/f74KqAsWLHCa9+LFi2qFChXUZ555Rj1+/Lj633//qS1atFDHjx9/q5tRLHTo0EHt3LmzunfvXjUuLk4dPny42rRpU9Vut2tl8spSVVW1a9euau/evdVjx46p//33n1qtWjX13XffvZVNKJaOHj2qGo3GPIfZlP0zdydPnlSPHj2qbt26VQXU3bt3q0ePHlXPnz+vxsXFqWXKlFHnz5+vnj17Vv3ss8/UMmXKqMeOHXNaRmJiourj46PeddddOZb/zTffqIGBgerWrVvV+Ph49YknnlAbNWrktL+7kvzy/PLLL9WKFSuqf/zxh9NxNCkpyWkZ+eX58MMPq02bNlV37typnjhxQn3ppZfUsLAwNTk5+VY18Za6Vp7ly5dXV65cqZ4+fVpdunSp6uPjo/7zzz9Oy5D9M0t+eWbq0KGD+swzz+S5DNk/s+T33UiOn6WHdFaKCSDXnxdffFErs3TpUtXDw0NdtmxZjvn37dundurUSbVYLGr58uXViRMnqunp6bewBcXHpUuX1OHDh6sVKlRQvby81F69eqmnTp1yKpNflufOnVN79+6tent7qxUqVFCff/55OXCpqjp16tR8n60i+2fuwsPDc/1sDxkyRFVVVV27dq1at25d1d3dXb3tttucnsOQKTk5WQ0KClJ79uyZ6zreffddNTQ0VPXw8FDvueceNS4u7ia2qGjll+eQIUNyfe/q5wTll2d6err6zDPPqMHBwaqHh4faoUMHp+c8uJpr7Z/z589Xa9asqZrNZrV27dq5Pi9J9s8s18ozLi5ONRgM+T5bRfbPLNf6biTHz9JBUVV5TKcQQgghhBCi+JF7VoQQQgghhBDFknRWhBBCCCGEEMWSdFaEEEIIIYQQxZJ0VoQQQgghhBDFknRWhBBCCCGEEMWSdFaEEEIIIYQQxZJ0VoQQQgghhBDFknRWhBBCCCGEEMWSdFaEEKKEq1y5Moqi5PiJjY3VynTv3p133nmnyOoI8Pfff1OmTJlrlqtevTqPPvroza+QEEKIYk86K0IIUcLt2bOHhIQEJk6cyH333UdCQgIJCQmEh4cXddWuS/Xq1alUqVJRV0MIIUQxYCrqCgghhLgxXl5eALi7u2M0GrFYLE7vZ2RkcOrUqaKompO4uLgClfv+++9vck2EEEKUFHJmRQghXFRsbCyKouDu7s727dsZM2aMdonY0KFDtXIXLlxgwIABWCwWKlasyCuvvILdbtfeb9eunTbfSy+9xGuvvYa/v79Tp+jNN9+kSpUqeHt706pVK/7991/tvaFDh6IoCt26dePSpUu5Xqq2YcMGp+kvvfRSjvYcOnSIDh064OHhQWhoKG+99ZbT+0OHDuXxxx+nf//+WCwWGjduzH///edU5rvvvqNevXp4enoSHBzMuHHjSEpKuoGUhRBC3EzSWRFCCBcVHh6uXRLWqlUrXnvtNe31rFmztHL/+9//cHd3Z/fu3axbt45Vq1bxxhtvaO+vXr2ahIQEunfvzvbt2/Hx8WHfvn3Ex8cDsHfvXn744Qd++OEHYmNjad++Pffff782/6xZs0hISGDVqlX4+flpdch+qVrr1q21ad27d8/RFrvdTrdu3WjZsiUxMTEsXbqUjz/+mCVLljiVW7duHU888QQHDx6kTp06PPDAA9p7Z86coV+/frzwwgscO3aMNWvWcOzYMX755Rdd8hZCCKE/uQxMCCFclKIo2tkPo9GIu7t7jkvEoqOj2bRpE6dOncJkcvxKeOutt+jduzcTJkwAwNPTU1uGt7c3jz/+uNMyatasyYYNG7TXo0ePZvLkycTHxxMQEIDZbMZsNmvLuboOmcvOXter/fLLL9jtdiZPngxAcHAw06ZN4+2336Z3795auXbt2tGqVSsAXnjhBSIjI7l8+TK+vr6cOnUKs9lMly5dcHd3x9/fn6+++qqAaQohhCgK0lkRQohSbPfu3Vy8eJHAwEBtmt1u58KFCyQnJ2v3w2SqVatWjmXY7XamTp3KN998w8mTJ7HZbACkpKToVs+9e/cSFRXlNK1atWrs27fPaZqHh4f274oVKwJw/vx5fH19qVWrFk2bNqVevXq0bduWOnXqcPfdd1OtWjXd6imEEEJf0lkRQohSLjIykrVr1+aYnnkmJDuDIefVw3PmzGHu3Ll89tlnREZGkpqaSvXq1W9KXa+mqmqByxqNRn766Sf++OMP/vzzT/755x9eeOEFZs2a5XR2RgghRPEhnRUhhCjFatWqxfHjx/Hz88PHxweAhIQETp8+jaIoBVrG33//TefOnbnjjjsAOH36tO71rFGjBh999JHTtAMHDlCjRo0CL8Nut5OSkkLjxo1p3LgxAFWrVmXu3LnSWRFCiGJKbrAXQogSLjk5mcTERNLT07HZbCQmJpKYmOh01sFisWC1WklNTSU1NZWMjAwAoqKi6NChA0OGDOHAgQMcOnSIAQMG8Nprr2nzpqSkkJiYiM1mIz09XVt+5uVederUYf369Rw8eJCYmBgmTZqEyWQiOTnZqZ6Z96Rk1iE1NVWrY/Z6Z19P5jI6dOiAwWDgxRdf5OTJk2zbto3nnnuOsWPHFjinuXPn0rJlS9auXcv58+fZs2cP33zzDfXr1y986EIIIW4NVQghRIkWHh6uAjl+Dh8+rJX5/vvv1TJlymjvDRkyRHvv/Pnz6oABA1SLxaKWLVtWHT58uJqcnKy937Zt21yXv379elVVVTUtLU0dOnSo6uvrqwYFBakLFixQhw0bpiqKol64cEFbjtVqVdu3b68aDIYcdVy/fn2u6wgPD9fmP3jwoNq+fXvVbDarISEh6ptvvumUw5AhQ9RRo0ZprxMSEpzWYbfb1Q8//FCtXbu2ajab1aCgIPWJJ55QU1JSbiR+IYQQN5GiqoW44FcIIYQQQgghbhG5DEwIIYQQQghRLElnRQghhBBCCFEsSWdFCCGEEEIIUSxJZ0UIIYQQQghRLElnRQghhBBCCFEsSWdFCCGEEEIIUSxJZ0UIIYQQQghRLElnRQghhBBCCFEsSWdFCCGEEEIIUSxJZ0UIIYQQQghRLEln5f/twSEBAAAAgKD/r71hAAAAgKUAWeuqdqVf8cwAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ - "path" + "import matplotlib.pyplot as plt\n", + "\n", + "lim = {\n", + " 'y_min': raw_data[y_name].min() - 1,\n", + " 'y_max': raw_data[y_name].max() + 1\n", + "}\n", + "\n", + "fig, axs = plt.subplots(nrows=1, ncols=1, figsize=(8, 6), constrained_layout=True)\n", + "\n", + "plot_BO(\n", + " ax=axs,\n", + " data_file=path,\n", + " title=\"GPT-4_turbo\",\n", + " data=raw_data[y_name],\n", + " axis_name=(\"Iterations\", \"C$_2$ yield\"),\n", + " lim=lim, # Now a dictionary\n", + " label=True,\n", + " M=M,\n", + " initial_train=initial_train # Ensure 'initial_train' is defined\n", + ")\n", + "\n", + "plt.show()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Paper figures" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 150, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Data indexing error for 'random_mean' in run 0: index 2 is out of bounds for axis 2 with size 2\n", + "Data indexing error when computing mean for 'random_mean': index 2 is out of bounds for axis 2 with size 2\n", + "Data indexing error when computing mean line for 'random_mean': index 2 is out of bounds for axis 2 with size 2\n" + ] + }, + { + "ename": "AttributeError", + "evalue": "'tuple' object has no attribute 'get'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)", + "\u001b[1;32m/Users/shane/repos/BO-LIFT/paper/BO_experiments.ipynb Cell 43\u001b[0m line \u001b[0;36m2\n\u001b[1;32m 5\u001b[0m lim\u001b[39m=\u001b[39m(raw_data[y_name]\u001b[39m.\u001b[39mmin()\u001b[39m-\u001b[39m\u001b[39m1\u001b[39m, raw_data[y_name]\u001b[39m.\u001b[39mmax()\u001b[39m+\u001b[39m\u001b[39m1\u001b[39m)\n\u001b[1;32m 6\u001b[0m \u001b[39m# plot_BO(axs[0], \"./out/ocm_curie_12744_1_1_16nr.pkl\",\"GPT3\", \u001b[39;00m\n\u001b[1;32m 7\u001b[0m \u001b[39m# raw_data[y_name], \"C$_2$ yield\", lim, label=True, M=5)\u001b[39;00m\n\u001b[1;32m 8\u001b[0m \n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 23\u001b[0m \u001b[39m# plot_BO(axs, './out/ocm_gpt-turbo_1_1_lambda_mult0.1_corrected_tableprompt_1initialpoint_allacq.pkl',\" GPT-4turbo\",\u001b[39;00m\n\u001b[1;32m 24\u001b[0m \u001b[39m# raw_data[y_name], \"C$_2$ yield\", lim, label=True, M=1)\u001b[39;00m\n\u001b[0;32m---> 28\u001b[0m plot_BO(axs, path,\u001b[39m\"\u001b[39;49m\u001b[39m GPT-4_turbo\u001b[39;49m\u001b[39m\"\u001b[39;49m,\n\u001b[1;32m 29\u001b[0m raw_data[y_name], \u001b[39m\"\u001b[39;49m\u001b[39mC$_2$ yield\u001b[39;49m\u001b[39m\"\u001b[39;49m, lim, label\u001b[39m=\u001b[39;49m\u001b[39mTrue\u001b[39;49;00m, M\u001b[39m=\u001b[39;49mM)\n\u001b[1;32m 31\u001b[0m \u001b[39m# plot_BO(axs[1], './out/biasfree_ocm_gpt-turbo_300_1_1_lambda_mult0.1_corrected_tableprompt_transfer_data_100.pkl',\" GPT4 Table Format: lambda .1\",\u001b[39;00m\n\u001b[1;32m 32\u001b[0m \u001b[39m# raw_data[y_name], \"C$_2$ yield\", lim, label=False, M=5)\u001b[39;00m\n\u001b[1;32m 33\u001b[0m \n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 49\u001b[0m \u001b[39m# plot_BO(axs[3], \"/Users/shane/repos/BO-LIFT/paper/out/biasfree_ocm_gpt-turbo_300_1_1_lambda_mult0.1_corrected_tablepromptgpt4_1.5*normal_meanstart.pkl\", \"GPT4 Table Format (mean): lambda .1 - 1.5*\",\u001b[39;00m\n\u001b[1;32m 50\u001b[0m \u001b[39m# raw_data[y_name], \"C$_2$ yield\", lim, label=False, M=5)\u001b[39;00m\n\u001b[1;32m 52\u001b[0m fig\u001b[39m.\u001b[39msuptitle(\u001b[39m\"\u001b[39m\u001b[39mBayesian Optimization on OCM dataset\u001b[39m\u001b[39m\"\u001b[39m)\n", + "\u001b[1;32m/Users/shane/repos/BO-LIFT/paper/BO_experiments.ipynb Cell 43\u001b[0m line \u001b[0;36m1\n\u001b[1;32m 167\u001b[0m \u001b[39m# Set axis limits if specified\u001b[39;00m\n\u001b[1;32m 168\u001b[0m \u001b[39mif\u001b[39;00m lim \u001b[39mis\u001b[39;00m \u001b[39mnot\u001b[39;00m \u001b[39mNone\u001b[39;00m:\n\u001b[0;32m--> 169\u001b[0m ax\u001b[39m.\u001b[39mset_xlim(lim\u001b[39m.\u001b[39;49mget(\u001b[39m'\u001b[39m\u001b[39mx_min\u001b[39m\u001b[39m'\u001b[39m, \u001b[39mNone\u001b[39;00m), lim\u001b[39m.\u001b[39mget(\u001b[39m'\u001b[39m\u001b[39mx_max\u001b[39m\u001b[39m'\u001b[39m, \u001b[39mNone\u001b[39;00m))\n\u001b[1;32m 170\u001b[0m ax\u001b[39m.\u001b[39mset_ylim(lim\u001b[39m.\u001b[39mget(\u001b[39m'\u001b[39m\u001b[39my_min\u001b[39m\u001b[39m'\u001b[39m, \u001b[39mNone\u001b[39;00m), lim\u001b[39m.\u001b[39mget(\u001b[39m'\u001b[39m\u001b[39my_max\u001b[39m\u001b[39m'\u001b[39m, \u001b[39mNone\u001b[39;00m))\n\u001b[1;32m 172\u001b[0m \u001b[39m# Add legend if labels are enabled\u001b[39;00m\n", + "\u001b[0;31mAttributeError\u001b[0m: 'tuple' object has no attribute 'get'" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAGbCAYAAAASmD34AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAm90lEQVR4nO3de3SU9Z3H8c/kQi5DZkJJAoZwCyykcglVOEpKSaCVQ0AUEi7uVhuXy1G2qLgVVxC5bLRsjZKmKmcFCxQ4CqLrNiKUHIGAFXHpIhaORLlEwmijMYYhNyLJPPsHy5QQIIHkx8yY9+uc55zO88zz5PvQI2+eZ2YyNsuyLAEAYFCQrwcAAHz/ERsAgHHEBgBgHLEBABhHbAAAxhEbAIBxxAYAYByxAQAYR2wAAMYRGwBtbu3atbLZbL4eA36E2KDdOXz4sNLT0+VwOBQTE6MJEybo8OHDjZ6zZMkS2Ww27xIUFKQ+ffro3//931VfXy9Juv/++xs953LLkiVLWjXrz3/+c9lsNqWlpbXqOGvXrlWvXr1adQygNUJ8PQBwI7lcLqWmpio1NVVvv/22JOl3v/ud0tLSdODAAfXo0cP73OjoaL333nuSJMuydOjQIc2ZM0fh4eF6/PHH9cwzz+ixxx7zPv+f//mf1alTJy1fvty7Li4u7rpn/dOf/qStW7dqzJgxqquru+7jAP6A2KBdee655xQTE6PNmzcrODhYkjRixAilpaXpgw8+aBSb4OBgDRw40Pt40KBBOnLkiFavXq3HH39c3bp1U7du3bzb7Xa7HA5Ho32uV3V1tWbPnq2cnBz9+c9/1ueff96q4/3tb39r9UxAa3AbDe3K22+/rfvuu88bGul8VN577z1Nmzat2f27deumkpISkyNKkp566in17NlTM2bMuO5jXHjdxGazacGCBTp58mSjW3wX35pbsmTJZW+z2Ww2rV271vs4LS2t0TGOHz+uX/3qV4qNjZXNZtO+ffsa7X/s2DGNGjVKERER6tWrl1auXNnkZxQVFemuu+6Sw+FQx44dNW7cuCa3NRH4uLJBu1FbW6vi4mL16dPnuo9x+vRpde3atQ2nauovf/mLVq5cqQMHDrTqRfaJEydq6NChkqQVK1boj3/8o7Zv3+7dbrfbr/mYa9asUXV1tfbv36/p06frpZdeUpcuXbR161ZFREQ0+bN9+umnNW/ePDkcDm3cuFEPPPCA+vTpo5/+9KeSzl9xjRgxQqNHj9Yf//hH2Ww2rVq1Sj/5yU908OBB9ezZ87rPH/6F2KDdqKiokGVZioqKuq79P/nkE61atUp33313G0/2d/X19Zo1a5YWLFigfv36tepY0dHRio6OlnT+taPQ0NBW3+Lr3bu3JOmbb76RJPXt21f/8i//csXnP/3000pISJB0/nZlcXGxcnNzvbHJy8tT165dtXHjRgUFnb/RkpqaqmHDhiknJ0cvvvhiq+aF/+A2GtqNS78n8OTJkwoJCfEul96yKi8vb7R94MCBGjJkyHW/w+zi21pXerfa8uXL5fF4NG/evOv6GTfayJEjr7r9QmguGD16tP761796H+/atUs//vGPvaGRzt+6GzlypAoLC9t0VvgWVzZoNxwOhySpsrJSkhQfH6+DBw9KkhYuXKiGhoZGz7/43WhBQUHq0aOHOnbseN0//+LbWhdc/G61EydOKDs7Wzt27FBoaOh1/5wb6Vr/POx2u77++mvv4/Ly8steaTocDpWXl7d6PvgPYoN2IyoqSjfddJNOnjwpSY1uK4WHhzd5/qXvRmuti29rXc6ePXtUVVWllJSURus9Ho8sy1JISIiWL1+uhx9+uM1muiA4ONj7+SGTqqurGwW2c+fO3vhf7MyZM+rcubPxeXDjcBsN7codd9yhjRs3NrqKqaur0wcffODDqc6bOHGiDh06pIMHDzZa7rrrLg0dOlQHDx7Uz3/+8+s6dnNvNEhISFBpaam+/fZb77q2eLu0y+Vq9HjXrl0aPHiw9/GYMWP0/vvvy+PxeNdZlqU9e/YoNTW11T8f/oMrG7Qr8+bN09ChQzVt2jT967/+q2pqapSbm+sX/4q+0pVPdHS0Tp8+3aqrrLi4OJ07d05FRUXedZGRkd7PFaWnpysiIkL33nuv5s+fr5qaGm3cuLHJcYqLi1VdXa3i4mJJ0meffaaqqipJ54N16fwLFy7U1KlT5XQ6tWnTJr3zzjt69913vdt/9atf6eWXX9Y999yj2bNnKygoSCtXrtTx48f15ptvXvf5wg9ZQDtTUFBg/ehHP7LCwsKsxMRE69VXX7WysrKsrKws73MWL15sde7c+ZqOm5qaamVmZrbxtJaVlZVlpaamtuoY3377rTVixAgrODjYkmRJanLMXbt2WT/60Y+siIgI69Zbb7U++ugjS5K1Zs0a73NSU1O9+1+6XPy8NWvWWJKso0ePWmlpaVZ4eLjVs2dP6+WXX24y25EjR6w777zT6tixo2W326309HTr0KFDrTpf+B+bZV3yFh0AANoYr9kAAIzjNRsgADX3gj83LOBviA0QgA4dOuTrEYBrwms2AADjeM0GAGAcsQEAGMdrNs3weDwqKytTZGQk36kOAJewLEs1NTWKjY1t9AtVL+Xz2OzcuVPjx4/X2bNnVVFR0egTyDt37tTcuXP12WefqX///srLy7vm72J/4YUX9Oyzz6q8vFwjR47UqlWr1L179xbvX1ZWpvHjx1/TzwSA9uadd95Rly5drrjdp7H5n//5H2VmZmrZsmV69NFHG207deqUMjIylJubqwkTJui///u/NXHiRH3yySeKj49v0fHfeustPfPMM/qv//ov9enTR4sXL9akSZO0f//+Fl+lREZGSpLeeGOd7P//vwEA51XX1Gjy5F94/668Ep+9G+2LL77QkCFD9Nxzzyk1NVW9e/dudGWzdOlSFRUV6bXXXvPuM3XqVA0ePFgLFy5s0c8YNWqU7rnnHj3wwAOSpIaGBiUkJGjz5s0aMWJEi45RVVWltLQ0bdv6hux2YgMAF6uurlH6uMkqLCy86ldO+OwNAvHx8Vq/fr2ysrIuu33v3r1Nvphp9OjR2rt3b4uOb1mWPvjgg0bHCA4OVmpqaouPAQBoGz67jWaz2TR27Ngrbne5XI2+90KSunbtqpKSkhYd/5tvvlFdXd01H6Ourk51dXXex9XV1S36eQCAK/Pbtz7X1tYqODhYhYWFioyMVGFhoUJCQlRbW9vi/aXzVzPZ2dneL2lq7hjLli2T0+n0Lpd+rS0A4Nr5bWwiIiLU0NAgh8OhpKQkORwO1dfXKyIiosX7S+dfp7npppuUlJSk0NDQZo8xf/58ud1u73Lplz8BAK6d38amW7duKisr0y233KIDBw7olltu0VdffeX9sqfmdO7cWWFhYSorK9PMmTP1/vvvKzw8vNljhIWFyeFweJfLfT86AODa+G1sUlJStGfPnkbrdu7cqeHDhzd5bk1NTZPvTw8KCtLtt9/e6Bgej0e7d+++7DEAAOb4NDalpaVyuVwqLS2VJH355ZdyuVyqqKjQjBkztG3bNq1bt07l5eVas2aNCgoKNH369EbHqK6uVteuXS/7ZoNHHnlEixcv1r59+/T111/r4YcfVnx8fIvf9gwAaBs+/VDn7bffrpMnT3ofDxgwQJKUlZWltWvX6s0339TcuXM1a9YsJSUl6a233lK3bt0aHSMoKEgdO3aU0+lscvxJkybp1KlTmjJlir755hulpqbqrbfe4tfOAMANxlcMNIMPdQLAlfn9hzoBAO0HsQEAGEdsAADGERsAgHHEBgBgHLEBABhHbAAAxhEbAIBxxAYAYByxAQAYR2wAAMYRGwCAccQGAGAcsQEAGEdsAADGERsAgHHEBgBgHLEBABhHbAAAxhEbAIBxxAYAYByxAQAYR2wAAMYRGwCAccQGAGAcsQEAGEdsAADGERsAgHHEBgBgHLEBABhHbAAAxhEbAIBxxAYAYByxAQAYR2wAAMYRGwCAccQGAGAcsQEAGEdsAADGERsAgHHEBgBgHLEBABhHbAAAxhEbAIBxxAYAYByxAQAYR2wAAMYRGwCAccQGAGAcsQEAGEdsAADG+X1sPB6PsrOz1aVLF9ntdmVmZqq0tLTF+584cUITJkxQp06d1KVLF02fPl0VFRUGJwYAXMrvY5Odna38/HwVFBSoqKhI8fHxmjRpUov3z8jI0A9+8AP99a9/1e7du3X06FE99NBDBicGAFwqxNcDNCc3N1dbtmxRcnKy93FCQoIOHjyoIUOGXHXfL774Qh9//LF27Nihzp07Szofr4yMDNNjAwAu4tdXNmVlZXK73erXr593XUhIiBITE3XkyJFm9w8NDZUkdejQwbsuLCys0WMAgHl+HZvo6GiFhITI5XJ511mWJZfLJbfb3ez+cXFxmjBhgp577jl5PB7V1NTot7/9rWbNmnXFferq6nTmzBnvUllZ2SbnAgDtmV/HJjQ0VOnp6VqwYIEqKirU0NCgvLw8ud1uxcfHt+gYf/jDH5Sfn6/IyEg5HA6dPXtWixcvvuLzly1bJqfT6V0SEhLa6nQAoN3y69hI0ooVK1RbW6vY2FjFxsbK4/Govr5eKSkpze5bWVmptLQ0ZWZm6qOPPtJf/vIXOZ1OTZ069Yr7zJ8/X26327tcfFUFALg+fv8GgYSEBO3evVuVlZUKCwtTXl6eMjIyFBMT0+y+r732mqKiorRw4ULvurVr1yo6Olr79+/XsGHDmuwTFhamsLAw7+OgIL/vMQD4Pb+PzQVRUVEqKSlRTk6Odu3a1WT7mTNn5HA4Gq377rvvFBLS+BRtNpuCg4NVV1dndF4AwN8FzD/by8vLNXbsWC1atEgDBgxotG3dunVyOp3asGFDo/Xjxo3T//7v/2rFihUqLS3VyZMnNXfuXP3gBz/QrbfeeiPHB4B2LSBic+zYMaWkpGjy5MmaM2dOk+12u13h4eGKjIxstD4xMVFbt27Vpk2blJSUpGHDhunUqVPavn27IiIibtT4ANDu2SzLsnw9hD+rqqpSWlqatm19Q3Z7ZPM7AEA7Ul1do/Rxk1VYWKiOHTte8XkBcWUDAAhsxAYAYByxAQAYR2wAAMYRGwCAccQGAGAcsQEAGEdsAADGERsAgHHEBgBgHLEBABhHbAAAxhEbAIBxxAYAYByxAQAYR2wAAMYRGwCAccQGAGAcsQEAGEdsAADGERsAgHHEBgBgHLEBABhHbAAAxhEbAIBxxAYAYByxAQAYR2wAAMYRGwCAccQGAGAcsQEAGEdsAADGERsAgHHEBgBgHLEBABhHbAAAxhEbAIBxxAYAYByxAQAYR2wAAMYRGwCAccQGAGAcsQEAGEdsAADGERsAgHHEBgBgHLEBABhHbAAAxhEbAIBxxAYAYByxAQAY5/ex8Xg8ys7OVpcuXWS325WZmanS0tJrPk5OTo569uypQ4cOGZgSAHA1fh+b7Oxs5efnq6CgQEVFRYqPj9ekSZOu6Rhr167VCy+8oPfff1+DBg0yNCkA4EpCfD1Ac3Jzc7VlyxYlJyd7HyckJOjgwYMaMmRIs/sfP35cjz76qAoLC5WQkGB4WgDA5fj1lU1ZWZncbrf69evnXRcSEqLExEQdOXKkRcd4/vnnlZWV5Y1Vc+rq6nTmzBnvUllZeV2zAwD+zq9jEx0drZCQELlcLu86y7Lkcrnkdrub3b+mpkbr16/XsGHDNHz4cPXt21ezZ8++akCWLVsmp9PpXbgaAoDW8+vYhIaGKj09XQsWLFBFRYUaGhqUl5cnt9ut+Pj4Zvffv3+/bDab9u3bp5dfflnr1q3TgQMHNGvWrCvuM3/+fLndbu9ycegAANfHr2MjSStWrFBtba1iY2MVGxsrj8ej+vp6paSkNLvvl19+Kcuy9Jvf/EaDBw9WSkqKVq1apddff13V1dWX3ScsLEwOh8O7REVFtfUpAUC74/exSUhI0O7du1VRUaHS0lI1NDQoIyNDMTExze7rcDjUvXt3RUZGetf1799flmXp1KlTJscGAFzE79+NdkFUVJRKSkqUk5OjXbt2Ndl+5swZORyORuuSkpL05Zdf6rvvvlOHDh0kScXFxQoNDVW3bt1uyNwAgAC4srmgvLxcY8eO1aJFizRgwIBG29atWyen06kNGzY0Wt+nTx+lpqZqzpw5KikpUVFRkX75y1/qwQcf5PYYANxAARGbY8eOKSUlRZMnT9acOXOabLfb7QoPD290u+yCDRs26OzZs7r55puVkpKiW265RTk5OTdibADA/7NZlmX5egh/VlVVpbS0NG3b+obs9qYxA4D2rLq6RunjJquwsFAdO3a84vMC4soGABDYiA0AwDhiAwAwjtgAAIwjNgAA44gNAMA4YgMAMI7YAACMIzYAAOOIDQDAOGIDADCO2AAAjCM2AADjiA0AwDhiAwAwjtgAAIwjNgAA44gNAMA4YgMAMI7YAACMIzYAAOOIDQDAOGIDADAupKVPfOedd3THHXeoQ4cO3nXbtm1TQUGBwsLCNGnSJN12221GhgxElmWprq7B12MAQIuFhQXLZrMZOXaLYrNlyxZNmzZNhYWFGjZsmCTppZde0uOPP66pU6eqvr5eo0eP1u9//3vdc889RgYNNHV1DfqPpw/4egwAaLEnFt6i8PAWX4NckxYd9Te/+Y2ee+45b2gk6dlnn9ULL7yg6dOnS5LGjh2rpUuXEhsAQBNXjc0f/vAHrV27Vvv379fZs2e1efNmSVJ9fb1OnTqlVatWacOGDZKks2fP6tNPP9Xo0aN1//336xe/+IX56f1YWFiwnlh4i6/HAIAWCwsLNnbsq8Zm4sSJSk1N1R133KG5c+dqxIgRkqSNGzfqb3/7mzZu3Oh97tGjR5WRkaG1a9fK6XQaGzhQ2Gw2Y5ejABBorvq3odPplNPpVEZGhp5//nnFx8fr7NmzWrlypbKystSzZ0/vc5cuXarhw4erR48exocGAASWFv3Te8mSJSovL9eUKVNkWZamTp2qJ5980rv99ddf11tvvaU///nPxgYFAASuFsUmIiJCr7zyil555ZXLbp8yZYqGDx+u7t27t+lwAIDvhzb5UKfNZiM0AIAr4jcIAACMIzYAAOOIDQDAOGIDADCO2AAAjCM2AADjiA0AwDhiAwAwjtgAAIwjNgAA44gNAMA4YgMAMI7YAACMIzYAAOOIDQDAOGIDADCO2AAAjCM2AADj/D42Ho9H2dnZ6tKli+x2uzIzM1VaWnpdxxk4cKBsNpsOHjzY9oMCAK7I72OTnZ2t/Px8FRQUqKioSPHx8Zo0adI1H+fVV19Vt27dDEwIAGiO38cmNzdXubm5Sk5OVvfu3ZWbm6vi4uJrujo5d+6cli5dqmeeecbcoACAK/Lr2JSVlcntdqtfv37edSEhIUpMTNSRI0dafJzVq1dr8ODBGjp0qIkxAQDNCPH1AFcTHR2tkJAQuVwuxcXFSZIsy5LL5ZLb7W7RMc6ePatf//rX2rZtW4ueX1dXp7q6Ou/j6urqax8cANCIX1/ZhIaGKj09XQsWLFBFRYUaGhqUl5cnt9ut+Pj4Fh1jxYoVSktL080339yi5y9btkxOp9O7JCQktOYUAADy89hI52NRW1ur2NhYxcbGyuPxqL6+XikpKc3uW1VVpeXLl2vJkiUt/nnz58+X2+32Li6XqxXTAwCkAIhNQkKCdu/erYqKCpWWlqqhoUEZGRmKiYlpdt/c3Fzdfffd6t27d4t/XlhYmBwOh3eJiopqzfgAAAVAbC6IiopSaWmpcnJy9MQTTzTZfubMmSbrduzYofXr1ysmJsa7SNKoUaO0cOFC4zMDAM7z6zcIXKy8vFxjx47VokWLNGDAgEbb1q1bp6ysLK1fv1733nuvd/3mzZsbvdgvSd27d9emTZt022233ZC5AQABEptjx45p/PjxmjZtmubMmdNku91uV3h4uCIjIxutj42Nvezx4uLi5HQ6jcwKAGgqIGLTt29fffrpp1fcnpmZqczMzBYdy7KsthoLANBCAfOaDQAgcBEbAIBxxAYAYByxAQAYR2wAAMYRGwCAccQGAGAcsQEAGEdsAADGERsAgHHEBgBgHLEBABhHbAAAxhEbAIBxxAYAYByxAQAYR2wAAMYRGwCAccQGAGAcsQEAGEdsAADGERsAgHHEBgBgHLEBABhHbAAAxhEbAIBxxAYAYByxAQAYR2wAAMYRGwCAccQGAGAcsQEAGEdsAADGERsAgHHEBgBgHLEBABhHbAAAxhEbAIBxxAYAYByxAQAYR2wAAMYRGwCAccQGAGAcsQEAGEdsAADGERsAgHHEBgBgHLEBABhHbAAAxhEbAIBxxAYAYJzfx8bj8Sg7O1tdunSR3W5XZmamSktLW7x/cXGx7rrrLkVHR6t3797KycmRZVkGJwYAXMrvY5Odna38/HwVFBSoqKhI8fHxmjRpUov2PXfunMaNG6devXrpk08+0caNG/XCCy9ow4YNhqcGAFzM72OTm5ur3NxcJScnq3v37srNzVVxcbEOHjzY7L6nTp1S79699dvf/lbx8fG67bbbNHv2bG3atMn84AAAL7+OTVlZmdxut/r16+ddFxISosTERB05cqTZ/RMTE7V161YFBf39NDt16qTKykoj8wIALi/E1wNcTXR0tEJCQuRyuRQXFydJsixLLpdLbrf7uo65Z88eDR069Irb6+rqVFdX531cXV19XT8HAPB3fn1lExoaqvT0dC1YsEAVFRVqaGhQXl6e3G634uPjr/l4e/bsUX5+vn75y19e8TnLli2T0+n0LgkJCa05BQCA/Dw2krRixQrV1tYqNjZWsbGx8ng8qq+vV0pKyjUd59NPP9XkyZP1u9/9TomJiVd83vz58+V2u72Ly+Vq7SkAQLvn97FJSEjQ7t27VVFRodLSUjU0NCgjI0MxMTEtPsbRo0c1evRoPfHEE5o+ffpVnxsWFiaHw+FdoqKiWnsKANDu+fVrNheLiopSSUmJcnJytGvXribbz5w5I4fD0WT9iRMnNHr0aM2bN09z5869AZMCAC7l91c2F5SXl2vs2LFatGiRBgwY0GjbunXr5HQ6m3x+prS0VKNGjdLs2bM1c+ZMVVVVeZeGhoYbOT4AtGsBEZtjx44pJSVFkydP1pw5c5pst9vtCg8PV2RkZKP1RUVFKikp0ZNPPqmoqKhGy3vvvXejxgeAdi8gbqP17dtXn3766RW3Z2ZmKjMzs8n6tLQ0fjUNAPiBgLiyAQAENmIDADCO2AAAjCM2AADjiA0AwDhiAwAwjtgAAIwjNgAA44gNAMA4YgMAMI7YAACMIzYAAOOIDQDAOGIDADCO2AAAjCM2AADjiA0AwDhiAwAwjtgAAIwjNgAA44gNAMA4YgMAMI7YAACMIzYAAOOIDQDAOGIDADCO2AAAjCM2AADjiA0AwDhiAwAwjtgAAIwjNgAA44gNAMA4YgMAMI7YAACMIzYAAOOIDQDAOGIDADCO2AAAjCM2AADjiA0AwDhiAwAwjtgAAIwjNgAA44gNAMA4YgMAMI7YAACMIzYAAOOIDQDAOGIDADCO2AAAjPP72Hg8HmVnZ6tLly6y2+3KzMxUaWlpi/evqKjQtGnT1LFjR8XFxWnRokWyLMvgxACAS/l9bLKzs5Wfn6+CggIVFRUpPj5ekyZNavH+999/v+rr61VUVKR3331Xr732ml588UWDEwMALmWz/Pyf+dHR0dqyZYtGjBghSaqvr1dCQoL+9Kc/aciQIVfd9/PPP1dSUpK++uorOZ1OSdLWrVv18MMP69ixYy36+VVVVUpLS9O2rW/Ibo9s1bkAwPdNdXWN0sdNVmFhoTp27HjF5/n1lU1ZWZncbrf69evnXRcSEqLExEQdOXKk2f0/+OADJScne0MjSaNGjdLx48f19ddfX3afuro6nTlzxrtUVla2/kQAoJ3z69hER0crJCRELpfLu86yLLlcLrnd7mb3d7lciouLa7QuIiJCTqdTJSUll91n2bJlcjqd3iUhIaF1JwEA8O/YhIaGKj09XQsWLFBFRYUaGhqUl5cnt9ut+Pj4Zvevra1VcHCwJKlv376aOXOmpPNXR7W1tZfdZ/78+XK73d7l4tABAK6PX8dGklasWKHa2lrFxsYqNjZWHo9H9fX1SklJaXbfiIgINTQ0SJKSkpLUo0cPSedf94mIiLjsPmFhYXI4HN4lKiqq7U4GANqpEF8P0JyEhATt3r1blZWVCgsLU15enjIyMhQTE9Psvt26dVNZWZkkacuWLZKks2fPyu12e8MDADDP769sLoiKilJpaalycnL0xBNPNNl+5syZJuuGDx+ujz/+uNG2Xbt2KTExsclrOQAAcwImNuXl5Ro7dqwWLVqkAQMGNNq2bt06OZ1ObdiwodH63r17a8yYMZo5c6a++OILHT58WHPnztUjjzxyI0cHgHYvIGJz7NgxpaSkaPLkyZozZ06T7Xa7XeHh4YqMbPo5mDVr1kiS+vfvr9GjR2vatGl66KGHjM8MAPg7v/9Qp6/xoU4AuLKWfqjT798g4GsXWlxdU+PjSQDA/1z4u7G56xZi04ya//+DnDz5Fz6eBAD8V01NzVU/KsJttGZ4PB6VlZUpMjJSNpvN1+O0SGVlpRISEuRyub73nxNqT+cqcb7fd4F4vpZlqaamRrGxsQoKuvLbALiyaUZQUJC6dOni6zGuicfjkcfjkd1uv+o91O+D9nSuEuf7fReo59uSMAbEu9EAAIGN2AAAjCM230NhYWFavHixwsLCfD2Kce3pXCXO9/vu+3y+vEEAAGAcVzYAAOOIDQDAOGIDADCO2AS4nTt3KiIiQjabTadPn260bfPmzRo0aJA6duyo4cOHa//+/b4Zsg1d7Xwv+PDDD2Wz2TRkyJAbOpsJzZ3v6dOnNXLkSE2bNk11dXU3fsA2dLVzff311zVw4EBFRkaqf//++v3vf++bIdtITU2NHnroIcXHxysuLk4zZ85UZWWld/vOnTs1ePBghYeHKzk5WYWFhb4btq1YCFgffvihFR0dbeXm5lqSrIqKCu+23bt3Ww6Hw3r77bet0tJSKy8vz4qJibG+/fZb3w3cSlc734v99Kc/tcaMGWMlJyff0PnaWnPn29DQYI0aNcqaPn265fF4fDNkG7naue7fv98KCwuzNm3aZH311VdWfn6+FRkZaRUUFPhu4FaaMWOGNXLkSKuoqMg6ceKE9bOf/cyaPn26ZVmWVVJSYjmdTmv16tVWWVmZtWrVKsvpdFpffPGFj6duHWIToFwulxUTE2OtXbvWKi4ubvIf6MqVK61nn3220T79+vWzNm/efIMnbRvNne8FO3futAYPHmytXr06oGPTkvNdtmyZlZKSYp07d843Q7aR5s716aeftu68885G+2RlZVmPPvroDZ60bTQ0NFjjxo2zjh075l23d+9eKyoqyrIsy1qyZIl1zz33NNpnypQpVnZ29g2ds63x62oCVHx8vNavX6+xY8fq888/b7J91qxZTdZ16tSp0aV6IGnufC9YsGCBnn76aZWXl9+44Qxo7nxra2v1/PPPa/v27QoJCez/jJs719DQUHXo0KHRurCwsCbrAkVQUJDeeeedRus6deqkmpoanTt3Tnv37tXEiRMbbR89erTy8/Nv4JRtj9dsApTNZtPYsWNb/PyKigodOnRIQ4cONTiVOS0537fffls2m00TJky4QVOZ09z5vv766/qHf/gHvfvuu+rTp49uvfVWrVu37gZO2HaaO9epU6dq3759+uijjyRJR44c0bZt23TffffdqBGN27Nnj5KTkxUaGiqXy9Xka+u7du2qkpISH03XNgL7n0RosXnz5mnEiBEaNGiQr0cxwrIsPfXUU8rNzfX1KDdEYWGh3G63nE6ntm7dqn379mn27NmKi4u7pn+EBIJevXppzZo1uv322xUSEqLa2lq9+uqrTb4ePlCVlZVp8eLFWr58uaTzV63BwcEqLCzUuHHjtHXrVu95BzJi0w4sX75c27Zt04cffujrUYzZtGmTYmNjNWrUKF+PckN8+eWXuv322/XAAw9IOv+15x9//LFWr179vYvN9u3b9cgjj+iNN97QD3/4Qx09elSPPfaYQkJCNHnyZF+P1ypVVVW6++67NWbMGP3jP/6jJCkiIkINDQ1yOBxKSkqSw+HQ6dOnFRER4eNpW4fYfM+99NJLysnJ0c6dO5WQkODrcYxoaGjQkiVLtH79el+PcsM4HA7179+/0br+/ftr7969PprInKVLl+qxxx7z3h7t27evqqurtXjx4oCOTU1Nje68807ddNNNjd7K3a1bN5WVlSkzM1MHDhyQJO3fv189evTw1ahtgth8j7388sv69a9/rV27dikpKcnX4xhz6tQpffbZZ0pPT/euq6urU21trWJiYlRYWKiBAwf6cMK2l5SUpBMnTjRaV1xcrF69evlmIIO+++67Jm+CCA4ODujPFdXW1mrChAmKjY3Va6+91uj8UlJStGfPHj344IPedTt37tTw4cN9MWqbITYBrLS0VPX19SotLZV0/tZKVVWV7Ha7tm3bpkWLFmnr1q1KSEhQVVWVpPPvhImMjPTl2NftSucbFRXV5MXTzZs365VXXtH27dsD7svvLrja/78PPvigkpOT9bOf/UwjR47Uhx9+qJUrV6qgoMDHU1+fq53rlClT9B//8R/q27evfvjDH+rYsWNasmSJpk6d6uOpr9/EiRNlt9u1atUqnT171ru+Q4cOmjFjhgYPHqx169Zp/Pjxys/PV0FBgfc1nYDl6/de4/r17NnTktRkycrKsrKysi67rWfPnr4e+7pd7XwvtWbNmoD+nI1lNX+++/bts5KTk60OHTpYSUlJ1pYtW3w7cCtc7Vzr6+utZcuWWf369bMiIiKsvn37WkuWLLG+++47X4993S53rpKsxYsXW5ZlWTt27LAGDRpkdejQwRo8eLC1a9cun87bFviKAQCAcXzOBgBgHLEBABhHbAAAxhEbAIBxxAYAYByxAQAYR2wAAMYRGwCAccQGCBD5+fkaMGCAIiMjddttt2nfvn2+HgloMWIDBIDDhw/rvvvu05NPPqnjx4/r3nvv1fjx4/X111/7ejSgRfhFnEAAePHFFzVjxgz90z/9kyTpoYceUllZmSoqKpp8qyPgj/jdaEAAuPnmm5WTk6Px48f7ehTgunAbDQgAJSUlAftVCYBEbICAUFtb2+QLxIBAQmyAABAREaH6+npfjwFcN2IDBIAePXroq6++8vUYwHUjNkAA+MlPfqIdO3Y0Wrdo0SJ99tlnPpoIuDa8Gw0IAIcPH9aPf/xj/ed//qdGjRqlN998U0899ZSOHDnCGwcQEIgNECDy8/P1b//2b/r88891880368UXX9Tw4cN9PRbQIsQGAGAcr9kAAIwjNgAA44gNAMA4YgMAMI7YAACMIzYAAOOIDQDAOGIDADCO2AAAjCM2AADjiA0AwLj/A/tj08peggChAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "fig, axs = plt.subplots(nrows=1, ncols=1, figsize=(4,4), constrained_layout=True)\n", "# for ax in axs.flat:\n", @@ -960,8 +2469,13 @@ "# raw_data[y_name], \"C$_2$ yield\", lim, label=True, M=5)\n", "\n", "\n", - "plot_BO(axs, path,\"Bias Free Table Format_large: 100_t_train_non_random lambda .1 \",\n", - " raw_data[y_name], \"C$_2$ yield\", lim, label=True, M=5)\n", + "# plot_BO(axs, './out/ocm_gpt-turbo_1_1_lambda_mult0.1_corrected_tableprompt_1initialpoint_allacq.pkl',\" GPT-4turbo\",\n", + "# raw_data[y_name], \"C$_2$ yield\", lim, label=True, M=1)\n", + "\n", + "\n", + "\n", + "plot_BO(axs, path,\" GPT-4_turbo\",\n", + " raw_data[y_name], \"C$_2$ yield\", lim, label=True, M=M)\n", "\n", "# plot_BO(axs[1], './out/biasfree_ocm_gpt-turbo_300_1_1_lambda_mult0.1_corrected_tableprompt_transfer_data_100.pkl',\" GPT4 Table Format: lambda .1\",\n", "# raw_data[y_name], \"C$_2$ yield\", lim, label=False, M=5)\n", @@ -987,34 +2501,71 @@ "fig.suptitle(\"Bayesian Optimization on OCM dataset\")\n", "fig.legend(loc='upper center', bbox_to_anchor=(0.5,0),\n", " fancybox=True, shadow=True, ncol=6)\n", - "# plt.savefig(f\"figs/BO_C2\", dpi=300, bbox_inches='tight')\n", + "plt.savefig(f\"/Users/shane/repos/BO-LIFT/figs/BO_C2_GPT4\", dpi=300, bbox_inches='tight')\n", "plt.show()" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 74, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "'./out/ocm_gpt-4_1_1_lambda_mult0.1_corrected_tableprompt_wlog_probs.pkl'" + ] + }, + "execution_count": 74, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "path" + ] + }, + { + "cell_type": "code", + "execution_count": 106, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABLsAAAG/CAYAAACwr9VKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd5gkVdnw4V9Vde7JaXc2Z5aNwJLzLmnJoIAkEVBQFAFXRFQQDAi+n4ASDPgKvIiKApKXDCtR8iaWhc05TJ7Ooep8f3SYmZ3pme6Znvzc1zXX7vScrjpd3V1P1QnP0ZRSCiGEEEIIIYQQQgghhgC9vysghBBCCCGEEEIIIUS+SGOXEEIIIYQQQgghhBgypLFLCCGEEEIIIYQQQgwZ0tglhBBCCCGEEEIIIYYMaewSQgghhBBCCCGEEEOGNHYJIYQQQgghhBBCiCFDGruEEEIIIYQQQgghxJAhjV1CCCGEEEIIIYQQYsiQxi4hhBBCCCGEEEIIMWRIY5cQQoi8+fe//43b7ea3v/1tf1dFiB7Lx+f5wQcfRNO0/FVKiAFi2bJlTJs2DU3T0j8bN27s72oNORJXhRCie6SxSwgxZN18881tLsKdTiezZ8/mn//8Z7uyH3/8MQsWLMDr9VJaWsp5553Hjh07urXfiy++uM1+W//cfPPNbco2NjZyxRVXMHLkSAoKCjjooIN4/vnn221T0zTuueeebtWnu3I5fimmaRKPx4nH431Y087t+Tpa/8yaNau/q5e1VKNJ6qesrIxzzjmHTZs29Xi7EyZMyE8le0F/1i+bz3Nf1y+X80u+ZXu+6g399TnIx347e8/66r3rDbfddhszZsxgxYoV6Z/Ro0f3d7X6JV72poEYV4UQYjCw9XcFhBCiN5WUlPDmm28CEIlEeOqppzjvvPMYM2YMhx12GADr169n/vz5LFy4kFdeeQW/38+PfvQjjj32WD755BMcDkdO+7zlllu49tprAbjkkksoLS3ljjvuAKCqqipdTinFqaeeSkNDA3/+85+pqKjgscce47TTTuPll1/m6KOPzsMR6Jlsjl9rZ599NmeffXZfV7NLrV9Hay6Xqx9q0zPvv/8+breb7du3c+utt3LkkUeyfPlyiouL+7tqQ85A/Dxne37Jt8FwvhqoWr9n0P59g95973rLzp07GT9+/KDqNBiMeus8tH79eg444ACampp4+umnOemkk/K+DyGE6E/S2CWEGNIMw2hzIT5v3jwee+wxnnrqqXRjzf/8z/8wbdo0HnnkkfR0owMOOIAxY8bw8MMPc+mll+a0z9GjR6d7t71eL0VFRR3eDDz99NO88847rF27lokTJwJwyCGHUFtby0svvTQgbh6zOX6DwZ6vYzDbe++9KSgoYNasWRxxxBFMmDCBe+65h5/85Cfd2l53RzD2FalfW9meX/Ktv89X/fU5yMd+W79n0LfvW29SSvV3FUQ31dXVcdddd3HDDTdw3HHHMX78+P6ukhBC5J1MYxRCDDsOhwPTNNO/P//885xzzjlt8uqUlJRw0kkn8dxzz/VaPZ5++mmOOuqo9I1jyoMPPsivfvWrbm938+bNjBw5kpEjR7J58+aeVrOdPY/fkiVL2k3JWbJkSYfP/etf/8o+++yDx+Nh3LhxLFq0iEAg0K7cG2+8wTHHHENZWRler5cDDjiA+++/P++vpbWjjz66zWtYt24d3//+96msrETTNP773/+my27YsIGzzjqLkpISCgsLOfPMM1m3bl27bWZbrrvcbjfnnnsuTz/9dJvHuzrOradE/vjHP2bTpk1tXvueDRf5ft+6Oi651q8rd999N/Pnz0//vs8++7RpaDj22GP5wx/+AGT3ee5O/ZYuXcpBBx2E1+tlv/32y/gdyZdUHfO131zOV6tXr+a0006jqKiIgoICTjrpJFauXJlz/XI9ztl83xYtWkR5eXmbRqz6+nqqq6u5/vrru7XffMrlPJTN9zKXz0E239/W9fvPf/7D//3f/2XM2ZXN+5HL6823bM/P2RznbF9Htu9HtnE1l/f3nXfe4ZhjjqGkpISKigp+97vf4fF4mDVrFoWFhd0+jkIIMVBJY5cQYtiIx+M8+eSTbNiwga9+9asABINBNm/ezNixY9uVHzt2LKtXr+61+nz66adMmTKl3eM9TWYdDAapra2ltraWYDDYo2211tHxg8QouFS+lhdffDHj8//xj39w2WWXcfnll/PGG2/wy1/+kgcffJBFixa1Kbd27VoWLlzImDFjePrpp3nttdc4//zzue6661i8eHHeXs+eHnjgAVasWJG+ubv33nupqqpi8eLFrFixgrlz5wKJHvEjjjiCTZs28fDDD/P0009jWRZHHnkkPp8vvb1sy/XUpEmTWLVqVfr3bI7zGWeckX7PrrjiCkaNGtUm784DDzyQ0/Yg+/ctm+OSS/2yMXXq1PRNeDQaZdu2bezevZtwOAwkbnqnTZsGZPd57k797rnnHn7xi1/wwgsvUF1dzWmnncbOnTtzeh3dka/9Znu+2rFjB4cffjgul4unnnqKZ599ltLS0vR7nkv9cjnO2X7fbr31VkaNGsVll12WfuzKK69k9OjR/OIXv8h5v/mW7Xko2+9lSlefg2y/v6n6rVixgv3335/TTz+9w5xd2b4f2b7efMu2ftke51xfR1fvR7ZxNdvtbdu2jRNOOIHJkyfzwgsv8Oabb3L22Wdz3XXXsXv37m4dQyGEGPCUEEIMUTfddJMClGEYyjAMpWmastls6q9//Wu6zLZt2xSgnnnmmQ6fX11d3aM6HHXUUerLX/5yh3+bOnWq+v73v5/VdgB19913Z73fmpoaVVNTk3X5jmRz/Pa0YcMGBajXX3+93d8CgYB655132jz2s5/9TFVWVrZ57O9//7sCVFNTU5vHGxsb8/I6Wv88/vjj7cq//vrrClD33ntvh9u74YYbVFVVVZv6RKNRNWXKFPWzn/0s53LZeuCBBxSgfD5fh49Ho1GlVPbHOeWmm25S48ePz7jffL9vuR6XruqXjbVr1yqbzabi8bj6+OOP1fz589WCBQvUBx98oEzTVHa7XW3evLnd8zr7PGdbv9T7s2vXrvRj9fX1yjAM9cADD/TgVXV+fsn3frM9X/3whz9UM2fOVKZpph+zLEvNmzdPfec73+l2/bo6zrl8rpYtW6YcDof685//rJ588knl9XrV559/3uF28/H521Nn71tKV+ehbL+X2R7n7px3jzrqKPW1r32tw7/l+j3v6vXmIpt4mW39cj2fdvU6uvO97Ow8lO32HnvsMQWourq69GOff/65AtTLL7/c4X6FEGKwk5FdQoghraSkhKVLl7J06VI++eQT7rvvPq6++moefPDBbm1vzxXxBuoqWhUVFVRUVPR4O/k8fh6Ph0MOOaTNY+PGjaOmpqbNY/vuuy9Op5NFixbxxhtvUFtbC9BhAvZs34/Wr6P1z7HHHpuxvkceeWSHj7/yyissXLiwTX3sdjvHHntsm5Xpsi2Xb9ke53xvL9v3rT+Oy4QJE9A0jW3btrF06VLmzp3LnDlzWLp0Kdu2bcNutzNmzJhe2XdK6wTkpaWljBgxgi1btvTqPrPdbz7Pa6+//jqHHXYYut5yialpGkceeWSHU6vydVxy+VzNmTOHW265hUWLFvHNb36TO++8Mz2yb6DJdB7K9Xve1XHO5bybje5+zzO93nzLtn7dPZ929TryfT7oanuzZ8/GMAweeughwuEwgUCAhx56iIKCAmbPnt3t/QohxEAmCeqFEEPanonJ586dy+bNm/nJT37CxRdfTElJCQB+v7/dc30+H6WlpW0eO+OMM9h///3bPNbdVbTKyspobm7u1nP7SlfHLxfNzc1cd911PP/88+zatYt4PN5hguPp06fz6quv8pvf/IZzzjmHXbt2MWrUKM4//3xuueWWNqtjZvt+dCdBfUFBQYeP19bW8t577/G3v/2tzeOWZbXJZ5RtuZ5qamrC6/Vit9uB7I9ztvL9vvXVcWnNMAwmTZrExo0bWbp0Kfvuuy8AH374IXvttRdTpkzp8fThXNnt9ja57/pzv9l8j7I9X9XV1XWY/6eoqIi6urpu1S8buX6urrzySn75y1+ilMr5XNaXMp2Hevo93/M453LezUZ3v+eZXm++ZVu/7h7nXF9Hvs8He25v2rRpPPbYY3z961/ne9/7HgATJ07k0UcfZcSIEXnbrxBCDCTS2CWEGHbGjx/Pzp07MU0Tj8fD2LFjO+xR3bJlC9OnT2/zWElJSbqBrKdmzpzZYTJcpVSf33jnovXxMwwj6+ddffXVvPTSS9x+++1MmzYNh8PBU089xQ033NCu7GGHHZZe7bG5uZm3336biy++mHg8zp133pkul8/3I1vl5eUceOCB/OhHP2r3t9Y3hNmW66kNGzYwY8aM9O+5HOds5Pt966vjsqdU3q6lS5dy8cUXo5Tif//3fznooIOYOnVqr+13MMjme5Tt+aq8vLzDnHTNzc2Ul5f3uK6Z5Pq5+ulPf0p1dTU1NTXcfPPN3HLLLb1Wt96Q7+85ZH/ezUZ/fc+zlW39euM495cXXniBq6++mvPOO4+CggKqq6v7u0pCCNGrpLFLCDHsbN26lYkTJ6Ybak466ST+9a9/ce2116Zv2hobG1m8eDF33XVXr9XjtNNO48tf/jIbN25kwoQJ6ccvvvhiRo8e3aMVGVNTUPIxlXFPex6/bH344Yd86Utf4txzz00/9vrrr7crt3nzZnw+HzNnzgQSI0JOPPFEDjnkENavX9+zyufBSSedxNNPP82MGTPaTNV66623mDNnTs7leiIUCvHII4/w3e9+N/1Ytsc5pauG1Xy/b7kel3w1/E6bNo2NGzeyatUqZs6ciVKKVatWsX79+h5NYRvIDdP5lO356vjjj+eJJ57Asqz0+6uU4o033uCoo47q9v67Os65fK7+85//8Nvf/pa3336bTZs2ce6553LiiSdy+OGH57zf/pLr97wr+T7v9sX5ryeyrV++j3N/Wb58OQ8//DA+n2/AfqaFECLfpLFLCDGkmaaZXvLeNE2WL1/OnXfeyc9+9rN0meuuu459992XCy64gKuuuopgMMj111/P+PHjufDCC3Pe57Zt22hoaAAgEAjgcDjSdaiqqkpPDzrttNM45JBDOO200/jVr35FZWUl//73v/nb3/7GSy+91G67a9asaZfzxm63p3viU1avXs2sWbPQNI0VK1a0G52Wi2yOXyAQYMOGDQBs374dSIw2SjW07bXXXtjtdg466CCeeuopjj/+eKqrq/nkk0/SK1etXLmSKVOm4HK5+MMf/sA999zD97//fY477jgcDgevv/46zz//PPfcc0+3X0tXNmzY0Oa1fPHFF+nprWPGjEmPfFm0aBH33XcfZ511Ft/+9rcpKirixRdf5Fe/+hWPPPIIp59+ek7lcvXZZ5/hdrtZt24dt912G06nkyuvvDL992yPc0pVVRWxWKzNyqMej4dx48bltL1s37dcj0tX9cvW1KlT+dvf/kZ1dXV65MbIkSN58cUXufzyy9Plsv0857t+2cr2/JJv2Z6vvv/97/OnP/2Jc889lyuuuAJd17nvvvtYt24djz/+eLf339VxzvZz1dTUxEUXXcSiRYs44IADOOCAAzjnnHO46KKLWLZsWbspmH39/mZ7Hsr1e96VbL+/e37+Ghsb05+/0tLS9GqM2b4f2b7eXHUVL7OtX7bHOd+vI9fzUFfcbjfBYJAHH3yQefPmoes6breb6upqPB5PTnUTQohBo58S4wshRK9LrcLX+qeiokLddtttyrKsNmU/+ugjNX/+fOXxeFRJSYk699xz1fbt27u136997Wvt9pv6uemmm9qUbWhoUN/85jdVVVWV8ng8at68eeq5555rt81M2ysvL29XdtOmTWrEiBFqxIgRatOmTd16DUplf/xSq09l+tmwYUP6tV500UWqvLxceTwedfLJJ6t169apefPmKU3T1CeffJLe5iOPPKKOOOIIVVhYqLxer5o7d6764x//2O3X0dFx2tNRRx2V8TXsuUrW+vXr1dlnn61KSkqUx+NRBx54oHryySfbbTPbctlIrbqV+ikpKVFnnXVW+vim5HKclUqs3HX44YcrwzDS2z7qqKO6tb1s37dcjktX9cvWK6+8ogB14YUXph8799xzFaDefvvt9GPZfp6zrV/qfdvT+PHj250PspHt+SXf+1Uq+/PVZ599pk455RRVUFCgvF6vOvHEE9WKFSvalMm1ftl8DrL5XF144YVqr732UqFQqM22R40apS666KJu7TdXna3GmO15KNvvZS7HOZvvb2efvz1XZszm/cjlvJutbONlNvXL9jhn+zqyfT+yPQ/l8v6ecsop7bZjs9nUJZdcomKxWPYHWAghBglNqR5krRVCCCGEEEIIMWBdffXVhMNh7r33Xmy2xMSeeDzOp59+yqGHHsq//vUvTj755H6upRBC5JdMYxRCCCGEEEKIIer9999H13WWLFnCiBEj0DSNpqYmXnvtNcLhsKzIKIQYkmRklxBCCCGEEEIMUZ999hnXXnstH374IXV1dQCUlZUxd+5crrzyym7nkBRCiIFMGruEEEIIIYQQQgghxJChd11ECCGEEEIIIYQQQojBQRq7hBBCCCGEEEIIIcSQIY1dQgghhBBCCCGEEGLIkMYuIYQQQgghhBBCCDFkSGOXEEIIIYQQQgghhBgypLFLCCGEEEIIIYQQQgwZ0tglhBBCCCGEEEIIIYYMaewSQgghhBBCCCGEEEOGNHYJIYQQQgghhBBCiCFDGruE6GeapnHPPff0aBsXX3wxN998c7vHt2zZgqZpWf2sX7++R3UQQggxcEhcEEIIkQ8ST8RgJY1dImcrV67kxBNPpKioiIqKCk499VRWrlyZ/vvNN9/c5uSm6zqTJ0/m5z//OfF4HEicNLs6KXZ0Us3FBRdcgKZpHH300T3aTrZqa2sxDAPDMKitre2TfXbF6XTy17/+Nf1z3333ATB//vw2jz/88MNMmjSpn2srhOgrch5vLx8dD4OBxAUhRD5JPGlP4onEEzEw2Pq7AmJw2bp1K0cddRRHHXUUzzzzDAB33XUXRx99NB9//DHjxo0DoKSkhDfffBMApRQrVqzgyiuvxOVycd1113HLLbdw7bXXprd7ySWXUFpayh133JF+rKqqqtv1fOGFF1i8eDHHH388kUik29vJxeLFi5kxYwaRSITFixdz0UUX9cl+O1NVVcWFF16Y/v3DDz8E4OSTT27zuBBi+JDz+MC2fv16DjjgAJqamnj66ac56aST8rp9iQtCiHyReDKwSTwRw500domc/OY3v6GiooJHH30UwzAAOPzwwzn66KN5991300HNMAxmzZqVft7s2bP57LPPuP/++7nuuusYPXo0o0ePTv/d6/VSVFTU5jndFQgEuOKKK/h//+//8dZbb7Fx48YebzMbzz77LCeddBKhUIhnn312QDR27Wn58uVA4v0QQgxPch4fuOrq6rjrrru44YYbOO644xg/fnyv71PighCiuySeDFwST4SQaYwiR8888wxf/epX0wENEgHszTff5Ctf+Uqnzx09ejSbN2/u7Spy4403Mn78eL7+9a93Wm7z5s2MHDmSkSNH9rhesViMl156iYULF7Jw4UJeeuklYrFYu3IPPPAAkyZNwu12c/jhh/Ppp592uL2//vWv7LPPPng8HsaNG8eiRYsIBAI9qiO0BKE5c+b0eFtCiMFJzuM9k835+eijj24z/WbdunV8//vfp7KyEk3T+O9//5su+84773DMMcdQUlJCRUUFv/vd7/B4PMyaNYvCwsJ0uQ0bNnDWWWdRUlJCYWEhZ555JuvWrevx65G4IIToLoknPSPxRIjeJSO7RNZCoRAbNmxg8uTJ3Xp+Y2MjI0eOzHOt2vrwww+57777+Pjjj9E0rdOywWAwnVsrGAz2aL9vvvkm8Xicww47jHg8Tjgc5s0332TBggXpMkuWLOHSSy/l29/+Nueddx4+n49f/epX7bb1j3/8g8suu4w77riDAw88kFWrVnHNNdcQCAT405/+1KN6Ll++nMrKyl5/H4QQA5Ocx3sm2/PzAw88QCAQ4IMPPuDSSy/l3nvvZcSIESxevBi3250+/tu2beOEE07gvPPO45ZbbiEej3PXXXdx3XXXceaZZ6an7dTV1XHEEUdQXV3Nww8/jNfr5be//S1HHnkkq1evbnMTkyuJC0KI7pB40jMST4TofdLYJbLW0NCAUqpbJ8FVq1bx5z//mdNPP70XapYQj8e57LLL+PGPf8y0adO6LD99+nR27twJQEVFRY/2/eyzzzJ//nwcDgcOh4PDDz+cZ599tk1j1+23387ChQu5995704/NmzePv//97222dfrpp/P6669zyCGHALD//vuzceNG7rnnnh43dq1YsYK5c+f2aBtCiMFLzuM9k+35eeLEiQDpG6cpU6bw7W9/u932/vvf/+L3+7ntttsoKysDEjlQHn30UZYvX86xxx4LwG9/+1tisRivvPIKxcXFQGKq0IwZM7jzzjv56U9/2u3X1N9x4ZRTTuH888/n/PPP77c6CCFyJ/GkZ4ZjPNm4cSPnn38+q1at4oYbbmiTp02I3iDTGEXWlFJtft+0aRM2my3903p4cF1dXZu/zZo1i3322afbK6k8+OCDXa7Kcscdd2BZFj/4wQ+y3m5FRUVeAtqzzz7LCSeckP79hBNO4Nlnn21TZtmyZe1WgKmqqsLpdLZ5zOPxpANfyrhx46ipqelRHXfs2EFtbW2fz6Ovqanh5JNPxuv1stdee/Hqq6/26f6FEC3kPN4z3T0/H3nkkR0+Pnv2bAzD4KGHHiIcDhMIBHjooYcoKChoc65+5ZVXWLhwYfrGBMBut3Psscfy/PPPd/v19FdcaO2zzz7LS16eXP3hD39gv/32w263t/scStwSomsST3pmOMaTm2++mVNOOYXGxsZB09AlsWJwk5FdImtFRUUA+Hw+AEaNGsXSpUsBuOGGGzBNM1229aoruq4zbtw4CgoKur3vM844g/3337/NY61XZVm/fj2/+MUvePXVV7Hb7d3eT3d88cUXrFmzhquvvpprrrkGSFwAWJbFF198ke5N2r17N16vt8vtNTc3c9111/H888+za9cu4vF4uwuK7uivefTf+c53GDlyJDU1Nbzyyiucc845rFmzJt3rJIToO3Ie75nunp8zHbdp06bx2GOP8fWvf53vfe97QKIX/9FHH2XEiBHpcrW1tbz33nv87W9/a/N8y7LSvf7dkWtcME2zTW6engqHw2zdupXp06fnbZvZqq6u5uabb243uhokbgmRDYknPTMc48mrr77K9ddf3+199AeJFYObNHaJrBUWFlJdXc2mTZuARC9AqjfW5XK1Kbvnqis9VVJSQklJSca/v/HGG/j9fg499NA2j1uWhVIKm83GHXfcwVVXXZW3OqU8++yzTJ48mSeffLLN48cffzzPPvssixYtAqCysjKrHABXX301L730ErfffjvTpk3D4XDw1FNPccMNN/SonitWrAAyB6Hbb7+dDz74ALvdztNPP83o0aN55plnup2LAcDv9/Pkk0+yfv16PB4Pp512GrNnz+app57ikksu6fZ2hRDdI+fxnumN8/MLL7zA1VdfzXnnnUdBQQHV1dXtypSXl3PggQfyox/9qN3fHA5Ht/fdVVz43e9+x5IlS7DZbDz//PM8+uijzJw5k8svv5yPPvqIWCzGeeedx+9//3s0TesyjsTjcW688Ub++Mc/Ul5ezo9//GMmT57c6WvojdgEiZtlgMWLF7d5XOKWENmReNIzwyme+Hw+Ro4cSSgUYv/99+e4447j0Ucf5Wc/+xl/+ctfiEajXHTRRdx+++3p3GpKKf785z/z61//mp07dzJ58mSee+45xo4d2+H+JVaIjsg0RpGT4447jkceeaRNb00kEuHdd9/tx1olTkQrVqxg6dKlbX5OO+009t9/f5YuXcoFF1zQ7nm1tbXpOfDd9eyzz3LMMccwa9asNj/z589vM5Vx7ty5/Oc//2nz3JqaGiKRSJvHPvzwQ770pS9x7rnnst9++zFr1qx071lPLF++HMMwmDFjRod/X7FiBe+88w5XXnkl9fX1zJo1i/vvv79duVNOOSV9kbHnz2233dam7Jo1aygoKGDMmDHpx2bPnp1xFUohRO+T83j35fv8vHz5ch5++GFuvPFGpk6d2uGNCcBJJ53E559/zowZM9rEmZ4meO4qLixfvpy3336b7373uzQ3N3Psscfi8/n4yU9+wvbt21mxYgXPPPMMS5YsAbqOIz/84Q9ZtmwZGzZs4PXXX+emm27q8ga4N2JTZyRuCZE9iSfdN5ziSWFhIa+88gqzZs3C7/fzxBNP8P3vf59PP/2UTz/9lDVr1vDKK6/w6KOPpp/zi1/8gr/85S8sXryY5uZm7r77bsrLyzPuX2KF6IiM7BI5+cEPfsD+++/PV77yFRYtWkQwGOTOO+/s9OTTFzL18JSUlNDY2NjhxfTq1auZNWsWmqaxYsWKbk2jaGpq4q233uLyyy9v97cFCxZwxRVX0NTURHFxMd/73vc49thjueqqq/jKV76Cz+fjkUcewWZr+zU86KCDeOqppzj++OOprq7mk08+SZ+sV65cyZQpU9r1mGVj+fLlTJkyBbfb3eHfV6xYwc0338xBBx0EwNSpUzscTr1nLrLO+P3+doG7qKiIurq6HGouhMgnOY9ntmbNmnTDTYrdbuewww4Dsj8/b9iwgUAgwIYNG4DEdHe/3w/AmDFj0q/T7XYTDAZ58MEHmTdvHrqu43a7qa6uxuPxpOuwaNEi7rvvPs466yy+/e1vU1RUxIsvvsivfvUrHnnkkW4nee4qLixfvpybbropnSNG13VmzpyZ/vvYsWM58MADaWhoADqPI9u3b+fPf/4za9euTb/Xhx56aJvtdaQ3YlNnJG4JkT2JJ5lJPGn/91Q+r61bt/LQQw+xcePGdO6wE088kY8++ohzzjmHnTt3cvvtt/PRRx8xZcoUAI466qhO9y+xQnRERnaJnMyaNYtnnnmG9evXs2DBAr75zW9y4YUX9nkeqHzweDxUVFRQXl7eJgjk4sUXXyQWi7VLPA+Jxq5YLMaLL74IwDHHHMOf//xnnnnmGY455hh+9atfcf3117fLf/Kb3/yG+fPnc8kll3DUUUfx1FNP8fjjjzNv3jzmzJnD6tWrc65nPB7ns88+y/g+mabJqlWrOPHEE9OPffrppz0O9AUFBTQ3N7d5rLm5uUd5GoQQPSPn8czuuusu5s+f3+an9YV/tufnSy65hNmzZ3PppZcCiUVLZs+ezezZs9tMeZ86dSonn3wyl156KXPnzmX27NlMmTKF4uJiLr30UuLxOJA4l7755pvYbDbOPvvs9MjhntyYdBUXLMti1apVnHnmmW0e/+tf/8qBBx5IeXk5JSUlPPXUU0ybNq3LOPLqq69ywAEHtMmrU1NT0+nIrt6KTZ2RuCVE9iSeZCbxpK3ly5en//7GG29w0EEHtUmSX19fn84t9vLLL3PwwQenG7q6IrFCZKSEEIPe1772NXXTTTd1+/mrV69WVVVVbR6bOHGi+uSTT9qVXbhwofJ6vR3+3HLLLW3K+nw+Zbfb1datW9OPHX300er+++/vdl2FEGKouOqqq9Tll1+uYrFY+rFYLKaWLl2qPB6PevbZZ7u97Z7Ghc8//1yNGDGizWMvvPCCmj59ulq2bJmKx+Nqx44dyuv1qlgs1mUcueOOO9Q555yT/tuOHTuU0+lUn3/+ecY69FZsau2b3/xmm+MkcUsIMRgN5HiilFJHHHGEWrx4sVJKqbvuukt95StfSf8tGo2qsWPHqrffflsppdRvf/vbNvGiKxIrRCYyjVEIwYoVK5g7d276d5/Px7Zt2zqcd5/LssQFBQWcfvrp3HTTTdx99928+uqrLF++vNs9R0IIMZS8//776LrOkiVLGDFiBJqm0dTUxGuvvUY4HG6zglZfW758eZu4kHpswoQJzJgxg23btnHppZcybdo0bDZbl3Fkr7324rbbbmPLli24XC6+9rWvoWlauuf+4osvBuDBBx9Mb6O3YhMkRiLE43FM0yQejxMOh7Hb7RK3hBCD0kCOJ5A4n6emMc6bN49bb72Vbdu24fV6WbRoEfvss096QYE5c+Zwyy23sGbNGiZPnszSpUuprq6murpaYoXIiTR2CTEEnHHGGZ2uStOVPYPEypUr0yvD9NTvf/97vva1r1FeXs6YMWP45z//KUvyCiEEcP/993PttddywQUXpPN8lJWVMXfuXP7973+z//77d3vb+YgLe05JueCCC3j00UcpLS3lwAMPZNasWelpHF3FkYULF3LiiScyc+ZMxowZw4IFC6ipqUHXExk1tm7dyle+8pV2deit2PTLX/6Sn/3sZ+nfb7nlFh544AEuvvhiiVtCiEFnIMeTLVu2oGlaOpn7oYceyre+9S323XdfTNPk7LPP5h//+Ee6/Pz58/nOd77DkUceid/vZ++9906vhiixQuRCU6qDzG1CCCGEEEL0gXg8zpw5c1i2bBl2u72/qyOEEGIAklghciWNXUIIIYQQQgghhBBiyJDVGIUQQgghhBBCCCHEkCGNXUIIIYQQQgghhBBiyBhWCeoty6KmpgaPx4Omaf1dHSGEyJlSimAwSGVlZTqxs+h9Ej+EEIOdxI/+IfFDCDHYDdb4Mawau2pqajj55JP7uxpCCNFjzz33XL8vIz2cSPwQQgwVEj/6lsQPIcRQMdjix7Bq7PJ4PAA89thDeJP/F0KIwSQQDHLWWRelz2eib0j8EEIMdhI/+ofEDyHEYDdY48ewauxKDR32ejx4vYPrjRJCiNZkKkTfkvghhBgqJH70LYkfQoihYrDFj8Ez4VIIIYQQQgghhBBCiC5IY5cQQgghhBBCCCGEGDKksUsIIYQQQgghhBBCDBnS2CWEEEIIIYQQQgghhgxp7BJCCCGEEEIIIYQQQ4Y0dgkhhBBCCCGEEEKIIcPW3xUQQoihxheNEFNWVmVLHa5Bt4yvEEKI/mP6atFsTnR3YX9XRYhBQZlxrFAzoPq7KkIMCLq3bFjcf0hjlxBC5JE/FmGTvzHr8iUOF0M/1AghhMgHKxrEbNgOKGwjpqI7Pf1dJSEGPLNxB1agvr+rIcSAoXtKQRq7hqZIJIrN1v6l67qG3W5vUy4TTdNwOLpXNhqNojJ0LGgaOByObpaNoTIVBpzO7pWNxWJYVn7KOhz2dCtyPB7HNDOPfsmlrN1uQ9f1AVPWNE3icTNjWZvNwDCMAVPWsixisXjGsoahp78zA6GsUopoNJaXsrl877Mp2xgOEIvGcNpsFLhc6cdjGeoQjUTRdT3rc0Q0mrl+e3rwwQf5+9//zubNmzn//PN5/vnnGTduHHfffTff+ta32Lp1K0opbrzxRk477TQAzjnnHI4//ni+8Y1vsGzZMr7xjW/w1ltv4XQ6s97vUCbxQ+KHxA+JHyn5jh8pmc4RyrIwd21AmTF0dzEKG1o0JvFjkJD40X/xQ4uGEv86PJhKx7I6Px+3xA+z07I2uw09VdY0sTo5z+dU1ma0xI8cypqmhWlmPncbNgOjO2UtC7OTmGAYBoaRe1nLsjqNNbqhY2sVa7IuqxTxTmJCTmV1HZstUVYp1WmsyaWspmvYW50POos1OZXVNOz2rsta0diwuP8Ylo1dN//sf9IXaa3tvfc0Lr/sq+nff3rTbRk/IJMnT+DK73w9/fsvfnk7gUCww7Jjx45m0fe+lf79tl/fTUNDY4dlR4yo5PofXpX+/Y47/8iuXTUdli0tLeGnN34//fs99/6FLVu2dVjW6/Xwy1/8KP37fX9+iHXrNnZY1uGw8+vbfpr+/YEHH+Gzz77osCzAnXf8Iv3/v/39cZYt+zRj2dtuvTEdnP716NN88MEnGcv+4ufXU1DgBeDJp57n7bffz1j2xhsWUVZWCsDixa/w+pK3M5a97rorqR45AoBXXnmDF196PWPZ713zTcaNGwPAG2/8l2eefTFj2e98+1KmTJkIwLvvfsjj/342Y9lvfONCZs7YC4CPPlrGPx55ImPZr130FfbZZxYAK1Z8xv899M+MZc8790wOPHA/AFZ/vpb//d+HM5b98pdO4fDDDwJg/fpN3Pv7+zOWPfWUE1iw4HAAtm7dzp2//VPGsiccP5+FCxcAsGt3Df/zP/dkLDv/6MM47bSFADQ2NvGLX96Rsexhhx3IWV8+FYBAIMiNP70tY9kDDtiX88/7EpA4yV//o19kLDt37kwu/tq56d87K5vLOWLcxHF877uXpX+/4cZb83KOSH3OszV79mz+3//7f1x66aV8+OGHjBkzBl3XueWWW9h7773x+XzMnj07HWz+9Kc/ceihh3LkkUfy7W9/m4ceekhuVFqR+CHxQ+KHxI+U3oofvXWOkPjRvyR+9F/8+OVV52DXwSgdzaP/fiH7+PH4M9nHj6dfyD5+vPBa9vHjtbeyiB8TAPjvW+9lHT8+fv/jrOPHyqUrs44fn6/6POv4sXbtBu79/UMZy7aOH5s3b806fuzYuYv/uT27+FFf38Avbssufvj9gazjRyQS5Sc5xI8fLLoxY9k9zxE/uf7nWZ8jbh7m9x/DsrFLCCF6mz5AhgYXFhZSXFxMYWFhsrcnMeLllltuYd26dSil2Lp1a7p8aWkp99xzDwcddBC33nore++9dz/WXgghRH+R+CGGCmXGQDfQDLn1FaIvDJT4oanOxpIOMX6/n6OPPponn/g7Xm/7HAcyjLjjsjINRaahyDSU7MqalsXnTbUA7F1aiatVj0S+zhHBYJDTzzifJUuWUFBQkHGbkBhGvHHjRi6++GIuvvhilixZwoQJE7jggguw2+3cfPPNAJSUlNDY2Jh+3uOPP85VV13Ft771LW68MXNP03Ai8UPiR1+VHQgxQeLHwJrGGA4FiO9cC1YcvaACo6Q6Y1mJHwOPxI/+jR/KiqPt/iJxwz1mdmKancSPAVF2IMSEoR4/hvv9x7Bs3nY6HW1OkJ2Vy2Wb2WodIPJb1t51oW6Ubf3lymdZm81GB6kLhkTZxHz09kPVB2pZXdez/gwPhLKapvVKWejZ9z4Qi2J32LHrepuGrly329n3Ph7PHJCzFYvFGDlyJACrVq2iubk5/bcdO3bwi1/8gk8++YQTTzyR448/noMOOqjH+xwqJH5I/OjtsgMhJkj8yL0s9N733vDtQjdAcxdiqxrX6QpaEj8GLokf/RM/VMwipmmgGWi6jk3X+/08L/EjYSDEhKEeP4b7/Yfe4y0IIYQAIGwmAoHblv0FWn+48sor+cc//sFBBx3E73//e8477zwuvfRSlFJccskl3HrrrVRVVXH//fdz6aWX4vf7+7vKQggxLJm+WlTYB5qOrbzzhq6+IPFDDDYqeW2mGQP72kyIoa4/4sewnMb4/OLHOhxGLIQQPbEt0ExDJESl28sId+dDfLsrEAhy4klnZTWMWOSPxA8hRF9T0RCxnWsAhVE6GqOwokfbk/jRPyR+9C8r0EC8bjOaswD7iMn9XR0hBqXBGj9kZJcQQuRJyEzMzXdLAlQhhBA9oCyLeN1mQKG7inrc0CXEcCUju4QYvqSxSwgh8kApRSR5QeWSxi4hhBA9YDbtRMXCoNswysf0d3WEGLRUsiMSuTYTYtiRxi4hhMiDiBlHKdA1DYdcUAkhhOgmK+TD8tUAYCsfKyNShOgJGdklxLAljV1CCJEHYRnVJYQQooeUGSdevwUAvaAc3V3UzzUSYnBLjezS5PpMiGFnQH3rg8EgP/zhD3n88ceJx+Ocdtpp3HnnnRQWFgLw2muvcc011/DFF1+w11578bvf/Y6jjz66fystekUgFsVUVn9Xo98opQjG41jD+BgMNrvDARoiIUqcbrb5m7J+XrWnEF2XfoeekvghhBgKzPqtYMbQbC6MklH9XZ1hQeJHfinLREUC0EdroCkzhoqGMv49Xr8F4lGwOdHDsjqo6JyyLFQ02Gef3/5iVO+FYRj9XY1eN6Aau6666irWrFnD66+/jsPh4PLLL+eaa67hL3/5C1u2bOFLX/oSd955J6eeeipPPvkkZ5xxBqtWrWLUKLkYGEqaomG25NBYMBQ1RELUR4L9XQ2Rg5pwgIgZp9TpYYutMevnnTxuugyxzQOJH0KIwc4KNWOFmgANo2IsmnSE9AmJH/ll1m1Jfo77RrxmY0tero7+Xr8VlIXhr5OpjKJLpr8u0Vg7xBVUTQFp7Oo7lmWxY8cO7r//fiZPTiwL+/Of/5wTTjiBv/zlL9x///2ceOKJXHLJJQB84xvf4KWXXuL+++/nhhtu6M+qizwLxRMBy6br2PWh/yXsSH0kiNOwYdcNDE3r7+qILDTHIth1gwqXG4ee/alVbmV6TuKHEGIoMH21AOiFFegOTz/XZniQ+JF/VjTRWavZXaD17lWOUgp0A0030GxO2OOaWSkL3ekFQPeWoQ3T+wqRHWXG0QKNaK7CxOdpKBsGDV0wgBq7dF3nueeea/NYaWkpwWCQWCzGO++8wxlnnNHm7wsWLODpp5/OuM1IJEIkEkn/HggM/VbaoSBmJabulTs9VLq9/Vyb/hG1TEzLYnJRGW6b9EINdDHL5PPGWjQN9i6pQpcGyj4l8UMIMdipWBgV9gFgFJT3c22GD4kf+aUsE5KjrGwjpvR645Iy4xBLTGG0j52DtmdjVzxKbPtngIZj3JxerYsY/MymXZil1WgOD/aRU/u7OiIPBvSggjfeeIO5c+dit9vZunUrVVVVbf4+cuRINm/enPH5t956K8XFxemfMWNk6ebBIGaZANiH6fD9qJlo6NI0SXY+WITjieT0Tt0mDV0DhMQPIcRgYvrrAdBdRWj2IT6iYICT+NF9Kp5s5NNtfTOKKnnPgKa3a+iCZGMYshKj6JpSCit5HjYKK/q5NiJfBmxrQk1NDTfddBPXXnstAKFQCMMwWLJkCR6PhyVLlmCz2QiFMick/NGPfkRTU1P6Z+vWrX1VfdEDLY1dw2N45Z5CyR4xp2HrMHCLgSe1EqNTGicHBIkfQojBRFlW+iZLL5RRXf1J4kcPxRKNXX3VYKtUsrEr0z1DKpeXXJ+JLqhQM8qMJhpqPSX9XR2RJwPym+/3+zn99NM5/vjjOe+88wBwu92YpklRURHTp0+nqKiIxsZG3G53xu04nU6czpaTrax4NvAppYgnVyActo1dyZxlbumFGjRSDZRu24A8pQ4rEj+EEIONFWwAZaLZnOjuov6uzrAl8aPnVDwK0Hf5jpKpTzSt43uGVOJ6GdklupLKmWgUlMlggyFkwN2ZBYNBTjnlFKqrq/nLX/6Sfnz06NHU1NTw5S9/mY8//hiADz74gHHjxvVXVUUviCsLpRL5JYfrNMbUKCHJ1TV4RJLvmUw77V8SP4QQg5HlrwNAl1xd/UbiR36o1MiuPmvsSo3synDPkLw+k5FdojMqFkZF/FjREOH3HyPy2X/SU2CHqsrv/nNYTJkfUN/8UCjEqaeeSmVlJf/4xz+wtRolceihh/LGG2/wrW99K/3Ya6+9xiGHHNIfVRW9JJWc3pZh7v1wEEyP7BpQX0+RgaUUETNxseWSnsN+I/FDCDEYWZEgKhoCTUf3lvZ3dYYliR/5o+JhoA+nMVqdT2OUkV0iG7Hd6wm8/TeCHz2FCjX3d3X6RnIm1VA3oO6mzzjjDLxeL3/+858Jh8Ppxx0OB1//+teZM2cODz30ECeffDJPP/00L730EnfccUc/1ljk23DP1xU141hKSXL6QSQ1Es+m69iG6WjEgUDihxBiMLKSU2d0TwmaxP1+IfEjf1Qf5+xK3bBnTIYvI7tEJ8zmGnyv/pHAGw8kOh0AW9UkCo7+BnpRZT/XrpfZHP1dgz4xoL75L730EpBY8re1m266iZtvvpnHH3+ca665hssuu4zp06fzxBNPMHr06P6oquglw72xK5SeDmcftiPbBpuwjMQbECR+CCEGG2XGsYKNgCSm708SP/JDmbFk45MGfT2NUeu4s1FZydUYdblGEy3i9VvxvfIHAu/8HWKJBm5b1SSKTrkO976n9M1KoqJPDKhvvlKq078vWLCA5cuX91FtRH9ITWMcrvm6QtJwMujISowDg8QPIcRgk1iBUaE5POgOT39XZ9iS+JEfLfm6HH3WYdvVNMaWkV0yjbGvxWs3Edv2WX9XYw+K0IqXCb73KCQbQu2j98Zz8FdwzzsTW3FVP9dP5JvcnYkBJTWyyzFMW9TTI7skOf2gEZIFBYQQQuRIKSWJ6cWQopIjZPosOT2kR3ZlGrnVkrNLbnn7UrxuC7tuPQ4V9vV3VTJyTjuMgvnfRC+uRNMNDBldOyTJN18MKNHhPo0xObLLI0F5UFBKyUqMQgghcqZCzSgzCroN3VPS39URosdUPJr4T1+u8JZKst3BjJDEanrJUXsysqvPKMui4eHvocI+9OKR2MoG1pRfo2QUBQsuxzlpf+K1m7GCDYmcicP03nOok7szMaAM52mMqeT0uqbJlLhBImqZ6fdsuI5GFEIIkTszNarLW4o2DK95xBDUahpjX1HpkV0dXIMlR3Wh2yQPbh8KvPEAkS/eRnO4qbrm39iqJvZ3lTqkzJjkTBwG5I5aDBiWUpjJxi7bMGw4CCZHdTkNCcqDRet8Xan3TCnFO7s3szOY3dDt08fPkFUchRBiGFGxSHp6jyFTGMUQoeKplRhdfbfTTnJ2qeQ1mkxh7DuxXetoevKXABSf+dMB29AFkjNxuJBvvxgwUvm6dE0bljf/qYYTj+R+GjT2XFBAKcVty97ggS8+ynobJ4/da1h+3oUQYrhKj+pyFaH15ZQvIXqJUio9jbFPP9Pp1Rg7auxKjuySKYx9QplxGv56NSoWxjn9SLyHX9TfVcookTOxHgCjsKKfayN6kzR2iQFjOE9hhJaRXZL7afAI75Gv64+fvZ9u6Dp8xPisGrF0GcUnhBDDhrKs9E2WTJ0RQ0Y8AijQdLQ+bFxqmcbYwfVWemSXNHb1Bd+rfyC64SM0VyGlF94xoKdnt86ZqLmL+7s6ohfJXbUYMGLDPDl9quHELY1dg0a41eqZf1u7lDtXvg3Aj/c5moun7defVRNCCDEAWcEGUCaazYnuLurv6giRFyqVr6uvRyp2No3Rimf8m8iv2LbPaH72/wFQcvYvsZUOrKT0e0qNrjUKygZ0o5zoOXl3xYAxnBu7IpKcftCJWSbx5GjEl7et5ecfvwbAd2YcLA1dQgghOmSlpjBKri4xhKSnMNr6Ll+XsizSqy12mKBeRnb1BRWPUv/QVWDGcM0+Ac9BZ/d3lTqlYuF0zkQ5Dw99clctBozhPI0x1GoKoySnHxwiyYuoZXU7+OXS11HAV6fsw1UzD+nfigkhhBiQrEgQFQ2BpqN7S/u7OkLkjYqFgb5diRFlpv/b0WqMqZxdkqC+dzW/8FtiW1eie0spPe9/Bvx9TJuciX35eRX9Qr79YsAYziO7QqkpjJKcftAIm3E+bdjFrcv+g6kUp43fm5/sO3/AB3khhBD9w/LVAqB7SjLegPtjkfSo4a4UO1wSc8SA0LIS48BITg+kR3ZJgvreE920FN+LdwFQcu7/YBRX9XONOpfImdgAgD4EE9NL/GhPGrvEgDGsG7v2WNVPDHzL6nbyq6VLiFomC0ZN4tYDjpdk80IIkYFSCpTq72r0HyuOFWwEMk+d8UUjbPI3Zr3JIocLiTpiIEjl7KIPG7tU8qa+o1FdICO7epuKhqj/v++CZeLe/0w8+53SvkyWDS99xQrUt8qZWNjf1ckriR8dk2+/GDBS0xgdw2wao1KqJTm9jOwaFNY11/PD918gZMaZVzGa3x1yyrBspBVCiGxYYT/xmg2gBtaNT3/QHB50p6fDvzVEQwA4DSOrmDIcblTEwKcsE5LJ4DVbP4zs6uC+QVlWyzRHGdnVK5qe+TXxXWvRi6ooPeeWdn+P7VqLigT6oWZdG4q5uiR+dEwau8SAELcsrGSPr22YNRq0Tk7vGGavfTDaHmjmkv88RnMswuSiMv5w2GmyqIAQQnRChX3S0AWAhlHU8TSfuGXhS46OGVdQInFFDBrpUV2GPeMoq97ZceaVGEmO6kLT+7ZOw0Rkzbv4X78PgNIL7miXg1CZsQHb0KXZnOgFZf1djbyS+JGZHAkxIKSmMNp0fdhNBUvl6+qt5PSfNuzio5pted/ucPW3dcvYGfIzxlvEzfsdQ4nT3d9VEkKIAU0lp+obxdVDMk9K1jQtY5xvioZRKjHCW25UxKCSytfVl6O6SI4oA7QOcnap1EqMunyX8kWZMWJbPyWy/gP8r/4JlMJ76Pm4Zx3Tvmw8NYXUga16r76uaqe0ITiDSOJHZnI0RFaUZaWHKGcso1RLT0qOIrEIVjSIYdiwwv5ubWMg6M4xCAQDqGgIp8ONmefz7/M7NnDtJ29gMYzzpPSCkU4PP526L1WxMPHGnT3alq1kZJ5qJUTfU2a8T0fsxCxzWKd9GqxiYR/EIhjKQk+NAhFt7PY1EDPjlNtsRCKhTstakQCa3YXLXdBHtRMis9TIrj5f2S6VD6qjkVupe5ZWN/4SP3Jj+eqIbfyI2IYPiW34iNjmZZBcdRNALxuD+/QbiZpm++dGgpimhWa3Je6NBpIO6jvY7Q75iVkmFTZPh+9HRxzG8BjxKI1dokvKjBHb/nmbJX47Eq/bkl56OFc+0yQSN3HoGiH74Jxbr8wYVvPudE9TtkLRCIZlYdgd+PN44nktBj8OgwXsa0DlUBwwZ5moeLRPd1mA4szmHZS8+xmGbtBs69lptOjMn2NzufJUOyH6jhVsIl67sc/2Vx8J0RDuvBFADEzxxu1gxtGbG9Blqfd2opbJ7pAf0LB7CmjUOun5UhZa3RY0FJMPPhubNHiJftayEmMfX8t0lrMrnZw+cU+xK+SnJjSAptXFItg/fwPbhg9aXscAoUWDGNs+xajb3O5vlrsIc+xc4mPnEN3vdOqjEYi278DQfDXo/kYsBaqpti+qPWxFzDhbA02Aho5GbTiY1fNmlFYNi9lU0tglumSFfC0NXRkuwJRlJYKdpgG5D0+KoUBTiYR6mZYQHsCUMrF8dYneC80g27R/CkVc00A3sBu2vL32/8Qsfhy2MIGT7Ro3unSMIXZCU0qhfPUoLXWR0Hevr0FTxHQDu2HvuEdRiGHASufj0JLn/t4VMs1EDNKGT2LVoUAp0JQFuo5ut6N11pAzTIXiEdB1PIYdWxdTULRAExoKbHbo68YFITqQ6ujW+nAlRkhce0OG1RjNtiO7ArFEx6imgdZfEUQpjC3LsH/yDPYVL6KFff1TjxyYVZMwx+6DOW4O5rh9sMrHpxsXNTLHYs2MoWkaus2JGmL3HwNNIB5F0zQKbA7sw2S0Vi6ksUt0SUUTLcR6YSW20lEdlrGiwcS9jmHHMXpGzvuw+RtxRyMUewrwurw9qW6fU5ZFfPc61MipaDYnthGT0z1JXQnHY5jN9eiaRnlpx0lrc/X69vX86J2nMYFTx03nfw5ciDEE56ebTbswm3am8wH05Rz8nQ27sZSitKgMl6ygKYarZG+0UTwSozg/56/ORBtrMC2LSUVleOR7N2ioeJTY9hJAwzFuTn9XZ8BRSrG6qZYCy2J8QQmFjswNBomR9qtBWRilYzB6OLJYiHxIjbDv65xdLdMY238P9hzZlcoNPLGw7+NHvHYzwfcfI/Deo5itRkMbJaNw73cKuqekT+vTJcOGffQMnBPndbtusWgzyqZjqxg18F7fEJKIHxplTk+X8WO4kigpupRu7MqwVDYAPZyvH0sGrGyWSh1IlFKYtZsSx0i3YauckHVDF0Aw2fPkzlPgfWPHBq585xlilsWJY6fx6yHa0GWFmgl++CThz5YQ3fARKtq3U5sKk//mY2D26Nu/QHNIknsxCHUyhSTflFLEk7nBbDIyaFBJJyqW6Ysd8seimJaFoesU2Ds/RmbjTqywj8B/HkTFwpR/6/96ZWEbIbKl4tFk3kYN+jxnVycxqNXIrnzGDyscwGzc3nXaFqWIbV1J4L//IrruvfTDmsODe99T8Bx0Ns6phw7JZOnQ0gDa55+JYSaX+DFcSWOX6JRSChVNDU/OfEPe016deDJgDbbGLrN+K1a4GTQdW+XEnPMVhJM3Ae48rJzx9s5NfPvtp4lZJieMmcpvDjoR2xAKoioeJbz6DUIfPUVo2fP9uqSx3FoIASqZAFjrg5V/4spKTIfTwD6EzmvDgpm86ZEVojrUkOysKXW4Om24UrEwoWWL8b14N5a/DoDY5mU4xu/TF9UUokMtyemdfd7wml6NsYN7B2W1jOyKKwtlKfTG7WgxP7HO6mmZmM27MRu2YTZsb/MTb9iOCjXlXlFNw7nXEXgOOhv33JM6HzwwBCjLSi/W1eej/YaZbOPHcCZXHqJTiREzCnRbp3PxWwe7nPehVKuRXYPnJsZs2oUVqAfAVj6uW8ErlKeRXe/u2sy33n6SqGVy7OjJ3HHwSYOu4bAjyowR+fwtgh89nWjganWRoRdW4Jl3Ou55Z2ArG91ndaoJB6gLByl2uKn25CExsORcEYNVqle9D/IspmKETdPlgm6Qab0EvWgrbln4ktdPJY7MscD01dLw8CLCK18GwFY1idLzfyMNXaLftSSn74dGDZU5BqlWI7tiloX7udtwvvdPduVht5qrEN3V9fWfXliOZ94ZeA74EkZJdR72PEgkPxNoRsf51EReZBs/hjtp7BKdSk1h7GqaVUuwy/1iNnUTk+ixHxwnRdNfj9m0EwCjdDS6pzjnbSilCJs9H9n1/u4tfOutJ4mYJvOrJ/Hbg0/J+3FUlkXw/cfw/+f+9GeiL5jNNahgY/p3vWgEzr0OxzntUJx7HYG9fGyf1SUl4mtAOQpxewoxXEO7d06IzqRXnu2DhKixQTr6V4AyUyO/Jc/anpqjYZQCl83WYf5HpRShD5+g8V83YAUbQNMpWHA5xadcJ9PfxYCQuv7vl+lqZmoaY9u4oJRKT2PUDDuRmk04Png88bursIsFVTSMogqM0tEYJaMwSkdhK038a5SOwigZhe4u7OT5Ij3bR6bV9aqu4odIkMYu0alULiTd0flNfU+mMQ62mxgr5MOs3wqAUVSFUVjRre2EzThKga5pOLrZ2PVhzTYuf+tJQmacI0dO4O5DT8GR5xvP6OZlNP7rJ0Q3fJTX7WZLLyhP5DeYdxpG5SSs5l2J/GgZFkvobeHkBZRLpuSI4S41haRPRnYl9jWUpmYPG8mRXeSQz3K4qE9PQWnfcBVv2E7jI9e3Gc1V/KWbcM8+vk/rKERn0jM7+mFkV8s0xj3igmUCKvF/3Ub4tfvQrDhq8sGMWfRE31ZyGOq3BQuGmc7ih2ghd2uiUyqSHNnVyRQ9ZcYhmbuFId7YZUWDxGs3AgrdU9qjYcmpKYzdXRVmWd0OLnvz3wTjMQ4bMZ57Dzut241mHTH99TQ/cxuBtx8GpdCcXgoXXoNz4n5520dXNLsb+9jZaIYtuQrV5wAYJSP7ZWh03LLSIxE7a+xSSslUKzGkKctKJiWmT3IxxZPfO8cgiBOirZaRXdLL31rEjBOOx9E0KG41BcUyTYLv/I2mJ3+BCvvBsOM99Dw8B5+LY+ysfqyxEB1IN2z0wzQq1fHIrlS+KHQblq8W871/AWAce0UfVm74Ss/2kXN+r8kUP+T+oz1p7BIZKctExZPJ6TtpNU6vuGHYu7WqyGDJ16XiUeI1G0FZaM4CjB5OoQsle7u7M0JoTVMtl735BIF4jIOrxvKHw07DmWE7m/2N+GPR7Ddumdg/fBzny/egJ3NkReeeROSE79FUVJVzXXusOZEXLd60ExVqRrO7sMVMaNjdJ7s3TZOwP0g0EsUXDFHT3AQxkzUYxCJRRowbReWYEQA01tTz3vNvUj6qiv2PPSSr7U8vqUSXwCQGm9RNBh0nB8636CDqFBFtteTsGn4ju+JxE5/PRygUJhSKEAqHCYfDhEMR6vw+ikZXMnniOGy6zo4du/jXP59ihLmDw9f/EQD7hHkUHX8lRmk1RtGIYXkMxcClLKtHaUx6tu+WGLRnzi5ltiye4n/tPohHiI+ZTcHUw/qyisOWrMSYHznHj0efZdy40Zx5xsL+rvqAIo1dIqPUFEbNcHR+gRXvfnJ66P7ILrNpV3r4dF9QkQCYsURjS+WEHrech1L5unIc2bXF38QlbzxOYzTMjJIqbthnPjXhjvNoxSyTDb6GrLft2rqCES/eiWvXFwCEqyaz+/jvERq3T6JA0JdTXfNFxSKYjYnGLcNdhtbDesQjUfw1jcQjMeKRKPFIDDMSJR5N/F45dRxlExKj9ny761nz6ocZt+VwOykfnWgE1AyDeCxONBzBUqpHdRRiQEsl/9X75jJisHSKiLYSIwCTN6VD5MYnFAqzbdsOQqEwwVA4eSMSJhQKEQqF2W/f2ey991QAduzYxSP/fCrjtqY6DIqnTSW8+k18L/wv0fjBhMMhNIebotN+hHu/07CadoJuQy+q7KuXKER2Wici7+uG2HRjl9auo10lr6+taAj/mw8CED7qG5T1QX5JQavRfjKNcU/5jh8le00DwG63E41GCYfDffI6BhNp7BIZpRu7ulhlsGUlxu5dyHanscuKBNMJ4vuSZjiwVU7s8UgGpRSR1EqMOVwg7A75ufg/j7E7FGByQQk/KXCili0mU8r4iBnHHg1haDqlzs7ndDu+eAvXsucAsFyFBBZcQXj/L+M2bPTnbHCFwvLXoGx2NHcxRkFJ4nFLoZRCNxIXOeFAiJrNO4iGo8TCEaLhKNFwhFgk8e/kfaYzZvpEABoaAqx/c2nGfY4YE6MsebwcBYWstxnYnQ7sLgd2p4NCj4dirxeXy8XYcaMYU5zI2xb3ljLp4nNwu124XNkN6ZdRXWIwUqmFRfpopFVLzi65WRlUklMYB9qqXJZloZTCSN78+nx+1qzZQDAUIhQM7/FviMMOO5B99pkJQG1tPU88+ULGbU+cMC79f7fbhd1ux+124XY7cblcuN0ubA47Ic2iKrqd8F1n4dv4MU4MTnYuo3Tf46i84j8YpaOIbV8NgFE8os3xi5pxtgaamVRU1huHR4istCQi74dGDSvDFEZId8aEPnwSFfZjjphKfNoREj/6gFKqVc6uodHBsacBET90RUV1FYXJ715JSTFfv/Q83O6u7z2GW/yQxi6RUXolRntXKzH2rAU/ls7Fkn2PvQonRvZoDg+6t7Rb++0O3VOcl96rVHJ6Q9ezTijfGAlx6ZJH2RJoYpQZ4dbX76AiWNfpc7xATqcyTcM44GxcJ30fbzcT7/dEPJ5IKmqzJU5NvmY/a1euJNjUQDgSJ6rqCIc+IxQKEwlHOPjIA9l79nQAdjZHeOu9FRm37bY0xiUbykoqdDaNqMDlSgQPZzKIOF1OXG4npeWlFBcUJZ5YUMKMb12Y3o6maZQ4XB02UjkMA4+zPD8HQ4iBLJWnsQ9uHpRS6ZxdMrJrcElPYeyDlaLi8URctdsT8aOpqZlVn60hGAy1+wmFwhyz4HD23XdWuuyrr72VcduBYEuXUkGBl+qRVckbEBdutxu3x4U7eSNSWdkSdSsqyrjm6m+02ZayTLa88wjqtfswdn1BDMDuovjQCxh93BXYSkcDYDbuBCtOVLexLhpj1dplrGzYxacNu1nTXItN0/n4zCsx5Dsh+klLZ3d/JKfP3OGirBhWNETg3UcACB/5ddB1iR99IR4lsTiANqgauwZL/IBEeprmaIRylyc9y8hmMygrK2lXNmLGWd1Yw6qG3cM2fkhjl8gom+T0QEter2727KRysdi07L9wVrKxSy8owygYfI0LqXxd7izydcVrN1G/7Hm+uWMnXziKKIv4+fXSf1ARbsQqrsZWMS7jqLiwGSeuLJy60eXIOd1bQuFxV+KYsG/uL6gTlmVhWQqbLbH/VAAJBIIEAyECwWDi/8EQkUiUY445gv2SASRY08AnH3+ecdta1KTclfh82srLmTp1Ih6PG08yeCT+deNxuygqKsTlSnxGy0d6mPjVs/P6OoUYTlRnvep5luoQ0TTJ2TXYpJPTG9276elJ/PD5Arz11vsZtx0MhtL/Lyws6DJ+pJSWFnPBBV9CxUKokB8r3IwK+1HRJqAJancRqe14n/Hd62l++V70mg2J4+IsoODIiylYcDlGcpripw27+KRmK8u3rWFVoJl1oQBmB9PivQ4Hu0J+RnmLcjqmQuRLS76ufhjZlU5O38G9gxknvHQxKtSEUTmB2KzjJH70kYG0EuNAjR8XXvjlbr8m07LwJRuZSxztR3F92rCLT2p38GnDLlY27GJtc92wjx/S2CU6pMx4y0VqF0uaqlj3h6ualpXObZRtEFKWmW6I012FXZTuG8qyiO9eR3TDR1j++i7LB6NhnGYMh82BL8NFghVsILzyVQI7vuAns77Ep2UTKIyFuHP3J+y94BvsmnggkRFTmVBURkGGxKCrG2uIWxZVhaV4ezF5qM/nZ+26jQT8Qfz+AH5/gEAwhN8fIBQKs2DB4TkEkFY9IFqIGROr8LrdFFSNxuN14/F4EgElGURSiouLOON0ScooRJ9IL/ne+5cRsW50iIgBItmxQycju3orfhQXFzJ71vRk3Ej9ZBc/lBkjtvVTIuv/Q3TDRzQ37qAp3NKwZYV8LaMbu8FyF2MeeiHjF16J7ikBYGX9Ln6z4k3e2bW5Xfkyp5uZpSOYWVqV/ne0p0hW3RL9ql8bu1IdLlr7ewcr4if4weMAOI+5AnRD4kcf6euVGAdi/OhNTbEISiUWN2ud81niR2bS2CU6lJ7CaHN1mmdDmfFWyWdzD3bx5NL1uqZlPZRShf2AStStn4bIWpEg0U1Lia7/gOiGDxONXIHsE8EDuAELaOqkjInGr2aexkdlE3AD9x1yMvMm/QTTsog01iS2k2F0WMwy01N/ck2CDxCJRNi5swafz4/fH6C52Y+vvgZ/MEwgFOHAWROZM20MAHW7G3nllY8ybqt55xaiOxLvlScSYcakajxuB16XE4/bgceV+PG6HTjsNqI7vgClcPt3cszMCoyKCehOb6stKrCCqEAQs+NdDhp6QfmwCTii91nBpnRy3t5k+mqwAo2gGZi+DMNY8iQSi2AF/RiGDdOQ78pgEInE2FVTT1PNDnxNjQTMjQRjH+EPhPAHQxy83wzmzpwMQMPOWl555c2M2/LX16Y/Y4W2ODP3moDX7cLjceH1uPC4XXjdTjweF06HPV3WAxx32OwOttg+fliBBqKblxPdtJTYpqVEt66EWBaJfjUdzelFdxWA3Ql0/vnUbE5CMxbg2+cURhRVoMw463eu53drlvL8jo1AolH3kIJCZrg9zBoxkZnl1YxsNV0lUeEYlr9O4ofoV+lFovrhWlylO1za36OEPnkOy1+PXjwSfd4ZEA7JqK4+kl6JsQcd7Hvef/h8iUYsX7Ix65BD5rHvPskphM2+TuNHIBBI/7+kpIhZs6bj9brxej14PR683kQDltfrwelsqXNhYQELF87v9mvoLQ2RxIiyEmeisW2Tr4E7V77D4i2JWTB2XefQEeOZlW7YGsFId8GwjhPS2CU6lPUUxtR8fcPRbjWUbKR67B25JKdP5etyF+S8v54IrXyV8KrXiG74kNjWT1utBJNkd+EYvw+28rF0dsGrgKZk8v8ie8e5nwAwbNxWOo03/AHsusHvjziDeSPGA4npiZA4qWVqJAzHE2WchtFmH/F4HJ8vgM/np7nZR7PPj8/nx9fsZ+asvdh7emIVkJraev716DMZX0fTzi3E3IlRbO6IycRyBx6Hjteh43XqeBx68ncDl91PbMvyRH2Ao8cAxCGVWj+a/GlOPNqa7ipEBRsxg40Z6zKY6d6yxPwsIXrICgeI127sk32ZzbsTDWuW2dLh0UvC0QhmNIJus2PG/L26L9G5uGnhD0bwhaL4ghF8gQj+5P/3nlDFXuMSuR531zbz2GsrM26n5r2nafgk0QOtLAfjjIl4tBhuLYon+eNO/u76/B0avmh57oEZthlK/uRCmTHiu9Zh1m9t9zfNVYB91N7YR8/AKBudaNRyeNCcXjRn8l+7C03TUEq1vyboQMSy2B4KQLCJUDTIzTu38HjNDuJKoQEnl1dxRVEho1QMzenF5nVDuBEr3Njh9iR+iP6izHh6dKNmy25BnrxKdubuOZVemXEC7/wDgMIFlxNJ/l0au/qImcrT2H4ARL7uP/y+lgas4qJCpkyZQIHXS0GBl4KCRAOW1+vBW+BtMwKroMDLiQOwAStbETOeToMTtUxu/uhV/rV+BXFloQGnjt+bq2ceytiC4v6t6AAjjV2iQ+mVGLuawhjvWa9OtBtJhxMju0B39l1jV+Cdv9Pwt++3ecwoHYVj0gE4Js7DOekA7KNnZDXSLBiPsaO5HkPXqSjpeClxpRS/XvYGT37xEbqmccfBJ3FYsqELWhq7OhqxFQ5HaG72sbmmhp319YwaOQKSqwVu376Tv/39iYx1q6qqSAebosJCystKKfC68NgsPKYfr9OgsLSEApeTIo8Dw5E4hRQDp4zo8qXnTtMxiir6fknrviQ3KiJfUivf6bbESJNeZIUD6JaF7i1NT8PqLaYeRNcdOJ0u9C5WlRU9E47E8AVCNPtDNPmDjCgvZvSIRMLcHbsbeGTxfzM+t6qyLP1ZKC53UlZcgNdm4XXqOHauwLF7FZ54M27TjzfeQNhKjJwygMM6qVM0T6+tK0bFeBxj52AfOxvHuNkY5eM77cRT8RgqEsAKB1CRACRHqnemPhYjEIvyUnMTTzU1Ek6mcTjcW8BVlSPYK72Kryux8nNX08Mkfoh+ks7N1M3O7p5XoOOcXcEPn8Bq2onmKcZz+Ffxy+ImfSYcjlBfU0tTYzOB7RFGjo0xZnQ10M37j0IvhQVeCgsLKCjwUljoxev1UlzcksKmsLCAM884sXdf2ADREAkRjMd4fsvn/Hvjp4SS94JHjpzA9+ccwd4Z7imHO2nsEh2yUtMYHZ2P7KKHyw6nRnZlna8rFkk2sGlovXwzl2JFgjQ982sA3Pudhnufk3FMmpdeMSlX4WSrvKeT5PS/X/Ue93+RmBb4y3nHccKYqem/RaMxmoKJXg2nYaOxsZnXl7xNU5OP5mYfkUjbWwPbfjNh6hQg0asBYLPZKCoqoLCwgKLCAgqLEv+OHFmVfl5RUQEXn3cS8dpNWL46rJCBrXISjnEdTQsRQvQ3lZoW7vBgqxjfReke7ssyUWEvRtlYjILeXb5a+RsxohFcnkJsri5ikkApxfL6nfhj7ZuJzHgcZSlsjkQHQtgXZONHnxEOBIn4Q5ixtmNrR8+cxPjyxPsbSU6b0A0dp9eNw+vG6XEl/u9xES0v5r3U051upp96JLHd64nvWot/1RuE7Dqxw86ieSB1XmgaRukY7COntM8BaiV/khQKFQ2josHET7z18TWSP503Pr0T9PP47m34kjcps71FfG/cFA4sbvsdMooqMUqqu/2yhOhtKjXNt5/SiaSnMbbK2aUsC99LdwPgOeBLGK4CYv5GQEZ2ZSu/8aOB8UZiO5FQYhBFpvgRLvfy9s5N6efuddIhbbYVSP5AEJqCneeAGaLe2rmRRzespDk5q2pO2Uh+MOcIDqoa2881G9iksUu0o+LR5NBkDc3e+dDklkSEfdPYlZ7C6PR0mkssn/yv/RGreTdGxXjKvnZ3j/OEBZNDfF0Z8mj98bP3uWflO4yM6Jw7ajojdwR5bvWrNDY209TUTCAQZNo+05m834xEvi49xtq1G9tsw+1OBBBXgYeqyor044WFBXzn2xfjdru6nL9t+moxG7ahLIUVj2CUj8Uo614DnxCiD6RW3OmLc2Nq+koWK8r2VGyY9Mz7ohFCPcy3ppTitk/+w0fr1lIY1yiMaxSl/9XxWBqfFMX4sCTx/nnjGudvbxvnQ7rCb1P4DMVrO1ez7o1PkxsH52iI6ICWnEYSAxqTP9s7qdicc5IbTz1pAPGth83r+3SXEwtLWTT7cI4fPWVY51IRg1h/JqeHlmmMrWJQePkLxHeuQXN68ez/JWBgxw9lxrD8DSQSnPSMLxYllMVU6k7roxT/89lHfLx568CKH6KNiZ4irpk2l+OqxqJpGmbTrm5tRy+qGhbxRxq7RDvp5PQOV5dDk3u66kauQUhFEifIvlqF0fTV4nv59wAUn/ajvCTED8fjifwekRhb63fQ2NBEQ2MTlRXlvEUDd6x4i0JT49TdTgK7N/AuG9ptIxBIvEcuw4atwMExxxxBSXEhRUWJH91msDqZwL71sFZN0/B4upiaqhRmwzYsf13iAV3HKB6BbnOie0t7/PqFEL0kvTpVH1y8pG40OlgJK99y7RQZjKKmyabkCISuKKWIhiMEmwMEmv0Em/0UlhZTPWkMz23+nDc2reHc3Zk7qqo0J+O83tTGWGVahBwaIbtG2A6m3vbzM667LwqF5q/HCNSDbhCvmACDbUU0ZSVyE6VooGl64nV047U4DIOTx07na1P3xabrRMzuregYisfQNI0SmdYr+kk6Z28XneK9Jh3vEt9DpRTNL/4OAPd+p6J7S4CBHT/idVtQyU78nohZFhuC2eWzVEoRi5oEAxGCwSjBQJTCIhcjqot5vm4Xb27f0nn8UHbGOpOd9Q5YVQlBO4RsELFZmCoOGijDARjImKP8ceg6J5ZXcWH1WGyaTrCxey2EYdMEDSoLK4fFVHhp7BLtWJEspzDSOtj1/sgupVRiuW9A66PGrubFd6AiAezj5uLe99Scn6+USreah8MRXnn1TbbX1BJo9hOPtu3ddowq417bNgAumXMwrtAGiooKKS4uoqS4iJKSIoqLi3AVuNkaDaBrGo5kj1ZqWd0Uf/J9cRhG1qtcQmJYeLx2Uzr46sXVqEA9Kh5BL6ocFj0AQgxaqZxBfdCDnWoA0IzevYFQSqVXlR2INyv5kjpn23WdgmQ8bR0/opEoH771Ib7GZpobm4ntET/GTRlPtMrLA2s+QhkK022npLgIZ4E7+ePBkfx3nsPOaX3wmrSG7Uz6y8UYkQC7Fl5L037H9MFe80eF/Zi+3QBoriJ0d0GPE3HrJFbR2phlw2ZHImac7cFEjD529ORurbYsRE/1dGZHj/ev2q7GGFn9H2Kbl6PZ3Xj2PwPNsA/o+GGFfMlrba3HHcmBaARdGdh1HW/yvqBN/IjG+OTjNfiag/h8IWJ7TDccO66K6Eidh3ZsQRmKuMugpMCD0+PE4XEk/038fx+HjZMz1EMP+3A078Kyu4l2M9WLyEzXNErsDragd3swYMQ02ZFMd3OcGcej98805L4kjV2inayT05uxlpurPpjGqKKhREJKzeiybvkQ272ewFt/BaD4zBs7HeUWi8Woq2uktraOuvpG6usbqK9vZPSokemla+12G59/vg7LakkCUlRYQElpMTV6jOd8W8EG35lxMFfOOgRmHdLhvhoiIYgmRnVlEkquxNhZmT2pWIR4zUZUPAyajq18HCiLeDySSHjt7d28PEKInknl7NJ6efSMUqpVcuDevYFIjf7VNLANwGko+RCLxdi0fQe7auogECbUHGgXP0yXyb/XbuowfpSWFuOtKGHRJ69jKcWC0ZM4+diDMXS9XzsoHM//DSMSwKyciOewC/AMsJvNzqhIiHjUDw4XuqcEo7g3VmDJXcSMszPkBy05snuIfifEwKaUauns7qecXZhtY1DzC4lRXZ4DzkwslGHYBmz8UEphJkfl6IUV2EpHdXtbsViMbVs2s6smnDl+mCZPP/lO5/Fj7TtYJOLHKd2MH1pzDZrdjvKUoHrwmkTviJhxagLN6A43LsOGvZc7KwcKaewSbSil0tMY9S5GdqlYq5VYunFBHbPMdIqZbKYxpkcbuQv75AK++elbwYrjmnkMrmmJtaJM0yQUCqcTvVuWxf0PPEJDQ8eZEh32lh5XwzA44Ij9iRoa1ZXl7FU9GpvNxj/WLuOuj18FL3xz+oFcNbPjRq6U1LQHl2HDbK5JNDruIRRoRotFcbk8xGPBLF6twgo0JvLwGHZslRPQHR5iOz5P1L2won9W2xE99sorr3DTTTehaRojR47knnvuYcSIEVx//fUsWbIEu93OSSedxI9//GN27tzJOeecQyAQ4I477uCoo47i2Wef5ZNPPuHGG2/s75ciutJXUwtb5wXRe/cyoj+noARiUXzJG7p8ME2TSDiCx5uIrZZl8cwjz9Dc2PE0Fs3Q2Rls+dv+h++P2+2iqLSIwqJCDFvimITNON95+2kaIiGmFpVz3qQ51EeCjPYWU2Dvp+TROz7H/ORpAIwTvkepy9sv9egOFYuAbyfoGrhKoXzsgBjVHIrHqA0FKLDZcdvsjPYWYevlhm2JH6JD8SiJoSVa/yWob7UaY2Tte0TX/hcMO55DzgNA0+0DNn6oQAP46hNTMEvdaMGupzIOhvihdA3sDnAXoDn6aXqr6NBwjh/S2CXaikcSo7U0HbpMTp9ciaXbUxgTN2a2LHsP0snp+2AVxsiGj2lc9ioN7knEp32V/z73CjW7a6lvaKK6uorzzzsTAL1VA5DH7aKiooyy8lLKy0opL0/8tDZ2+iQCsSjV3iJsNhv/Wr+Cmz5+FYBv7LU/i2Yf1uWxSC016ww2YIYaO66/vxHdtHCoGFYskPXr1hzuxHLnhh0r1JxYbUfT0Qsrun6yGHCam5v59re/zTvvvENFRQVvvfUW11xzDSeddBJ1dXW89957AFx22WW88MILfP7551x55ZUcf/zxXHLJJRx22GHceeedPPPMM/38SkRW+moaY6tcKb3dCNCfNytbAk3pKTC5ioYjNNc10VzfiK++iea6JgJNPkoqyzj4lKPS5eJWosfHcNpxFXspLyujoKQQb0khBSWF1IZbOivKp4xJPAdoiEcgnuig+t2n77CmuY4iu5NFsw6nMRoBFEUOF+Fu5oTqEaXwPvFz7MoiMvlgAmPnoIez6XQZAMwYes1GNDOGcrixPGUQCfV3rQibcXYEm7GUwmXYKXG6aYiEqfYUdbH+Y/dJ/BCZpFYi1WzO/msIbrUaY2oFRu/B56AXlCU6xw1jYMYPy0Kv2YxmxrCKqhIDB/ZY+XCwxg890IwWDWPFTdRgOecPA8M9fkhjl2ijJV+Xu+sAlg523U1On8MURstEJeumO/Pb2KWUIhgM4U32liil+NvjL1E3/geJAkvbrtLka26bBPL0007A43Gnn9/ZfkLxxCgsj2Hj8Q0rufHDlwG4eNp+/GDOEVldNITNOMQiOIJ1YBjo3rI2K6KZlkXUSmzHXVSefc4u3YZeUJ4ewWU2J3KVJB4bHkNdh5ovvviCcePGUVGRaKw8/PDDOffcc6moqODoo49Ol1uwYAGvvPIKEydOJBAI4Pf7sdvt/OEPf+D888/H4+k6f58YANIju3r35iO95Hsvj+qCVp0ifZzYPGLGiVsWmgblzsyff6UU4VAYd6uFPxY/9jx1u+s6LB8NhqlwtWxvwYlH0USciAFlTg+V7txGQP1z/XLe2LkRQ9P4xbxjmVpczgZfPZqmUe3pm9yWe7JWvIi14QOwOXAcdQkedyGaa+CfQ5RlQs12sBngckPlpD5ZbbQroXiMhkiIIrsTt83OGG8xevI73pvfdIkfIhPVzysxJqbSJ2KD6a8nvOo1AAqP/Q7KSlxna4Z9QMYP5atNnGOcLlTZaCKR6JCJH8rQwemCguKs8j6L3ifxY5g2dsWjIeL29m+xpusYrXJPxaOZe/M0TcNoNfIpp7KxcMsS8e0LY+tmWTMWTgSADGyt8lxlKhsP1GPFIjgKW1bwM+MRVAe9E/FQM1YsgrN1HTKUTWm2FLvCAZRSNISaqQv68NodhMLtVxFp3WNkBRqIN9WA4cDW0H6JVc3mSOepUWYsfTPWkUjUpKm2iaaaBhpramiuqUM3DOafsxAA2xdv4AzuQHN7cBd4KaqspKi8hMISL4XFXlxeNyt3b2670UAALWxPNwopM46y2vaIRMw42wJNaJrGf7at5a7P3kMBp4yewqnVE/m0ZkuH9dWMlu3GzBibGnejN+4k6nBgOL0YLgXJqYyabiOsYLtmxwaouAl0fCw03Za+kFeWmciJFt6a+D0awmzYCmjYHIVotdvQDHtL2Q6mTrZs12gpq6x0D2BPy6Ib6OmyKn2x1eOymo7eqsHWioXzVFZDb3U+yVR2WnEFhq5nfY6Id7bPPUyePJlVq1axdu1apkyZwnPPPUdjYyOzZ8/miSee4JxzzgHgueeeo7i4mPPPP58LLriA++67j3vvvZdQKMTBBx+c9f6Gg4EcP+LREDotObt6LX5EgsRjETRA66Dubcp2ERO6KhuJBLBiYXRda5Nw14xHOz3PG3ZXDmWd6WNmmTEsM44vEsKKhfHYbFTYWi6VQpE4O3fVsnPnbnbu2MGunbswDIPLvnFBukyx2069ilFcUkbViEqqqiqoKCuioryEggJvm06N8qoKPm+qxavbmFxcjsdmxzLjWJ2cY3WbHV238fauTfxp1X+xWybXzz2S40aOwx+NUGoYuJL1TpUFsKw4VryT7Rp2dCP3ssoyMZPnbhUNseu5X2Oi4Tngy3hLRuLweLG5C9uV7Xi7tlbnbguzk2mkuZTVdAMjee5WSmHucR5VShFv2IKyYmhON65Re6PZnR2WbbvdHL733ThHBGJR6iMhinUNr93FWG9J+kYFEt/bnM4REj/61UCOH7ncf5jBpsT5P9nYlY/7jw7LZogfyowTj0Ww2Z2EP1sCSmGMmQUlI4ltX524JjZjROLhARU/gsEI2zZsZlddM7ubI+yu/WjIxA9NMzAdDsCB4S3u9D3OFD86LtvqPD9A40f3y0r86Iv4MSwbu168cyFOW/s3csSUwzj4/N+lf3/h9uMyfkjLx+/H4V+7L/37y3edSjTY2GHZklEzOOobD6V/f+33ZxNq2tFh2cLKSSy44l/p39/434vw1azvsKy7uJrjr24Z3vfW/11O4/ZVHZZ1eEo48dpX0r+/+/erqNv0cYdlDZuDk65ZnP79g39dx661b3dYFuDUH7yW/v/HT/yU7Z+9mrHsrCufxiTRcNP0nz+g1vwHP9DRgrkTvv53DHcxALvf/l98n7+ecbvjLrofe1EigWztu/9H0yf/zlh2o+tLRPXE9MLy6MdMiH8CwLo/tryfBcDU0NuMPuVOXCOmAdDw8eNsf+b+jNsddcatuMfMSby2lc9T+8YfOiyngJfHHI0qGMUJY6ZyltXE+j99OeN2Ryy8noIpRwDQuOZN1Mu/wQQ6ahqrPOYarMmHYymFtmMl617+n4zbrTjyCornnAJAaNtKtj/5o4xlyw69lNL9EnUM717Ltke/l7Fs6QHnU3ZQInBH6zaz5R/fzli2eN8vUXHY1wGINe9m80OXZixbNPtkKo9KbMsMNbHxL+dnLFs4/Riqjl0EJBqZNnRyfL2TD2PkiT9O/77uj1/KWNYzfn+qT/1Z+vf1/3texoY016jZjP7SbenfNzx4MVa4uV25deR2jrCXTMxYvz2Vlpbypz/9iQsvvBCn08n8+fPZd999+frXv87q1as5+OCDmTBhAg6Hg/3224/S0lIWL17Mf//7XyorK7nkkksIh8P8/ve/Z86cOVnvdygbyPGjoHQ0R5z+83TC3t6KH+89dh11W5d3WNawuzjlR2+lf+8qfpz+0w/T/+8sfmwATr7+zfSN0LLnfsWWZc9m3O7C77+MM7nC1cqX7mTjh49mLHvcVU/jKUkk0/3std+z9t2/tvn7p63+v2f8GJuMH8/d9sd0GRswFTjy/P+jdPRMANa88xBvPHJXxjqM/dKv8VQk6rDx43+z4vnM5+6Dzv0t0VGz+N67z7FP4wa+svO/8MW/eG6Pcp8B+591G6NnHAvAjtVL+PCx6zNud9/TbmLcPolVh3ev/S/vPXJNxrKzT7yOSQckLlbrNn/C2w99q+WPNmDEKFj/Bqx/gxkLrmTq4RcD0LhjNW/85WsZt7vXkZcx/ehvAuCr2cDrf/xKxrJTDvkqM4+7GoBQ005evivzGpMT9j+buSf9EIBosJEXbj8uY9kxsxYyb/wvgcTNwHO3HZGx7Ki9j+GAs3+d/r2zsrmeI/Y9/x42+RuxlGLzQ5dihppY2UFZiR+Dx0COHzndfxRUcvRZt6UXp8rb/UeO8ePESx4gvDIxQ2KDt4D3M3z/JH606K34sc9JP6K6agpoBjUbPux+/NjDjGOvYuqhFwGDI36MnXsK+51+MyDxY6DEj2HZ2CW6ptmzX+0wl2mMccsC3WC0t4g6m4PGTspOKixNB5uIptNZ+saJhSV4isvx+fzUBrpOKFxeXsqIkZW4G2vwrfkkY7lxBcWUFJcDsN7lob6TbY4pKKI8WXaT20ttJ2UtFGdNmMlP91vA9uXPUdNJ2WpPIdXJ7a7u4piNdBeg3EV4bQ4c3hLWdlK2yu1lfHK7dY1FbO+kbKXLw6Rk2cZAMds6KVvucjM1WdYXbeqwUS6lzOlmWrJsUEXY3EnZEocrXTZi09nYSdkihzNdNh4NsaGTsoX2lrKQaHzKxGtztCm7UdMyjJsDj83WpuxmXad72X965tRTT+XUUxM3sF/96lf57ne/i81m48477wSgtraWQw89lPvvTzTkfvTRRzz88MN4PB5uvvlmxo8fz7XXXss///nPfqi9yEnqHqq3V2Ps7prXA5zP56euvqHLchUVZYwcWYW7sY6mLzLHj1y4bfauCyVFrDhXvv00jdEwYwqK87L/XjXIFjcZCFMXTaXSNyoFdgdGJ7GmN0n8EB1LxACtmyux560Wlknks/8AYBRXQWNnV5y9K9v4UV7sYWT1SDz+IRY/krNZNLsD+j/N4bAm8aMtTXU2znCI8fv9HH300Tzz5F87zK802IYR53saoxUJEt+9DnQbnon7tZTtYBixMmOJocJouCft32q4b+dTVr4I+LCUYkpRGVua6wjFIoz1FlHYwaodqWHEKh4lvGU5ylLYR+/dJn9UU1MzGzdtZfvOOrZv20Wzzw/KREs2K3z5Syczdmyit6Ourp5QKEL16NE4nYn3OTXkOPX6d916LFbTLorP+DEFR30dw+ZI76912Y60Ldt2GHHcsvjxhy/y4tZE89P5U/fjR/sdg65pWQ85Bti0/mP8TTWUFZZROW5W+7KGnXX+RiKmyThvAZ5ObnozDSOO123GCjahe0qwlY9NlpVhxDmX7aVzRCAY4tTTL2TJkiUUFGSfv+7hhx/mH//4B88880x6YYVYLMYZZ5zBhRdeyHnnJVYwOvPMM/nDH/7Ar3/9ay6++GLGjx/PJZdcwhNPPJH1voaiwRA/4js+R9c0bCOmojs9vRY/onWbiTfuRPeWYisb02nZnk5j/LypFtOymFhYSkGrlXjzMQ2lq/ix//GHcfBe07Hpepfxo8M6ZBE/1jTVErMsJhRXUpTMxdJZTFBK8YMPXmbx9nVUuDw8Nv8rVDlb3scNvnpC8ThjvEUUOVx9Oo2x/q/XEPr4GRyT5lH2jb9g1m5Eszlwjpk5YOOHGajHrE903xhlozG8Zf0ePwKxKFuCzWA4KLA7GFdQ0umUeYkfA99giB/Z3n8oyyK+/VMMmxP76Jlohq3PpzFaYT/xmg1Y21fT+MgP0YtHUvWzd7EiAeK71oFhxzFq+oCKH/7dW6nyGrgKS7GPmDzk4ocKNKJ8u9E9Jehlo7s1Db7jsnL/kUtZiR/t9X/3VT+wOdxtTqadlctlm1mX7WKVw+6WNXpY1owEwO5Ec7VNSmh00HNjhU2U3dluJZaOyqYopbBUYhqXTTcwdQPd7sLlKsDWSa+EFfZhGHZwe2gOxPB67bhcif1s3LKG15a8ny6raRpVI0YyZvRIRo+upnr0GGyORNkR1aPbbTtxwk3su/m1P6E17cRRPpbioy9rl3izddmuJE6iia9XMB7jmveeZcmOjWi6jevnHsUle83rsGxnrEAD0bAP3e6kYNS0Dj9zpmURMRNB2WN3Y8uyR13TDWwONyoWSeQ3sDuxlY9B72AfqbJZbVfTe6ms1itloRe/93k6R9hiufdP3HPPPSxevJhHHnkkHWiampq44IILWLhwYTrQLFmyhOnTpzNy5Eguu+wyLrzwQuLxOHfffXfO+xyq+it+NEfDbA0kVtPJJBYKgmVic9Vm2ePelHUdoWUKrulvwopEMOxRdH/7qbmty2azXWWZmI07UNG2qzcpYFty+zFvYZtcE7lSShEMRHE4bdjtiRuIzRvr+GJVy3B9TYOCIi+FJW7wGvhC2/lsfds6NazrbFxrbiKWxbZICE3TiNdtQusgXaylFDWxCFvCIbZEQnwR9POxrwlD0/hu9Th2bVlJ6yyWG8NBLKUIu9zY+zAps23Hako/fhodjdr9z2LHuo8xA/VoNidGoLNx2QODUVCOrmzQ4ee5H7S6UdE1rcNYnInEj4FrIMePhK5jgopHiIcjoMexN3WcSL2DGmRZLruyVtiPGYlQ8Nl/cAOhqYex2teEFQlgRiJodtD9TWxInnuUzYERzmW4Uds6KKUINPlxup3YnYmGjI2r1/LZey3T+TVNo7C8nMKqUqxiNz6vk7XBRJIWy4hj2qM0R8HQKtHr2+cezlXEjLM14Evcg9mb0YPtz7OWUuwO+dkcaGKLv5HPm2r5sHYbNk3ne7MOoz4Wpb7VSpDr/c2J/IWGHUe0kxy6HTCba7CCzRjY0PVsPxeiV0j8aFvvHm9BDBkq2UqsZ7GCRjpPUQ5TGFOromgaGJqWXpK3s9UYfT4/6z9dzeYtO9ha68MfCHPiwvnMmjUdgLFjRjF+/BhGjx7JmNHVVFePwOHIfjhviumrxffyvQAUn3p93laYqQ0HuPzNJ1nZsAuHbnDtnCO4eNp+XT9xD8qME63bSty0sIoqce/RIJmSWibYrutZN3S1ll6B0VWU1edADA5XXnklV155ZZvHiouLefbZtjkrjj766PQqKTNmzODjjzvOqyH6ni8W7fpGJb0aYy83clipevR8P8oyMRu2ojroVTXTMUPrVkNXOBSjvs5PfV2Ahjo/kXCcGXNGM2pMYnp8aZmHsgovJaVeSko9FJW4sdkMmmMRmiMRvPbcY0kugsnRAm5dR0PDF4+zNuRnaySUbtzaFg4TUe1HNlxSPY7p3rZxIK5UIl+jBrZeXpGzDWVR8OaDAIRnzCdeOQlCiZvFgTAlsCu6pxi9oLzrgn2oyOFss2pWf5L4MfhlFT+ylFpISMuy87dXKBOUwrH+AwBiex2ZeDw1lU63tYkfRjdiYigQpG57TeJnx24iwTCzj5jHmKnjASgbWUH5qCpKR5RTOqKcksoybHYb9ZEgDZEQXkerBYp8icYf3VWEbst+YEJnAsn3wWOzo6Phi0ZY01ybbNhqYnOgka3+JiIdjEr7+l77s3dJVZvH4spMJvFP3EPkSqVGnvXn50IAEj/2NPCvQkSfUZFED7bWyTLr6bKx3JcdjquWJYBjyZOvrmntGmV8Pj/vvfcJmzZvpb6+sc3fDMPA7w+kf6+qquCcs0/Nug6Z+J7/LSrsxz52Nu55Z/R4ewDrmuu57M1/szXQTLHdyfVzj+LQkeO7tS2zcQeReBRld2IUVWVsyEo1duUyfz9FmTGsQCLfgF5U1UVpIURfSt2oVLm9lHVwjlZKEfMlMu/ZS6p6tZEhHvVj6SZGSQVGDxoJlBknXrMO5bCDy42tciKa0dKB4o9FcfgacBoGk4srstqmzxfgww+XsXnLdhoa2o5SMAyDYlcZUyJNRD9/E8vfwN4ANcmfpGA8StyycNlsOPTeO46l8QimUjgMG8+4Kvijs5JwBzdlDmUxzooyyYwy0Yow1wwxd/Xn7crFlUlZPIauaRT0YS4dFWwkWrMezVXIuPP+H3phBfG6LVihBoyCKoySkX1Wl5xpWpvUCAOBBhiDLM+ZGNi6ih+5MJsszFgBuqcMW0ll10/oBaahEdm+kmZfDdhdTN7vZDSHG1OzMOMBdE8Z4cIydDSchsGUrOOHnw/eX8rmzdtoaGhs8zfDMCiydKanXnNJJQdOntpuGxt9DRTbXVR7iyhzurFCPuI2DWyF2EdOy1tn+rrmOortLkZ4Cnh+yxf8duXbhDqY6ujQDSYWljK1uIIpRWXMqxjNvIr2M138sQiayu14tRYL1aFsGrbSkeiu7Ke4ifyS+NFeTldxzc3ZD0MtKirKuTKi/yjLRMUTc3q1bIY7pnp2crigTvWy2HSDaHpUl47fHyAUClNZmbhp0nWdT5Ym1ozQNI2qUi9jR5QyceZcRo+uxm7PYspfyIfZuB2zYTtWsPNh2Soawv9WYiWK4jNuRMvDSeLDmm1c8faTNEUjjCso5sZ9F1Du9ODuxg2oFfJhBeqJmXGsklF4O2nICiXn6bu6sR+zuQZQaE4vusub8/OF6IzEj55JJYW36UaHjd3KMlHJhhKbYcvLeSxjXTSFrunYbPb0sPSct2HGidduwIhHwebEXjUJbc/h85aJYXfgtDuw2zseRbxn/HA64yxb/hmQiB8jRlQytszFiPAmSja/ivnYL2nqJEcigJH8UUDXy510nw3Y5inj/01byCpXYjXh0cEGpvp3MTFQy/hgLRMCtYwONWLssShApno5u/h7byo6aRHOskSOTHQNZdgx3F6MDO+dENmS+NEzXcWPnFhxNE3HcLj77aZaQxFcl0hh4trrCOzpa1YrUTe7gxAKQ9dx2uwZX/Oe8cNhs7FsWWL9RE3TGDmiknHjRzN+3BhGjRrZ5f2HUoqoZWLoOkV2BzZdJ+bbhU3T0QsrsDmzn07WmahpErMsdoR83LJ0CUvrE9PxxxeUMKO0imlFFUwpLmdqUTnjCkqyes9NlThenmS9c6GUSuQU03TsDlevXn8Ikauc7ohLSkra5GfqjGn2R95/0V2pKYya4chqaHJqGmMujV2x5MguA9ixcxdrPl9L3dZdNNQ2MHbsKM79yukAeL0ejjziYMrKSxhVZMMerkd3F2OrHNt2e9tXE920DLNxG2bDduINicYts2E7Kpx7jhDn3kfjmp552ddsLd7yOde99wJRy2Ru2Uj+cPjp7Ar5UQo8OUz7hEQiULN+KwBhTwk43Dg7acgKx5Mju3IcRqwsE8ufGGZtyKgu0QskfvSMmeyZz3gJ2WqqW69faKben26OelJmnPjudahYGAx7xw1d0Gqqe8vrsaJhdu2uYd36LazfuJVdu+sYO3okX/nyQgA8do3DD5pNYXAH5bvfh8/uw2xM3AikPlVGxXhcMxZgq5oIe+TJilkmteEgugYj3B1PF8+H5liE+wMRHolBDPBqcJXXxZcqxqFr3RsB3BwNE4jHKLA7KMzT6IFsGd5S3Puf2fJAskGx9Ug9IbpL4kfPdBk/cqCSya61fmzEVpZJZN17ALhmH9fyh1ZT6TqKH0opdu2qZd26jaxbv4ldu2oy3n+MHTMqnR84W2EzjqUUuqbhstmxAg2J+yvNwCga0YNX3FZDJMhjG1by6PoVxJSF1+bgujlH8JXJc7o9dS2SPHaO7ox0NWMkuoc0mcYoBpycrlQ3bNiQ/v8HH3zAa6+9xrXXXovXm2hR9/v93H333Zx44on5raXodenGriyT2KXn7OfQeLN92w4+/WwNNZt3EAq0TRRpWRaWZaVHCRx00L4AxHatTZw+Ww2JVWaM5mf+B9/L93ReR3cx74/Zl9WFI9nzhmZPms2Oa/qR6Cve7nhbykKFmlEd5E5prSEW5V87NgFwbPlIbpu+L1btZmIhP3ZdR4s20/mYgrbMpl1YwUbQbQQKKogHm7G5PMSa2x93Syn8/sQoNiPcSCyXG17LAmWh2V3obukVFfkn8aNnUtNQMuYeSefr6v0pWUqlGru6k9cjRnzX+sRI4k4auoD0dHe7brBt206WPv9PNtRGCNlaNUIpRXjd+2z53nfQk6MXUt0iqVteze7COe0wXDPm45wxH3vVpIz1qwsHiQZ9FNodFBaW5vz6srGyfhfXvreY9cl0AEdVT+Tn846l2tOzxrVaXwPRWBSPt4jCPI0g6K6WawS58RE9J/GjZ7qMHyTzJ9ZvTX93M5ZL3S/04VTpPZnNNcS3J6Zyu2cdm35cpRvZbe3ix2efrWHN2g1tUqFA5vuP7ggmVyD02uyJlfgadwKJTuR8pRZIxw9fIu1IvuJHKrdXd2aGqFazfbJtlBair+T0iR4/vqW38ZRTTmHx4sWMHdsy2mbEiBEsWrSIU045hRNOOCF/tRS9LrUKlpZVcvpochSB1mmC+kSiw5aT3tIPlrNjS6KH3WazUT66ismTx7PPXtM6XIpZWWY6j5ieTMger91M/QNXEN2YSFznmHoItooJGKWjsJWOwigdhSoZyUuBMPetXcaa5hxWBNnUPgdKd10wcgzXjZ+GYUapiUZQsQgum73damOdUdEwZlMiUOol1YSjieWanXYDpdrPyw+ZJioWxqZp2OJhupOK1CjOX8+TEK1J/OiZ1FLtmS4ke9IAlTOzJQlwLto3dE3OmL9EKdXmZmXJi4vZ3OgAmwObFWVkaB2jg19QHVyL2wq0e75t5FRcM+YnGrimHJyxQW1PqaS/3cl72JVwPMbdq/7L/Z9/iKkUhXYnP9nnKM6cMDMvNwipnI2djf7tC8oyW0YaysgukQcSP3qmq/gBoELNic7VbGgG9GNjV+SLtwCFbfTeGCXVLX9IngOVZiOWbPiy6wZvvPshGzduSfxutzFhwlgmT5rApEnjOrz/6IxSChVqQsXaNwoGgk1o0Sgulwcz4kOZUTDs6IW558Da00COHy2zfeR8Lwaebl8RrVu3jkCg/QVmIBBg7dq1PaqU6Hs5JafvogW/pqaO1Z+v5fPP1/GVc06jsDAxKmvCXhPRnXZmTp9KwcgyQpbJaG8R3gw90CoSAFRiP3YnwY+foeHv16JCzWjuIkovuB3Pvqeky0fNOE9sXMWfP3mbzckRTgV2BwvHTMXVw2G1VsSPigTRDHuXN037lVRyUvWElnoFmjEcUQpdXowcetvj9VswSqrRPSWYxSPRfI3YNfAUlXd43OOREIYzQIHdgc3bjdFZuk1ydYk+IfEjd2ay8SDjFAUrdTPTu41dyrIg1ZSeQ2NX64YuzXBgq5rUYUNX6/hx0MIj0NwO9NrNjF33OIZtDNOmTWL6GVdgMzoZwaZr3V5NNpTsmffYHJiWxSZ/Y7c6Dva0LdDELz95nY3+RgAOHzGeK/Y+kAOqxnb+xCzFLSudF7O/G7tSOT3Rezd3nBieJH7krsv4Qatre1dhlwuPaPb+zcsUWf0GAK6957d5vKaukS8217B2x0oOOvFINLcDu6Yze9Z0vF4P0/eazLhxY7DZujcCOpUPODWVs129fI3oloXTLCJmGGwOB9GLR6Inz/vdNeDjR+qcL/kZxQDU7Sui4447jm984xv87ne/Y/LkyQCsWbOGa665hmOPPbaLZ2f22muvcfLJJxMOh2loaKCkpASAjRs3MnHixHblH3jgAS6++OJu708k8qcoMxnkspjGmJ6v36oF3x8IsnLlaj5b9QW1dQ3px1d/vo4D9p8LQPWksZSMG8m4gmJ2hfxA58vbWqm8W4aNhn9cR+CtvwLgmLg/ZZf8Hlt54iQfisf41/oV/O/nH6a3W+Jwccm0eVwwZS5Fjp4v8xvZupL49tUYRZXonuIuy5tNO1qe29yAXSncZhFmOPuvnGbY0Owl2Kv3IhiPobviuG12DG9Jh+XDCnSl4XF70d2yEooYuCR+5C41gdrIdLOSGknT21MIrNSoUi3rm51EQ9c6VDzSYUNXpvixef1mxk8bS+j/vsO4xk+ZMtlG5bn39tpKk6mkv5oGccvkrCX/4tOG3XndR5Xby3dnHMLM0hFUuHq2KlprqXwrdl3v9+XG01OJZAqj6AUSP3LXZfygpbFLdxZkdZ3bX1QsTHTdBwC4Zh2Tjh+rVn1B3Z7xY+YU7LrO9OlTmD59So/2aTbswAonF0rQjHbHKGaaxGImaBB3F3Hx0jdY5Wvs9j47MlDjh+rGomVC9JVuXzE+9NBD/PjHP+aYY47B50s0ShQVFXH++efzy1/+slvbfP/99/nyl7/Mrbfeyve+9712f3e5XNTU1LR7TPRMegqjzZXVEtyqVQt+U5OPJUveYe26jVjJXgHD0Jk4cTx7T5/CpEktQ89TPUs23SCWThyZeX8q5Cdes5HmxbcT37kGNI3C466k6JQfoBl2fNEIf1u3jAe/+Ij6SCKHQJXby9en7c9XJs/Bk8cLbdWU+NxpNldOOXGiZhylJW4KHTYHXeUOa0PXsZWNQTNshJOvr7PVHFuS0/dzr74QXZD4kTsref7UMp1DUo1d3Uku2wHTX4/VXNPucRWLEK/dlBi1k+WFrTJjoMxEQ9eIyemOks7ix157TSZa5sH9/K8xt32KXlBG+aV/7LWGLoBg6mZP07j63ef4tGE3dt3AY+v5PnVN54TRU/n+7MPYFvRhKZWXjpiUVL6Vfh/VRasbH5nCKHqBxI/cdRk/aDUVbYCPzomseRcVCxEsmsALKxtY98xfW+KHrjGhuozp++xLtCzRGNTZfUZXlBnHbNqJ5a8nlYBdLyzHKBrRLhb5IyEsmxtD1/h+sqFruMQPmcYoBrJufwOLi4u59957uffee2loSLSkl5Z2P5nrtm3bOPnkk/ntb3/LUUcd1WGwKS0tpaBARqzkWzrZZBZTGAGsaMtKjE67g/UbNmNZFqNGjWDO7L2ZOnVShyuYpFZG0ZRKJ8vMFISsWITgR0/ge+WPEI+gF1ZSdvE9uKYfCcCOoI+zX/k7u8OJoexjvMVcPv0AvjRhBo48X+xb8ThmsB4A26i9MHLo8fJHQpiBZrx2B84eJDtOzaXPlDjSUoqIlSojveliYJP4kRulFMlTZsaeeZW8WCVP0xgtf20it9aej0eDKDOKhurw75loNie2qkko3Za+3XI6M8ePiBln45sP4/zgUdA0yr52T9vcLD1k+utapl4kBUN+CAf54+YveHf3FjyGjb8ecAwzisrytt9A825UoAm7puPULfK1blwk5EeLhHA63Zhm9u9LbzCbdmP6a1HKQmuUnv7epBePHHYJoSV+5Cab+AGtOrIHcIOFZVmEVrwMgHfCLDZs2paOH7OmT2JSkYnL48UaMZE1TXXomobRnYVUlMLy1WI27YJkPkzdXYxRMjJjKpOQGUcpxR8/+4B3d2/GY7Pz9/lfYUZp/lY498ciWEph0/W8duhHu7jH6Eoqf5k0domBKC+tAq2DjGVZvPXWWxx55JE5bWPUqFH89a9/ZeHChWzcuLHL/Yj8Sefr6mQKo1KKTZu3sWzZp/gb6jh7/kw0mxOXy8nxxx9FVWU5lZWZ5/iblpVYjnfnFwT/+wHOUABd0/C7O25gi2z4iMinrwHg3Ptoyi66C6OoMl2XH3/wErvDAcZ4i7lq5iGcMm46tl7KH2D5a0Alcofl0tAFLSMFehqU0o1dGbYTNuMoBYau4+gsl40QA4zEj66lOgegk5wrqZ77PDV2qWTuKqNsbJsRXFaoGdDRnR5snaxq2GZbSrFlZz3LFr9OIBDk/PPOBOg0foR3rsXz1C8AKDzhKlwz5rfbbneZ/jrM+q3tHg8Fmnh85zaer9mBDvxmykz2Io7ZnL+pjP5wED0SxutwYmr5auqCSMCHHo9hj3sxY9kvhNIbzKadWGEfmm7D7OUccsOdXjSi96cuD2ASP7qWTfxQlgXp6ccDq4HaikXYtHEzy1euwR8MsuCzFwEomDCHY6sOoKqyksqKUqxgE/G6Lah4jGjIB5EgdsPACrfP79YpM4rZtKvVSDcXRulodFfnjZ2BeJTHN37K81u+QNc0fnvIyXlt6ALwJRuVCjMs7NJdqXuM7gwWUGY83SAoC5KIgSjv491DoRDz58/HNHO7iNM0jYULF3ZapqysjF//+tf84Q9/YMSIEfzgBz/grLPOylg+EokQiUTSv3eU0FIkeuqh45UY43GTTz/9nPc/WEpjY1P68frmICNGJU62M2dM63IfkdqNeJ64BfuK5wkpRapZrbmzJ+kGhcd/l6KTf9AmN8wj65bz9q5NuAwb/3vEmUzKY697R6ymXYnqdGM1ldQyxJ4ejLaKWWZ6VFymXpdwcj8yhVEMZhI/OmamV9LqZDWt1A1NHhoXlGWlc3Pp7qI20zVUPIzudKG7Crpc0CJT/Kira6C8PHHz2FH8UNEQgQeuQIsGURMPoOika3v8mtLbjkUwG7YDoHtKIHluVkrxcs0u/laTyLf4k+nzOHrs1LztN8Wv6rDsXgq9Reh5nC4UVTqWpXAWFKP3c64sKxJA1w2M4hFo7m4sliKyN4wbuvYk8aNjWcWPZMNOYlGJgdFhGo+brFzxKe+/9xFN/pbRqg3+CEWGHaOwnGmloFl1xHfXYQUaMX01KFcBkWgIIxTAbrMTDzd0spdOGHaM4hHo3rIuR09aSvHK1rX8fd0yAG7cdz5HV2fXGZSL5mjiOBTlubErlbPL2Y33Pj0i0LDLgiRiQOqVO2Ol8rF2UVs2m42VK1dy+umn8/LLL/P2229z0UUXUV1dzWGHHdbhc2699VZ+9rOfpX/XdZ19990373UbzFQ8mryp0doMzY1GYyxb9ikffrQcvz8RpB0OBzP2nsyMEQ7Kirzpm4TOmL5afC/8Fv+bD+FI9hoZM44h6C3FoRsUdHCxrxSosA/XzPm49zmlzclzs7+RXy9PrMJy7ezDe72hS5lxLH8iUBqFlTk9N25ZRJMXXT0Z2ZUOQoaRsVcu1MMhyEIMFBI/2lPJ9QD1zhqyUtMY83GxmTxXg9Y+R1bqRrKTc02m+DFzxjTmzJ2RbujKpPGxG7F2rMbylqKff3ve8nQppYjXbQZloTkLsFW05JR8Y8dG7lq/CoBLps3jq3OOyss+WwvFY0RV4jxeWFKZt0TyllJEVeImxV1S2WujnLOlgk0opxejfBx6lukRhMgHiR/tZRM/WhKM9//InA7jh91g7wkjmez/GOeGOuxjZ6M7veitZ6RoemLFdIeHuG5D2RzYHM5ujFTT0D3F6EWVWTf8vbVzE3d9+i5AcnGsfXLcZ9dC8Rgxy0LXNLx57CixlErnUe7eSoySr0sMbDl9qhcsWNBlmXg83iv5A8aMGUNdXR168iJu6tSpvPvuuzz44IMZg82PfvQjFi1alP49EAhw6qmn5r1uA5UVCWL56zotk141ydF2GeH16zex5D+JE3dBgZf9Z09m1uRRGGYEs34zViDW4TSQ1vsOvvN3Am8/nE6AHx2/H2r+ZbhGzcAfDVPmcFLY0WoiysIKNoJmtJlaaVoWP3z/RYLxGAdVjuHCqb1/4WAFGxP5aWyOnFenSU1hdBpGt3IGpITiqcauzF/XUPJ9dMvqV2KAkvjRfalpKJ2dRVR6NcY8jOxKNp53ePGqum5U2zN+HHjAPsyevTcOR9fnp+D7jxN4+2+gaQTPvpXS0vzl6bKadiXikWakV/MF2OBrYNF/nyOuLA4fMZ4fzs1tGlS2mmOJm4ICuyOvKyamOkQMXe//hi6lWq4rpPNF5InEj+7LKn4MoNX02sQPr5v9po5gzqzpuEdOZPdv7iMKuGbMx1Y1Gfuo6ennaU4vlqcIo7ga0+bCioSwu73Ye3l18uEePwbSZ0eIjuR0JbJkyRJuv/12HI7MrbeRSIS33367xxXriL7Hl3DatGm89tprGcs7nU6czpYv357PH+rMhm3phqauBOI6vi3bGTt2FADTpk1i4oSxTNtrMntPGoWq2wjRZqxAI1aoGd1ZgBWob7cdZcYILX2ewDt/RwUbAbCNnIp12FdpGjmdIpudSKAeKx7DMJ1YnSTS1d2FbS5cHlzzMR/VbsNrs3PrgSf0yfLqVrARFY8kpvLkOGw4PYWxh70dqbn07gwj6ZRS6WAl0xjFQCXxo/tS01A6PeflM2eXmZqW0P58km4I01v+5vP5aWxs7jB+zJwxDSPLPIKxnWto+Md1AFgLvkV88sE9WkmrNSscwGxOTEm3lY9JN+TVR0Jc/uYTNMciTC0q5xfzju212OJL3qzkO99KZCCN7LXipFYty2b0txDZkPjRfdnEDxVLXIv3x+iczuLHXiM8aOFGDLcH01dLdOPHADgmH9hu1FWqkR3DRjw50jlf8SMTiR8Da1SgEB3J6ZOtaRrf/OY38XgyD0sPBAL84Ac/6HHF9vT/2XvvOLmu+u7/fW6ZtrN9pS3qlmzJliVbbrjhAja2sU0zJTFgIMEQwMQEk/o8tECAJD8goZeEZlPCAw7NMi7Yxg33XmS5qPftu9NuOef3x70z26bvSF5J581rX2h3ztw5K4/uZ863fL6jo6M899xznHzyyYWfvfTSSyxdurThr3WooMIbo9E8b8rBZDJj42nue3QDzzy/hXg8zpXvfTuWZWIYBm9+8yVA0IroE5g0iqY2DCUxkp2YrT1TrpXdcCejv/vXQsWX2bmY5vOvInbs+ex1spi5DNFIjKz0MD2PWCKJWeqmLQRGU1vh2xdGBvjyk8GHmH88/hwWNtVWZVUPynOQ2RTKdxGxZM1Zi4lg12zN6YPrlPTrCs3pDSEaPolSo2kUWj/qR6kq2hjz7TsN+HBfCGgVM5vNV5AZJqOj4/zpvod5+ukNJfWjWqSTZuC/34dy0kSPOoORc/8KlCLSgEOikj7+wNZg200dgVcXwYf8D979a7aMDzM/1sQ/Hnc2HcWqjRuA4/tkwyrd/WUuXI/fSqPJDzYQpn3YTQnU7D+0ftRPNfrxckxirEY/3D0vBKFzK0LmiZtAKewFqzGbu2ZWF/sT9x7XCX6fRuhHKbR+BCjdxqiZ49R0Ml68eHHF7IRhGCxevLiuzezevRvP89i9ezcAO3fuZHx8nKamJm688UauvvpqfvjDH3LyySdz5513cu2113L33XfX9VqHOpOnY5itPTNMA13X5YEHH+OBBx7DC2+gra3NpNNpWlqap17LyQDB2F1hRhCA2d4XiE2Is/lRhq77G5AeRvM8Wl57DU1nXI4IM7syNYJhx4nGk6RyaQwpibV0YFYRCHKlz9898Hsc6XN27zLesuzYuv9eakGmhsF3gyCfGanpQ4BSqtBa2DSLYJdUilzokROziv9zzft16RZGzVxG60f9+GGAqWzGOO/Z1YAAg6pQ2eV6Pg88/CwPPrahon6UQ2bHcbc9ibPtCTJP3IS3cwNG8zw63v0N9oUxtUZk5v3BHWE7ehSzPagekErx9w/cxCMDO2m2I/yf48+lI5bYb9VR+ax8wrIb3mrohP/t6/JbaTT5947WI00D0fpRP1XpxwFsRavp/FEIwkXJPHkzANFjzgl+NqOyK5+ksXBkcG7ZX5VdWj8mmPzfSKOZi9T0zt60aVPFNfF4vKp1xTj11FPZsmVL4fvVq1cD8K53vYsf/OAHeJ7Hxz72MV566SVWrFjBL37xC9auXVvXax3q5Ku6hBmZEuhSSrFhwwv88c77GBsbB2DBgh7OeuUrWLiwr8S1wvLmSAyZDiZqTTazl9lxBr7/QZAeseMupOOKr82Y0pWfJmgKgRcKr13lDfvbzz7AU0N7aI1E+exJ5x+wbLFMD6F8ByPWjLCjNb1uJqy2Mg1jVtVW2Um99KVEW09i1BwMaP2onzDuc8A8uyjh2aWUYsNLO7j70ecZTwcfcCvpRx6ZGcXZ9iTu1iC45W59Am/fSxMVaeHeO97zDWjuQg7vA8Ca9Pv0Z1PcuuPFgp5Ug3LShZZ7o3keIvUkAE8P7WH9tuewhMHnT76AvkQLcWv/VSPlDystkcYfCCYPMXm5majs0ll+TePQ+lE/lfQj8NkLg10NND4v9jq1nD+UlBPDUpQi9+wfAYitCjyxhJi43ymlChOEfWEWfMpmqx+l0PoRMPm/ka7s0sxV5tTpePPmzWUfv+KKK7jiiisOzGYOcvJlpdOrkfbs6ed3N9wKQEtzkrPPPo2VK5eXvUHng12YkaLlqsP/84/4/Zsx2xfQ8Y7/KDqOfrK4KBUUH1hVHMqeHtrDN565H4BPnvBquvez0WQe5WSC39tzEfHmKcG9asib08+mqgsm+3WVM6efQ34tGs3LxKGsH9W1MYaeXY1o+8tn+afdU/bs6ef39zwNQHNzE2cc00vX7Z9GPZliZ7kLSh85tq/oQ2ZbH/biNUQWryW2+jwii9cWPnwbQkwZ7vHR+9Zz395t9f9ibJzxk8+efD7HtM9nOJed0XLu+B4pz53xnFpRQCr8O230yHil1Jyq7CocmnVll+Yg4rDWj/x5IZxmuL+o+fxR2JeJ89IDKCeN0dqD1bsKObJramVXGOgCgR9qRuP1YyaHvX7kK3mFqQeSaOYss35nbtmyhQ0bNnDuueeWNY7UHGDyhxU7iud5WGELXE/PPNYcu4rW1hZOOuk4bLv8W0B5TniIEmHFgAoEMQx2pR/4JekHflHIyJeaWJiv5srn8C1hVMyAOL7H393/ezwluWjhUVy8aGV1v3sDkKG5PlYEYZh1+3WVMpWvlnzVVqlA1hRzen240BxkaP2ojqraUAqVXQ2o7gnvKZiRGfpxzLJuWpsinHL2uaSu/wSpPS9WfVmzYyGRxWuxF60lsmgN9uK1U9rh87jhh+/IpMPMo/07uW/vNixhcN6C5QjK64dCoXKp4HcxzMB3cdpzzluwnEuXHM3GkX5ganLClT4vjg3hN6AKIE/UNBvuq+hIv+DZuL/NmKsif7jT5vSa/YzWj+qopB/702B81ucPgmqzzJO3ABA/9jxEwTdyUtfKJHP6RuhHNWj9mPrfSKOZq9T9r2ZkZITLL7+cu+66i0wmw5YtW9i7dy+XX345N954I0uWLGnkPjU1orwcni95/MlNPPL0rbzzHW+mpSWoirrwwnOrv06+hdGOzihV9fq3MPQ//wBAy0UfJbr8lOLXUKpQ2aUKLYyVb6r/+dS9PD86QGc0wSdPfPUBNbuVqWFgol2z/kmMjansKhXsyvkeUikMIeZEVl+jqQatH7WRb8kwy3p2NaaNMWhpcfF8ySMPP83Djz1d0A+lFOefvBwAOxIl99JDALS95V+IlLj/5zHb+zCTHVXtwQl/l8neJN/Z8CAAr19yNJ8/5YKK1/BH9uKP7AJhYPccVfIe7kmJE/oiTk5O7EiN4kuJbRgNq5rt3A/mxQVz4Tly/5+o7NKHH83+QetHbVTSj4mARW0dDOXwPI+HHn6Chx9+ov7zR94LyoyQDf26YmvOR4V+xFOmMU7x65q9flTL4a4f6gB6vWk09VL3v8Crr76apUuX8pvf/IaenmAq3/HHH89ll13GBz7wAdavX9+wTWpqZ8/efn5/95MMjgYmjU888Qxnnln+MFIM5eSDXfFJLYxRlO8y8L0PoLLjRJafQvOFV5e8Rr6qCyYquyoFux7p38l/PRccpD570vl0ROM1771eggmMTlAhYRpBxUQNwS7H9/CkRIjZV1tVCnbpFkbNwYjWj9rI3zfLtpsXst2zTApIj31D4/z+/o0z9SNvgk/g1ejtDtoC4ye+rmiFVr2408bGbxzp5w87X0QAV646ucwzw705afyRwGjabF9QNlmRbzmPmVah5WUgm2bcdRACliTbiM3hqtm55NcFU6cxajT7A60ftVFJPxo9TW/P3n5uuOFWBgaGgFmcP8J9+QNb8Yd2gB0juvJM5NhAsGDSlPl8ZZcw7FnrRy0c7vqhJzFqDgbqPiFff/31bNiwAXPaP5CrrrqKFStWzHpjhyK+lIw4WSSq8uI6UUrx9GPP8vCfHkZKRTwR4+QzTuKIo5bRn03VfD0vNYx0cpgxhUqNBH+OSuSvP4e/5VGItyD+/P9jwM1BaKA4naznMuxksIRBU1jqWs6cPu25/P0Dv0cBb1x6DK9esLzmfc8GmQ4EWkSbIDsa/NmqPuOVKrQe2uXbjirghFVbQpTOumR1C6PmIETrR20U2lDKtV6E2Wwxi8oupRQPPvgYd9/7BL5UNDUlOOfs0zj66CPD1wjbG4WJu+VRAMzORaAU/mhxT656cNNjCCeL5SXw/RzffjKYenZ+92KW4Fd8LTk+ACiMRFvFarJCy3l4D835HnsygXlyT7x5Th9UgMK03qjx8ic8lJQT7xF9+NHsJ7R+1EZF/XDz0/Rm929WKcVDDz/BXXfdh+/LmfpR6/XCQFJu470AxFa+EiOSQMq9wYLJ54hC671V6CTJnzPyVV2vWXgkR7RUV11cLYe9fjTovaPR7E/q/nSUSCTo7++nr2/qBI1NmzaRTB4YE/GDjf5cmn2Z2gNO1ZJNZ3jizocZ2BkIwbzuZta8+pVEYzH21Pm63vgwystheh4yM4JyckRfeIDm276NAFKv+zjD0RZIj5e8RspzGMimiZoWyTDDXq7v/OvP3MeW8WF6E8383+OrL3luBEqpiYmTkTgqOzpjomUlMqH4zdacPjOpvLhURi5TwdNLo5mLaP2ojaraGAuVXfVlaMfHU6y/8Ta2bNkOwBEL53HR6y4mkZioqlX5gJppFVoYrZ4j8YfL2tPXjJcaw/BcTKeJLcOS9Ts3A/CX87qrfy3TxmxfUHHZ5JZzpRTbxkeQSpG0I/ulbaTR5OQcqu4tmBUbU1uMNJoGovWjNqpuY5xFK9p0/VixYikXvOacKfpRM+G+shvCKYxrzg/2K2e2MRYqu8yplV3bxke4YesGAN6/qvbqskoc7vqh2xg1BwN1fzp6//vfz5VXXsl3vvMdAIaGhti4cSMf+tCH+MAHPtCwDR5K5G/AMcvaL1nYzY9uYGDnXkzTZO3qPo44oge7pa3u6ykUHgosGyvRgp8dQbkZ7N9+DqEU6uS3kDjh0qqulbSjJCyb1kgMyzBoLdFWsmVsiB9sfASAT57wKpr3w5jdcqjsWJCZNm3I3/xfZr+uUib3SqnCmtm+lkZzINH6URv5w0rJNhQpKTSr1FnZ9cgjT7Jly3Ysy+Ss45awdvVR2NMPKvmqHcPA2RQEu+y+oxGReE3Vr5XwfIWSEruphR+9+DQ+itPb57NmfpVePEJgNHdWnA6llCLjTyQn9mTGyfoepmGwoKlltr/GASHvFzMX2hgnWhh1ll+z/9D6URvl9EMp1ZBWtAn9sHjVuWewdu3Rs/LZDfblIFNDuFsfBwJzemBKhXGBSZVdE8Eug+9tfAhfKc7oXsKxHd1176fUHg9n/WjUe0ej2d/UHXH59Kc/TUdHB5deeikDAwOsWbOGRYsWcc011/DhD3+4kXs8ZMgLTkckTsd+iPj3nn0GZF1esXY5rWoUEWvGThafjlgNys3ixmKBwW9rF87ITkZu+ybO2D6s7uXM//MvYEQr/x6xTPA2a4vGWNhUfj9fePxOXOnzyp4lnNt7RN17r5e8Mb2RaJ0y0bJafClrbi1USuFKH0f6OH7w/znfY8vYMCnPJeu7hQquKc9DFczpIzqLrjmI0PpRGxUruyb5ItYb7Dr99JMYHRvnFasX02pkik5XUuG9TSFwNgdtjPaCYzCb52E0tdf1usVwzBhSKcajcX65+wYA3r/2LKyuxQ17DQgSE0qBaRg4UtKfTQOwINE8NyYbVmByq/tc2G/enB6dfNHsR7R+1EZZ/fBdgkSJmNUE1bx+nHbqiXR2NkALPAdQZB7/PSiFvWQdZltv8JicWcU8pbIrDMCMODl+sekpAN7XYK8u0PrRqPeORrO/mVV50dVXX83VV1/N2NgYAM3NzQ3Z1KGKHwrObHycJrN79z4effRJLrjgHAzDwLIsLrn4PPzhXfijo7OOtE9MYoyBlyPz6G9xXrgPrAgd7/lmVYEumDCotyocwu7evZk/7HwRSxj84/HnNGT6YtpzGSvhJTYdJSUM7wKloMVGjvUHHmWej5Ep3aY55fVch8FcGtswGcxlSq6TSuH4Hjnp44ajf6cz5uXwpESpiSqvYjRZ9gGdVKnRNAKtH9WT93ksqR2FYJeo+l5QSj+8gW3IVAZhFPnwGr6OP7AVlR1D2DGseUuhgZU8vpSFw9lPX3ycnO+ztqOHU+cvathr5Mln5WOGyfZU0L7eHo3TEmlcldr+ZLLfypzQAG1OrzlAaP2onnL6odyJwVO13ENK6UejUJ6D8hwyj/wGgKZXvAV/OBg64o3sASUxEm2oTLSwHsAXptaPKpmtfky0MEbmhv5oNCVoSC/dZJFxHIe/+qu/4nvf+14jLn1IMZFdmf1o+Iceepw777ofKSVdXR2cfPLxE483aIzwxCTGGM62pxi//bsAtL7+n4gsWlP1daZPRim15l8euwOAd6w4nhUtnXXuegKpFFvGh/GlrLwYEOkRjEwaZUWQUuFlxlCeg+n7GFV6ng3m0gzlMjRHojX5swkBEcMkalpEDBNDCNKeiwBWtnZhlPEM0y2MmoMZrR+VKbShlDIYrsGvq2r9KHZfCYPu7vanAbD6ViEMs2gVWL3k9SLre/zkxaB95f1Hn7JfPkznW85H3RymMIiaJr2Jg+fQnPdbicyBFkaYVF2hW1o0BwitH5Uppx+1tqFV0o9Gobwc2af/gEwNYTTPw168Fn90DwByvB8Af6x1Rqu6F35W1vpRmdnqR/69o83pNXOdhhtHua7LD3/4Qy02RZD5iSizuOlKKfnDbXfz2GPBYeOoI4/g2GNXTVlTqMhqUGUXwmDour8BzyGy4lSS51xZ03Xyk1GsMgGbn7zwOC+ODtIRjXPV6lPr3vNkRpwsvpSBR1gVmRY1vg+iMWieB5EYrgDsCHZTa9WZ6pTn0BqJ0R1P0hYtbcwpCEz6I4YZfE0Tm3HXIWHZREyTlujBkSXSaGaL1o/iVDQYrnISYzX6MeF9MvOep1QQiHK3B60hdt8qQDS0kscNf5dbtj/PuOuwoqWTV/ftn4m8Kc9lzMlhGQYJ22BhU2vDKq8PBPnM/Jwwp2ci2KVbWjQvB1o/ilNOP/LJDapIWFSlHw1COhnSD1wPQOLkN2LEWxDRBEoGFV0ARsv8KcOjhB0nF/p4af2ozKz1Y1Jll0Yzl6npHf6zn/2Mzs5Ozj//fO68886ia9LpdEM2dijiV/JdqfR832f9+tvY8NwLALzq3DM44YQ1MzIWqkE3oHx5c+a5u/D2vICKtzB0wUcZHB2o6TpbxoZwlcSVflEfqxEny388dQ8Af778OHamx9iZHiu/N6XYlR4jF1YBFGN3egxX+rRGYpXLiqVHbO9mQJGzk6jsNryxERAG1nB/pV+xQH7Ec7v0GQkr4+oh/+FkrhxiNJrZovWjfmSlFvh8ZVeZYFfV+hH6LhUNYIUfjp2tTwBgLzi64VOYXCXJ+R6/2vIsAFeuOnm/HCAc3yPrufTnUixpbmd+LFm1z+JcITtpYu+cwNOVXZr9g9aP+imrH1VO06tWPxpF7pk78Ae3ISIJYmsvxGztwYg3B+2NqUFAYHfObE10cxmtH1UyW/3Qkxg1Bws1vcPf9773sWrVKs4//3zOOeccurq6UMXMhjRFqXhgKYPjuPzq179ny5btGIbBa1/7Ko5edeSMdcp3w4OPgFncgJSUKC8I1qQeXx/sYdU5eM3zClUEVe9d+kilUGqiymsy1z7/KCnPZVlzO+f0Liu6ZjqZCl5cju+RDm/EtmHglPG8ArDSw3i+h7Sj5ISJdNJIJRGmhazw3BnXMkxMYVT1e1QiqQ8NmkMErR/1U2ka40QbY/HHq9YP6U9cq1iwS/rIzCh+/xYgmMTYaDNyV/rcvuslhpwMCxItXLJ4ZUOvn2fcddiTGSdimCStCF0HwZj46eTyh5U5YoZcNlCq0cwCrR/1U3YaYxVtjNXqRyNJ3ftjAGJrXoMRa0bEksED+QR3iXue1o/qma1+6EmMmoOFmoJdjz32GPH4RGvW5s2bSSSm/gMfHx+ntbX+CYCHKkqpScGu2j27hoaG2bljN7Zt8frXX8iypcXNFifMJmdnGJgPdEk3h/fsHwEwVp7JER09iGhT1dfJG7EDrGzrnOFXtmF4H7fsCDJFn1h3Litbu6q6bn82hSkESTvC/HhyxuM706MsdHK0RqL0JSqPAJZ7XkRFLERbL0ZzF/7oXnxLYcQ7sDr6qtpTnrzn1mwxhCAyVzL2Gs0s0fpRH3LSga6k32Ohsqv4h9Zq9SOf5UeYKCFITUso+E4ad1vQwmh0LSFrxzGAXJVDQKphIJPifzc/A8DbVxxHzvcKH8obydbxYXK+R0c0wcKm1oPOYNcNk0gwNyq7lO9NvA/14UfTYLR+1Ecl/aimOqdq/Zj2uvmEc614Wx7D3fo4CBNx/MVk7BhOeC2Zy+J5HsIycIrojtaP6miEfihXtzFqDg5qeocfccQRFdcIIXS2pQhTBaf2m2J39zxe/4YLiUUj9PZ2l1zXKMPAvDm989JD4Dn4bb3Y844gFmuqKWvr+B4R08IQgiZ7qpgqpfj3J+9CAa9dtJIzepZWfV1J4HnVEUvM8MbyZDB7ptmOsrS5o6KBu3JzuPgQiWK39yBMG08IpBXBTDRjlvHe0mg01aH1oz4ma0epILoKs92lPLuq1o/wUCAsm+2pEUadqYcJY2yY6ObHiQLZ7iMZSY0hzTjKGq7hNyrPr7c8w75simY7yrrOPjaPNe7ak9mVDibsLm1umzMG77WQ91uJmOacOGjlq7ow9XRgTePR+lEf5fRjohOEsmeGavVjMsX0o1oSN3+NCJBbcjyjdgLlK1SoAzKXws+mEbaPVUQbtH5Ux2z1I0huhFV2uo1RM8epOx34yU9+kkhk5s0xEonwyU9+clabOhTxJ7UwVntj6e8fxPd9urvnAVSVTSn039uzu/nkzelzz94eXHb5acQsu+b2BLeMOf2N2zfy4L4dxEyLv1v7ypqum5+CEi+yn6FcBqUgJl3sga04ueqmIopYc+H3y1e2zfbvUaPRzETrR/VUNdgkf6CZdJ+tRz8mBywy4T02OunDsDDA3htU4oreVUQsExWLg1Xio4RSjLgOQ9k0nqrc1q2UYv225wA4o3sx+7LVT7StFSGCMfE9B9H0rMnkK6bnjK9j3q9LtzBq9jNaP6qnnH5MVOZEZ5xL6jp/TKKYflSDGNyO/cxtAPirzsUF9kmFlxoJHs+OITLj4PvI8GeF30frR9XMVj8KA8xMe8qQAI1mLjKrYFcxbNvWYlOEvOBUe9PfuXM3v7x+PYYQXH75m2hvr640e6KNcZZBGjeHzI6Re+E+ALzlp2JFau9Jzx9wrGkVBxnP5d8eD0xGr1x1Mn1NlVsN8zi+jyclQjDDEFIpxWB6BGN4N23KQ0Wq/3swk50T18n/Pepgl0bTcLR+VE9VXo9yqkF9vfqRn8SoDKuQqFjW3FFIVuQGE+wLg109S9dhNrVitfVgRGdqw7jrsDs9RtQwqz4QPLRvO/uyaaKGyVuXrSk70bYRNNkR7Dnid1UreXPhyBzZf34So25p0exvtH5UTzn9KNUJUrd+THrNYvpRDcM3fZlxJTEWHovVuRA73kpP08TrC3yMbAwVTyKbpu5L60f1zEY/lOfgDWwFwIjOtJHRaOYadQe7fvjDH/LmN7+Zpqbq/ZsOZ2qZxLhp01Z+/eubcD2P3t75xGLVB1wmDANnX9mV2/gn8D1k11Jkx0LsePUBqTx+icqu/3ruIXamx+hLNPPelSfVdM2Mn88YWVMEXEnJ6MB25J5NGCiSze0YiXbMlnklzSwLCAMRZjiU5zTE5F+j0RRH60f1+NUEuwoG9cYs9SPI9Lth0MwQonDvVtLH2/cSuDlErBmjoxeYGdzI+R6702OMhVUDhhDMjzfRYpefiKuU4tOPBBn9CxYeyUnzFu73Me4HY/tJnvwk4rng1wUT752igw00mgai9aN6yupHkcnts9GPPPmqocn6UQ0yNcT4vT8BILX8VDxhQqKVnkSyoB++kEgvi9HUjjnJ41frR23Uqx/B54BN4LsIK4bZsWB/bE+jaSh11x7+5Cc/YcGCBbzzne/klltu0X3yFah2EuOWLdu5/n9vxPU8li5dxFvf8jri8fKHhMmoIuJVK0r6KN8htyEwpndXnApApIgRfCXcIpVdO1OjfHfDgwD83XFn1TyuN18enZj0odofH8TdtYHh/q2gJK3JdiI9R2J1LUZE4oFhf7mvSTf8ydVx2ntEc7Bz6623csYZZ3DmmWfy5je/md27d7N582aam5s59dRTC19PP/00u3fv5qyzzuLEE0/kj38M/v3/7ne/4zOf+UxD96T1o3oUlbVDhd4Z23YOzEo/8pVdTpgcmPJhXvq4O4Jx7pElxwf+YJOSBJ6U7EqP8cLoAGOugxDQGUtwVGsXXbEmIqZZ9uuJod08PrgL2zB407JjiVlWxefM9utgJjfLsfENR1d2HZJo/Ti4Kacf083pZ3v+yOPICT+oavGkZNdt3wUng9+1FNm1hJZEM0fOXzJVPwTYpoFt21o/ZkE9+qGUwtu3OWhhNG2s+csQB2llm+bAMFf0o+5PSTfddBO7du3iJz/5CX//93/P3r17efvb384VV1zB6tWrZ72xQw1JvrKrdHxxZGSU3/7uFqSUHHXUEVxy8XmYNdxQp1YkzSLY5WSR6WGczY8C4C49GYBIHZVdXpHKrn974i6yvsfJ8xZw0cKjar5mwa/LspHZFP7wDpSTwfV9UgpUx0I6e5Zh1NuL7ukWRs2hwejoKB/84Ae599576erq4u677+YjH/kIX/jCFzj99NO56aabpqz/z//8T6666ipe85rX8J73vIczzjiDL3/5y/z2t79t6L60flRPIVFC+TbG0VSW3932VN36AROeXa4QoKa2OCjp4e4IplzZi48DQJiRoHU8l2FPZrywV0sIFPDS6CD37N7C7swYKc8h5/s40sfJ/7/0Cn/ePDYEwKt6lzM/ris2yuFLWdDWesfGN5rCwVlXdh0yaP04+CmnHwVvWisy6/PHZArBriruTQX9GBskefePMIDssa8hY8XYZUT509bnpuhHLjNKLpfGtSK4pq31ow7q1Q9/YBsqNw7CxJ63TCc2NGWZS/oxq5Rgb28v11xzDddccw3PPPMM1113HWeeeSZHHHEEV1xxBZdffjnz5s2b9SYbjfLSqGKTaIWBMGNT1pVECIQZr3qtHyaeTCFQfhqmJaJcz+W3v/4tTnaMnu4+Ln7tqzFNs+jaieuCMCe8UmRuFCWzCDMKfmbG04Q1sVb5mQlT42nI7AC5jfeAkph9R6NaOzFtA6GciVaFktfNTrTUAJ47hvBdLGWhPIMHdm9n/bbnMIC/X7gUd9fTJX45wIgVKquUdED5KKVwx4cwFdhNzbh5Q2Ujzmi8DdncS9I2sEvsFQAzVphapqQDcuqbQWaHUDILRjNK+Qhhllw79brRSWtdkG6Z3y2CMKw61nogy4xzNmyEYde+Vvngl5mcY1gII1LHWgl+tjFrhRm8twk+IOFnGrS2ln/3++8eMWVtmX/3yi9znWls3LiRxYsX09UVlPufeeaZ/Nmf/RkAHR0dM9ZblkUqlWJ8fBzbtvnmN7/J5ZdfPmPEeyPQ+lHde8MPg+/5zHyx94aTHePGe5/EddJV6ceezBgZ34dJe8DPwvBOkD77hMGoUuQiCXwvNPl1Jdb2ZxDAcNdC+kf38rwveXLXJnZnxhnIpRjKZRnMpdnrTrxoBA+D0ub0WSY+MCcNxRsXLSWicsX/Tsz4hCb4uYlpUMWoaW15Tah/bXS/6EdWBr+XZRgY+IVDa1EOkH5IdxSkh8Kd+d9O60cda7V+lEPrx+z1Q+ZGQElcL8tvf31L1eePkvoR3uf3ZVKMutmp+jHprIKfxVcez48M8OTAbnZnxhnat4nBVRfQH21ln0rC7r2we6/WjzmiH97QTvxUPygPq2sJGKrIfV6fP2pfq/Ujz/7Uj4bUv+/YsYMbbriBG264gba2Ni644ALuuecePvnJT/J//s//4W//9m8b8TINY+z24/CjM2+e1rxX03TSdYXvR287tuSb1Ow4jeQrrp+45h0no9zB4mtbj0Oe8EsABIKxu85GZbbPWHfpPBhunU/7ufdghdOtxu+9CDm+seh1RXwhLec8WPg+/cifIceD4FHmqWlr7Q5azpsILKUeejv+4J+KXhcjRvbZlcHejz6HjoH/IJZ9jNFNxZe3XrRrYg9PfBhv9+8K37eFXwCjwFcJzEMvm7+AI/q/RuaFW4tfFIit/BlYwbOdnV/DHwqu2xM+7odfAIkz72HIS4JStG//BqNbv1Pyuskz78BsDn6/3ItfIffCF0uubTrtRqy244M9bP4vss+VLqdsOuWXWJ2nB2u3XUf2mX8quTZx4rXY888DwN15PZknP1J67fHfwe69FABvz42kH3tfybXxNf9BZOHbgrX9d5B++J0l18aO+RzRJe8BwB+8n9QDl5Veu/LjRI/4YLB25ElSf7qo5NroimuIHfkxAOT484zffU7JtZFlHyC+6hMAqMwOxv54Sum1i99NfPXng7XOAGO3rSm51l7wVhJr/zP4xs8wesvykmutnktoWvfdwvdl1+7He0Ty9N9PrC1xjwDIWkcB1WUuly9fzjPPPMMLL7zAihUruOGGGxgeHgbA8zze9KY3sXXrVi666CL++Z//mcsvv5y3v/3tfOc73+HrX/86mUyGU089tarXqhetH+XfG6J5DRxzbeGwUuq98bo+GO6qTj/igB3pZde6Gws/637yHUTSQeXW9I8hvtXO7sXfx8uM80D3sawb+zYrxjYxDzh9ymYhE7U5y/0ITVaE3kQzHzeu5Ri/dFLjD6tuDdpCDJOjt32Klqf/PyDQi+m0nP8ihMmVzNN/h7vj5yWv2/yqJxHR4ENWdsOncLb+oPTasx9AJIJpY9mNX8DZ9M2Sa+eCfvhr/wviJxEzrTmhH97AfWSfenPwwLNF1mr9CNZq/Wg4Wj8aox+1nD+K6sdT7yCSKq0fO0+8naFchscGdnH6jr9jhXxhqn7EgB7IKJuzxj9CkxD0Jtv5uHmd1g9eXv0wkqchx/YhR+/B2f65kmv1+SNA60fAXNKPuoNd4+Pj/OIXv+BHP/oRjz76KG984xv5z//8T84555zCmr1797J8+fI5JzYvB9Ua1Le2NtPSUud0i0b5FiiFu+3J4M/LXwGlgmJ18MTYMBER48NrzkRsuaPsWrN9IUYkkE1vsJkyeRXGfR+pFLZhEDEMyuQTNJrDhvb2dr797W/zjne8g2g0yrnnnsu6devo6Ojg5JNP5q//+q8RQvCGN7yBn//857ztbW9j/fr13HfffcybN4/3vOc9ZLNZvvGNb7B27dqG7UvrR/Xk7+rVmO22NDdVrR+GMFg4eQpuGSNhx/f426fv5/nTgw+c3/J+VvLTQ8y0ePgNH6I5nISbeugWvH2lDytvWjbRdtS/S7fAVYM3x8zpy1YcaA5atH4c/NSiH7WcP2bqR+l2OMf3+IcHb2LjSD8Aq+O5kvoRNQzuXLyQ1qZ24mvOJ/XQrVo/Gkwt+iGdFGpoBwBGon2/7ktzaDGX9EOoOp0dk8kkp512GldccQWXXXZZ0TIzx3FYuXIlmzaVKAk6wIyPj3POOeew/jc/oqmpSFncfiwR3J3zGMim6Yol6I6aBQVKpdM0Tf67m9aaWEsbo7tnAzIzgtnWi5nsmrm8yjbGkd/9G+O3fBt78XHIN36S4eworYuPpTdZ/EZXro3x2eG9KAUrWjq5+q5fcNvgIG9bsJzPnPGGusqId6RHGMnl6IonmB+bEOUXUymyvqQ7nqQratddRqykj7sz9KXpOwZhJ3QbI+gy4rrW7p8y4lQ6zWsvvYI77riDZLK2wPg73/lOLr30Ut761rdO+fm3vvUttmzZwuc//3kefvhhvv/975NIJHjd617HkiVL+NjHPsb//M//1PRa5dD6Uf17Y282zT7HpyMap6+pZcp7I68f7p4XUG4Gq3MJZnNP4bmT1yqleGl8kJzn02TbLGlun6IffmoAb98LKNPmxVgHN2/fyP/b9BTjYTt4vl3kaD/Lq5au4rRkE8ctXk2kaWY5ejlNKLd208hu0k6WBU3NtEaKjI3XbSgAbE2nGPMkfYlm2iP2y64ffmYUb8+zCDOC3buyyFqtH7Wv1fpRCq0fs9cPmR5ibOdLJFrasOeH1SRlzh+V9CN/ppBKsWF4X0n9OLa9m1d193JG9xKObe/GMgz6v345uRfvJ3nOe4mtvQB/cDdW11KiR5w0Qz/cXRtRfg5r3jKMaFLrR9G1jdEPmUvh9W9HCAMj2YnZ1qPPH2j9OBj1o+604LPPPsuiRYvKrolEInNGaCYjrMSUG2S5dbVcsxxSBUW1pjAKAjE8PMq11/2G1atXcs7Zp2EUyaxPFpOK+AJhxDCi7RX3M/mNPRnlu+SevRuA2NoLGZUSFWkmEmur7u9s0j9ET0qkEbzO8+MpbhscwkDw3pUnh2urN4DPr82oNMo0SERaCxNk0p5L1pcIAe3ROMIwwKjOOFEYkSlrVS6NMGJg2hiR5rJry1/XBqO6LFNtay0wqvtnW9NaYRbKuxu71thPa8V+WQuN/Xdf99oy/+5FnX7U1113HYODg7z5zW/mgQce4KGHHuKDH/wgSinuuOMO3vKWtwDw2c9+lm9+85v867/+K83NzTQ3N+M4ja2V1PpR/Vpl+EC6kJkvph9nHNWBMBTCmlpePvl9tCc9RlZFMG2DBS0dM6YoCQyEEcO14jw9Osa3nn8KBbRHW3ll9xLWPvwL1j3/R5Zc8rfEFq8C38WKd1ShNdVP83KxUGYc226uaH5bj35Utbam+/z+WlteE3Iq+OAaMa25oR/SRxgxRCRZ+f2g9WP/r9X6ofUjpJR+jIzs5sc3b+CYIxdx7gWrK54/KupHeKbwfK+ofryydylndi+lMzZ1r86Wx8htvB8Mi6ZX/iX+3pcAMJKd4XWn6YcRQSiBsGfea7R+5NfOXj+Um8Uf3BMEuuKtmO0LgnuhPn9o/aiDl1s/6g52VRIazVT8MDORb2N0HJdf/fr3ZLM5dmzfhZSyqNhUi1KqIVMEvb2bcLcHJcOxo89iMJNCRZux65j4lC+VNQ2Dbz0ZBNAu7OplcWdfXXvzpSTnB9eMWRNv3cFccONujcSmTH2sB+WG02ns2sctazRzla997WusX7+en/3sZxiGwerVq/n2t7/NiSeeiGVZnHfeeVx22WXccccdrFq1ip6eHq688kre8Y534HkeX/3qVxu6H60f1ZNvgZ/chjJDP5a3YkLJVpJx16E/G9wnFySK389VOIp8yJf859P3ooA3LDmGL5xyAcJ32fHTD4KXI7L4OPCDTLAwGzuNyQ01w57lffxQRiqFk9fBOdLGqMIJyXo616GJ1o+Dl1L68eub7yXreOzYM1Tx/FGNfuQZyKZn6EepFkolfUZ/H3gbxddegHIy+KP7UNJF5dL4I3tm/j6je0FJjNEOlD025TFvZB9CgYGHP0fujXMNqRTuSD8CsIXEL/HfXY4PgvIRkQRm5+JClZtGUytzQT/03eAAkR//K4RAKcVNN9/Bvn0DJBJxXv/6CwuGkHXjuwR1hwJmMfo7/Wgw4tNefBxGLImXGoNoU33BrjDAtzc9zk27ggzb+448ru6bZiY8jNmGUdiPJyUjThCg6og2YOJPAwKGGs1c46qrruKqq64qfN/U1MR///d/z1h3zjnnFHxPjjnmGB555JEDtUVNCWTB7zFsfSiiH+boFpAUvbf6UrIjNQIEla8tkeKBfBVOtv3CC0+wL5uiN9HMJ054FYYQODueAS+HiCUxOxai0oNhSX3jPkJ4UhY668vpjXIyqJK9/Yc+Gc9FelksITC8bJk5ZQcO5QZtGmIWnz00cxetHwcvpfSjf2iMeNTmdRedVfb8Ua1+5PncY3fM0I9SONueJPvkzQDEjn8t3t6X8Mf7MSJxZGaY6WMrlQI5Fvh++fF9CHNCJ3ypEGNDCMDAx9exmaLkfA9jfBTDMBDCL+uFLKwo1rxlQbeMRlMnc0E/dLDrADHZoP7Bhx5nw4YXMAyD1136mvoN6Seh3DBIY0VnFYHPPhZMV4mtvQCZy+ApiYrE68q0uzL4GP7LTU8igbPaOjm654i695YJs8dxa+ID9VAug1JBpVfCmv0H7cl/jxqNRvNykw/s5O/rxfTDGQlDHmLmfXpHehRXSiKmSW+iecbjBXyP9f27uWXvdgwh+Pi6c0naQaVO7qWHALD7jkYYIkirNLiKJ1/VZRlGSQ3zhnYix/Y19HUPNtKei5/NEDVNvMzQy72dqTRAgzUaTeMoqR9CcPHpR9HSXt50vGr9AH63dQM373hhhn6UInXPj0FJIstOIrL0RLw9GxFWDKOtB6O1G2Nah4XyfYxEKwBGy7wpOuF4HlIG+mE2z/SR1AS4ThapTKKWhZFsK7lOGCZGsrOhCS2N5uVCv4sPEDKsctqxdRd33nkfAOeeczqLFtXX0jedhrQw9m/F3fE0CIPYMefiK4kyIwjLxipyiKqEryQD2TS37nwRgCuXrJpVe2AmbJ3JB7WUUoUWxoZUdaHbGDUazdyi0IYCbN68rbh+5A18p1VEDeUyjDo5hICFTa1ls+w7xof5zKbnAHjz0mM5sWtB4TFnUxjsWnA0Kmyh218tjOVa0VVuPPiDYcFh2laR83wwLaJWZFZV3I1GmBZGvKXyQo1Gc8AopR9nHb+UBfNayyZ2a9KP1CiffPgPwEz9KIZyc2Qe/R0ATa+8AiOexEh2YTpZrPYF2POWzfAFU24OlRkGYWB3Tm1llU4WZcUxLQurpbPsax/OuJlxVCRFNBrHatL3a83hgQ52HSCkUriOy+2/vx2lFMeuXsm6dcc27Pr5YBezyLanH/kNAPbitRjxVnKpQVQ0gSVKZ9rL4UnJb7duwFOKE5vbOKlved17gyCjDRAPP+CPuw6ulBhC0FahtLoaAt+zoJVHtzFqNJq5QL4NxXM8fnfDrTP0Q8lJjWyTkhKO77ErHXiazIs1la189aXkHzY8wpjvsbKlk7csO5bIpIOGk6/sWnDMxFSqCln7WslXAkfKtTCGlbd29/LDNiEhx4exnRzJRJJIrKnyEzQazWFLMf1YffQK1q6YF06jK36/rVU//vb+Gxlzc6xs7ZqhH8XIPHETKj2MkewkdvQ5qPQoyncQsSSYdtF9qbz2FHmsGv3QBG2MAFFT/z1pDh90I+4BwlcKO2LzqvNeyeLFCzj//LMaa/jnhkGaWQS7Mg//CoDYqrNRvosnJUTq8+sCGMhmuHn7RgDe27cUo6l8uXQ5HN/Hk8HExXwb40RVV7xsxqlqvBygwrGxcydjrtFoDl/yVcGxWJTzzz9rpn5MGome99ZQSrE9NYpUioRlM69CUOS7Gx7k4dEhEobJX68+FdMwiIQfhv3hXfhDO0AYWL0rYT9XdpXSG+W7YQWbgMO0zXwgm2bUCQJ+Ma1RGo2mAsX047xXnogQouR5oWb9eO4hHurfQcKyuXr16VP0oxSpe64L9rX2AjBtZHYMfA8jlix9jgkDWqLISLhK+qHR+qE5fNGVXQeIfHZl5VHLOWblioZPtpioSKov2+3ueTGYwigMokefA242MAyOJOoWj+s3P01W+qyIN3FW3xElM0jVkG9hjJpWYJjse4yFAb6OaLzu606m4Nelq7o0Gs0cQU7ye1x51HKOOvKIqfohZ/p17cumSHsuhhAsbGotqzdPDu7mK0//CYC/XbKCnrBdJX/fz730MADWvKUYkTgqPDw13rMruG4pf8gJP8XIYTcZSinFrvQYg7nACL49Gq/oh6PRaDTF9EOO9eNT2pu2Zv146l4A/vG4s+lJNE/Rj2J4ezeRe+4uQIRTGNPkB2wJK1K6tVLmK7tmakQl/Tic0fqhOdzRd4UDgOf7+F5wkzaEaHygS6kJz646DyCZR34NQGTputB3Q+EZJlh2XeKR9lx+veUZAN7VuxgzOTvDyLw5fSLMRgyHExiTdoRIgwwUtV+XRqOZa/hK4Xt+oXp1hn6oqcGutOeyL5sCoC/RXDbDnvZcPnb/jXhKckHHfC6YtwCBmNrCuGlSCyOADCdkNdiMvODZVcIfsnB/Psyqunwp2TI+XDio9CSSLNBeKxqNpgqK6cfEvXTmeaFe/bho4VFctPAooHIrYerenwTrjjgJs7UbFb5e/rN3yYozWa6Nsbx+HK5o/dBodGXXAWHz1u3cccMfOOrEozn2tO7Gv4DnELTfGXUHu9IPB35d0VVnF9piPDuomKqnsuvnLz3JqJujOxLlNfP7ELHyU1wq7m/aJMZ8sKsRXl159CRGjUYz19i7YzeP3/EQudNPZMHKZYVMfQEnDenxwK9xfIS056AUtEZitJWoeh3MZUi5Dl9+8h42jQ3RFY3zVz2L2JnLsS8zTtKOEB0PPx68cB8CSHctI51JTwTXsllw3Ib9ntnQS6RkG2Pel/Iwqrx1fI8t48PkfD+ssmihpYGap9FoDm2K6Yc3NoRyMpixHMb4yJT1delHLMH7Vp3C5vFh9mVTU/VjOp4Df/opAsitOpc9qTEQ+cEjJuR8iGVh2r4AZGoEP5vBEDbmtMcr6cfhiNYPjSagIcGuTCbD4OAgCxZMnb7x9NNPs3r16ka8xEGLUop77n4AJ5sjNZLaP6/hzc6vy935HN6u58CwiB51Gkr6CCFwwkNFrZVdju/zveeCaoDXdfUQb+qcVTWbUqogZAnLJuU6OOHNu5E3buXlK7sOn8OURvNyo/WjNFJKNj70NE42x+7+ARJLe2YuyqYxXQeFQIZJANsw6CsxJt6Tkp2pUR7Yu43fbduAAD58xBoM5dLvu4y7OSxhMOJkwXNo3RFU6Ka6liGdLALAMPA9F2hcsAuCAYslKwka4Et5MJH2XLaMD+NLiWUYLEm2FZI9Go0mQOtHaUrph5dLo3wXUyqMUDMmU7N+HHMaimA6+hT9KIL91C00jQ8gk52kFhwL6RGIJFBWBDwX4Xv4UkGR58tcBt9zMTwPs8jjZfXjMEPrh0YzwayDXb/4xS/4yEc+QldXF1JKvvvd7/KKV7wCgHe+85088sgjs97kwczzL2xi755+TMti5fFH75fXmGhhrC9Ik863MB5xEiKSDPriTavuyq7fbn2W3Zlx2i2bc9q7iDbPbgxw1veQSmEIQdS06M+OAkHmqSHG9CHas0ujObBo/SjPxuc3MdI/jGlZrDr+GBygJRKdMhlLCYmKJSASx0gkEQia7QhmiSRF1vcYymX4xrP3A/Dny9dy3vxe1Gg/GTOCGUvQE0/SFo0jNz+C47vQ1E77/GWAQggD7ChGItnw3zdm2hUruw6HNvPhXIYd6VGUgphlsSTZpisWNJppaP0oTzH9aLYj2KYBZhS7uR0xzQakHv04f+EKIGgltAyjoB/FcB79FRKwT3ojnU0tyPEBjFgCmjogNQh2BFFkXwCek0JGohjxJFYR/SmnH4cTWj80mqnMOtj12c9+locffpju7m4efvhh3vWud/FP//RPXH755ajp7RaHGVJK7r77AQCWHruCeHz/fEifOATUHqRRSpEJWxhjq84CL4eIxMCw8Izg7VHLTdKXku9seBCAi7u6ScSaEJHZGcgX/LosG6lUIWPU0BZGzznsJ31pNAcarR+lkVJyzz3BvXTZsSuIxqM4rkOzHaV90kFC+g5eNIaINmFXmJoFwf30a8/8iVE3x9Ft8/in48/BGNqJjMYYMOJEInF6Ei0k7Qhj25/GAaJLjqc1Fkf5HsK0MOKtWFW8VqOY4kt5iCcj9mbG2ZsJqsBbIlEWhgMDNBrNVLR+lKakfghBMhIFYRBpaq35usX0I++bO5jLYBtmQT+m4/VvZffGewDoPO3PUL6Hj8KKxjCbO/C9NAiz5L4820ZGopjxJOYB1J+DCa0fGs1MZh3scl2X7u7Ah+rEE0/kzjvv5I1vfCMvvPDCYTcxaTrPPPs8AwNDRKMRlh175H674eQrkqijvcPd8hje3hfBihJZcSqEHxD8MEBlCIFVQxvjrTtfYNPYEM2mxXnt84kk2mve03TS/oRf16iTRSpFxDRpauA0kcl+XYf7+1ajOVBo/SjNM88+z+DgEHbEZvnalXiTpmpNJm/aW+202x+/+BiPDuwiYph88RWvJWJauL6LUgrPEAggGraC5M3pI4vWBk+WEkwabk5fkTDQlZKS0fQ4h+ox1leqkNzpiiXoKdFKpNFotH6UY4Z+jA1gpAbBNPBG9yLsKO7el2q+7o9fejrQD2HwhSPXIAa2Bs3sSuGPDmAApjOKW0SPxv/wbQAiy09BeQ7+0M6g99C0C5Vcotzn+rxfZJ0TF8ddh4FsSuuHRnOYMetg1/z583niiSdYuzb4MNzR0cEtt9zCu971Lp544olZb/Bgxfd97g2zKmtPXIMdsWccUhpGwbOr+oy3N7CNsZu/Ruq+nwEQW3kGRjSBzIwjANeOg6KmQJdSim8/G/zOb5rXS9y0iCRqzxxNZ/IkxoFcGmhsVRfMrjpOo9HUh9aP4kzWjyPWriQasZHhB31j+rSpfAVDFVOonhnay3fCe/RH15zBitawxdx3cZVCGRZmODZeKUVu08MA2IvWBC+FRHDgh3goN4evFNs9HxF6dx2qCAG9iRY6SrQBaTSaAK0fxSmmHyqTRWRTCCFRThohDFR2rKbrPpsa4zvbXgDgI4uWsdwUhWu4vg/ZFIYQmNHojICS8j0yj/4WgNia16AyIyg3gxFvxki0TvIeLq0ttSZ2JuNLybbUCL6UNT/3YELrh0Yzk1kHu6699losa+plIpEIP/3pT7nqqqtme/mDlq1bdzAyOkZTU4Kj16xin5uZeUhpAEF7RygSVQRq3N3PM3bzV0k/eH3gzQVEjjiZ5vOvCs5MkycxOrmaWhjv3bOVp4b2EDNM3jCvDy+awJqlmbAvJTk/2JNpGIyHB522WbZGTqcwilkHuzSaA4bWj+Lk9SPRlGDJMUdgCIEfBrWs6UmTfLa7QjIl7bn8zX034CnJKfMW8vblx01cwndxpEQYVmFsvD+4HTmyGwwLu3clykmB74MNwjywlV3KzbHPySHNGAnTpOsQbmFJWDbRIn41Go1mKlo/ilNMP7x4M9K0MWUO045gNndhtFQ/HT7tufzdkw/iKcUrOrp5+9GnYU66T2U9B2k3ETUtzOaZHR3Zp25FpoYwkp0kTnkzcnwQhInZMg+ztRd/eCdQYQCJDAZVUUewa182hS8lUa0fGs1hx6z/RSxcuLDkY2ecccZsL3/QsmzZYq644i2kxlMIywB3ZvtJQ/BygAJhlD2AONueZOymr5B57IZCJUD06LNpueBqokeehrtzA35qBEwbDAvftIEctmEw7ub4yJ9uYEd6tOxWBrJB1dVl3QtJWhYjsZaaKsOKkQlbGG3DIBUGuprsSMMnrky0gupgl0ZzoND6UZy8fuwbHgbLwhAGbvhBf2ZlV761o/w98V8evZ1NY0N0RONcdcxpRMNWRCV9UJKckmBahXurk6/qWngMwooEwa5QOw70RMRsLs2g52BEm+lNNJPUSQmN5rBH60dxiuqHHUdZMSxnHAOF0TIfM9lR9TW/8ODNbEqN0hGN86E1ZxFvnT/lcTebRklBJBLFTLbNeH764V8B0HT6n2O1duN5DvgORlMHwjAKSfuydiz5qixR2+f/nO8VukK0fmg0hx81B7v6+/sZGhriyCOPnPHYCy+8QGtrK/PmzWvI5g52uud3wfwudqeDMt/94dk1UfpbXCByLz3I2O//k+zTfyj8LHbchbRccDWRJccH15AyaONzM4hEC0a0CTes+rINk/958Unu3L25qv3ETYt39yzEFQYi1oQ9y2q2tDfh1zXsZIDGtzDC4TXpS6N5udD6UT3d87uItjaxPRUkGWQlz64y99rfb9vI/9v0FAK4evXpzItPymyHGuIgEMIoVHbl/bqiy05GSa8QFAPq8oecDTtTwygFLbEmfVDRaA5TtH5UTyn9MMIEci2t6GX1I8TJd4oUSbp4A9vIPXsHAE2nvz34oR9WaeUT14WzTOnP4BNtjLWdK3amxwL9iES1fmg0hyE13THuv/9+jj76aH784x8Xffzaa6/l6KOP5oEHHmjI5g5Gcrkcw8NTK6Dy7Sf7NdhVJEgz/L+fYd8XXxcEuoRB/KQ30v1/bqfrfd8vBLqCawQtfNLLIQwTEUsWgl0CwbUvPArAh1efxrXnvKXs129OOY/eaAwZSyKozdy+GHm/LgHkfB9DCFoaLFZK+pD/AKCFUKPZL2j9qMx0/ZhwF5lwQJkxEr6CZ9fO1Cj/96FbAHjHiuNZ09FDfFKbgwoPHW74/PxkrdzGe4PvjzgxaB/xveBgYlh1eabUy4iTZTyXRgjoaa6+EkGj0Rw6aP2oTCX9UCgMv3yCfDqV9COPE+pIpMhjqT/9FJQiuvKVWPOWBnsJK5WFYU2zYylX2RWcS2ppYxxxsqRcJ9CPeLLq52k0mkOHmiq7PvKRj/DJT36yZC/8pz/9aebPn8+HPvQhHnzwwYZs8GDjwQcf5/4HHuXMM0/hFaesA8APs+Hm/vDsyntNTRMud8ezjP/hmwA0nX45zedfhTV/WfFrONnQryvYp4gmcDNBFdW9ezazMz1GezTO+1adXLYXXEkfd/vTAPjRQFSsWR6K0qGA5n27WiLRmYe9WVJoYTTtA3qI02gOJ7R+VGa6fig11ea3aMKkzIQqT0quuf9GRt0cx3X0cPny48j4HrEpwa7gkOGGrSERw8Td8yLuzmfBsIgdfQ7+yJ7wcGIiDuAkRqkUu1IjIH26IlGi0UPXa0Wj0ZRG60dlKumHKX2CwFcwAbES1ehHnlKVXcr3SN37UwCaznjHxAOFwJUVVnWVt2NRUlJI+lT5OV0qVeis6Yo1FQ3EaTSaQ5+aogZPPPEEb3nLW8quefOb38wzzzwzq00drKRSaR56+HGklLS3T0whVAegsmt6W8nIrz4LShFfdyntb/9iyUAXBAEz5WUDkREmwo4XhOunLwYTbS5fvrai6aFMDQEKYcdQYYm0NYsAn+P7+FKiUOTCLFCjjelhcsBQV3VpNPsLrR/lKaYf+URJ/shStFK24GMy87FvPns/D/fvoMmK8MVTX4sbXm/Kvdz3UErhEuhTxDADb0cguvJMjKb2oPrLcxGmgTAPXAvjvmwKx8liGwZdsaaa21c0Gs2hgdaP8lSjH0a+Y8OKIqo4j1SlHwRnnFLBruzTf0CO7MZIdhI/7sKJ54SJbGGaFe1YwicU/lhtUnpfNoUrJbZhMO8QNqXXaDTlqSnMvWzZMu644w7e9ra3lVxz++23s2TJkllv7GDk/gcexXU9errnceSKieCSX8JrpRjK9/D6N0/0s1fA2/MSSrooXyJH9wHgbH6E7DO3gWESPfJ0Mo/dWP4aI7uRo/1gCIxkF07/VvzMOC84Do8O7MUC3pgdqHgdJT1QEpXswhkbDn6WGcStM8g36rl42TSelFiGgS0E0ewQbl1XK03BB0C3MGo0+w2tH+Upph95n5VCQrvIvVSp4j4mD+3bwdefuQ+Afz7x1fQlWtgwHGjElMouz8FVCkwLISBimgw9+jsAEusuCZI1ykf5buALdoD8uhzfoz+bAi9HdySKqf0UNZrDFq0f5alKP2poYaxWPwBc6aMUBf2YTOqe6wBInPq2wuvmNSXYlIXyxsN9lfkMnq8Eq9KcvqAfQE+ieb8UG2g0moODmoJdn/vc57jiiit48MEHefWrX013dzeWZeF5Hnv27OHWW2/le9/7Htdee+3+2u+cZXR0jMceewqAV77yFVOyJrKGyi6ZGUHlUlW9plIg3XT+mSgvh1KSsT98C4DoUWcg4kmkU/56KjOKzI4iYkkEEi83Bk6W9aNB+e8FTQk6pYN0nMqbEga+FUHlsphCIHwHVflZRUnnsijPwZE+pmHSGokWjOT3B4ZukdFo9htaP0pTSj/y2qEKCZMilU1qZmXXiJPlY/evRyrFG5Ycw6VLjmY8nGYbMc2preC+hyMl2BYRw8Tr34K77UkwTGLHXVg4ZCjfDfy6DlCwa3dmHKUgAbRatk5GaDSHMVo/SlOtfhj5JHo5Xyxq1A9KtzB6g9vJPn0bENipFJCTkvmGWdUkRhVWMFdb1ZXXjyY7Qut+GGql0WgOHmoKdr3uda/j7rvv5utf/zof+9jH2Lp1K5lMhng8zuLFi3nlK1/J3XffzerVq/fXfucsf7rvYXxfsmhRH0uWTB2HnC8lnjEyvggqHI9rNHVgJDvLr3Wz4GZBCOy+owHIPPpbvN3PIyIJkmf/BWZLN0ZH6fHMSvp4uzYg+jdjdizC6l6Bb1gMDO3lnkduB+Dda88l2lp+L3mEZZOSCjM1QtQwsVrqNxR2xoZRbg7lu5h2lK7mDixz/3hqCcPQkxg1mv2I1o/SlNIPOS1VULQ6WE41qFdK8YmHbmVneowlyTY+ccKrgGD8OszMyivfwVESDIuoaZF5IGxhXHEaZrJzwtNQSoSo3th4Noy7OUadHEJAr2WBr9vMNZrDGa0fpalWP4y8KXyZe2mt+gGB5QjMbG9M/elnoCTRo87A7l4+8UA+6GZYQWAu1Jiy2lLw+Kp8jpqsH32J5orrNRrNoU3Nbn3HHnss3/zmN/fHXg5afN9nw4YXADjj9JNn9MLX1MbohMGueAtGNFF2rfRdRCSGiMQxogmUm2N0/ZeAoGTYbOvB7FiIWSZoJrMpZCSOmWjFapmH3bmIcSfLzS8+hacUJ3Yt4LhFKyvue8o1cxkMO0bEjlT8HUqhlMIxx0m7DolYkmQkRkyLlkZzUKP1Yybl9KOQmQ+/L1vZFR4CfrHpKW7cvhFLGHzx1NeSDLP4mXDi7Ay/Fd8jJyXCDCq70mELY3zdJeHl/SmvU8pAuFEopdgVmgp3RhNEssOBpbKu7NJoDmu0fsykJv3wXTCNskGlWvUDIFeksktJn3TBmP7tU9YXrEOM4FoTnl1l7vGqukmM0/WjktewRqM59NF3gQYwMDiM5/nE4zEWLuyd8biiujZGJWUhiy4qGLF7+zbjDWzDH9uHEWtGuQ7pB6/HH9iK0dSOvWgN7r7NKAT+0K5yr4pyMmBFEdEmhBCMuzlu3v48AO8+al3ZfRQjH9ybjTl91veQSjHuObRF47RFG29Mr9FoNC835fRj4rBSOmFSODgIgx2pUT77aFCR+zdrzmBtR09hXTbMpk8eG6+kBOkFxsOmhTW8m+yWR0EI4sddFG7CD18jPDLt5wqrgVyanO9jhabC/kAVByGNRqM5DKlFP4TvgRkpGeyqVT/yOOFjk4Nd2Wduxx/eidHUPqElhY2FlV1hp0benqRcEG5C58oHu6brh0aj0ehgVwOYP6+TD1/1HoaGRmZUdUmlyHtEFs3KT0I5GUCBaZe96ctsKvD28rJBtt0wkdlRUvf+GIDYuksQlo0Za0YwyQiy1Ou6WYxIAiOaBOD32zYy6uboiSd5dd+KCr/9TNxQlIpODquSjOeS8z0MITCEoFVn9TUazSFIJf2YTNGEySTPrt9t3UDG9zihs4+/XHnSxBKlirehhNl6R4WHiKdvBiCy/BWYrfPDTXjBOmEGbSf7cSKiK332ZgKPye54EkN6oQ2AOGDG+BqNRnOwUK1+KOlhVkhY1KwfIQXPrkk2I6m7A++0xCveOsMipDCJ0bDCqi5FxXt8fupwmcqu6fox3VtMo9EcnuhgV4OIRCJ0d8+b8fO8XxdUUdnlZoJ1dvkqJpkZBkBYMayuNsyOhYzf/l+ozCjmvCNInPwmhGFh962squVEKYUQAhFtQinFLzYFRpdvPWJNXQErL/ydZ1PZlfZdxtwcMdOi2Y5q0dJoNIcspfQjf1iRJaplA+PhCc+u23e9BMDrlxw9RW+ccFqWIQSRyZVdvotSClcYmID/+O+BYApjYY30Ub6HMPe/Of3u9DhSKeKWTXs0jswE7SjCis44yGk0Go2mOv1QnhsMjTIjJe+lteoHhJYjhTbG4DFvYBvZp24FZrYwBhuaaEmcaGEsva+pzyl9FpiuHxqNRgM62LXfqWUSY96cXlTy6kqPBOsiMYQVQWVTjP/xewA0n/dXGJF4YHAfq+xxpdxsIDDCQEQT/GnvNjaPDxMzLS5bemzF5xfDCzMws6nsSrsOY65Dd7yJ9qg2jtdoNIcfMwyGp+vIpGTKoOvw2EDQsn5O3xFTluVbUGb4l/gunlIow8IY24O76SEA4se/dtIm/MBQWIj9GuxKuQ4jThaYMBUutLfoyl6NRqOpiSn64TtBG3yJe+lgLlO7fgCulCgFQoAdfuZP3f2jwJh+5Suxe46c8RyVN8o3rYkJ6xW0Ram8z1fxyq5i+qHRaDSgg12z5rmNL3L//Y9y7LGrOGHdzOBQPeb0IlI62CWzKfBdFALMQBzGbvkauFkiy07CXrQmeL3mrqr2L7PjhdcUQvCj5x8B4NzeI+iM1ZcZyQe77DqDXb6UDOWySCVpsiI06fYVjUZzCFJJPwqZ+YJn17R7aj7bjeDuPZuRSrGqbR690z7sZ7ygXXHGJEbPDczpDYvYM4FXS+SIkzHbJrxfgsouF2GYDQl2eVKS8z0c6Qdfvk9OeoWJXu3ROHHLDvdX3UFIo9FoDjdq0g/fw6B0wuKu3Ztq1g8AR074dQkhUG6O1L0/ASB51ruLb9zPV2lZMKmyqyzhucLDIOs6VemHRqPRgA52zZpNm7ayZ8++osb0MCE2Ff26pD+RxS5jTp9vYTQicZSTxuvfSvr+/wdA8vwPBe2IseaKBveF66WGguvFmtk8NsTtO4My5osXr8QOMyhKKXZnxgsmlJXYOj6MryQRw6hrEoqvFKNuDtsw6YwldPuKRqM5JKlWP/KUrOwSBrftCO7d5/ZOzcrDxNj46ebCSro4SiJsC/vpoO0kvu7iaZsIg112HKa1xTu+x+7MeNhOWR5XSRzfn/E7TSZimnTHkxP7c3Vll0aj0RSjFv1QvocpSg/6uG1n7foBFIJMeXP69KO/RY4PYrb1EVvzmqKvla/scoFdY4P42TRGpBlzbKjoeoDs2BC5zBiYcQxZfM10/dBoNBqAOWeEdNtttxGPxxFCMDw8POOxtWvXEovFOO6447jjjjtelj3mUUqxefN2AJYtXVR0jQwPIxX9uvItjFYUUSJApJSa1MIYBLPG7/w+KEnsuIuwOhYCNVR1OWlkLsWI5zFsx/juhodQwHEdPbRGYgw5WQZzGTaPDbFpdJAdqdGKX9vHR9idHmNfJsWezHhVz5n+tSs9Rtpziem+e41GUwOHnn6E07TyvsLGdM+uQF9c4K7dmwE4t2/ZjOuUbmP0cKREZEYRmx8GIH78xTPW4LtgTB1Zr5Ri6/gIo06OsbDtvNxX1vMKv49tGDTZETqicXoSSRYnW1nR0sGRLZ1Tf8d8sMvSrewajWb/cijrh9naTWzBMRhN7TPWudKvTz+YbE4fPJa684cANJ35jpJnGaSHUrA9k2Ykm2LM8xhXlNWPjOcEnTLCqF4/NBqNhjlW2fXAAw9w2WWX8fnPf56/+Zu/mfLYtm3beNOb3sSXv/xlLr30Un71q1/xhje8gWeeeYa+vr6XZb+Dg8OMjY1jmmbJzIpfpWdXMImxfAujyqUmpmKZEZytj+M8/ycwTJrP+yAoH2HFMOItVe1fjg2wz3UYMKJkx0b47dZnAThl3kIGcxl2pkYB2JEaIet7JO1oxfJgP9+8DxjCKPy5FgQwL97EvGiirsowjUZz+HGo6ceUrDwKgZipIzJY8+jYCOOuQ0c0zpr2nilLPClxwxaQmW2MDo6SRDbeC0phL1lXSJoU1qjAoJ5pbYx7MuNkfQ/TMKrKptvCIGKa2IZZnYellCg/bHHRlV0ajWY/cjjoh2lFinpePdy/oy79gIlgV9QwcbY9ibPpITBtmk4vYkyfx/cZzKXJRlsxfJ/uaAyruX3G1MYppGLYlkG8bT5Worozjkaj0UCNwa7R0dGq17a01HYz2rFjBxdffDH/8R//wdlnnz1DbL73ve9x0UUX8Z73vAeA9773vdx8881873vf4//+3/9b02s1is1btgGwcGEvtl08CFStQf2EX1eZFsb0cHCtRCvKzTJ+x38D0HTGOzBiSZSXw2jurGrvyvfwU0MMuQ6ifT537t5M1vdY1NTKcR29NEeiNNsRHOljiCCLsqS5DbtCO2bW98j5LpYwWNhUvyAJIeiKNdX9fI1GM7fQ+jGVSvqRn+QrlQwSBxRphw9Ne/84tA+As3uXzZhcm8/K24Yxc6ptWNkVf+4OYOoUxsJLuLmgXTJMsgCMuzn6s4FmLUy00BzZD8GovF+XMEtXCGg0msMCrR9TaYh+hNy+cxNQh34w0eIYMU3G7/wBEFQHm63zS+49lUsznMuiECyIRGi2LOxEK6JMVZZrmChlYmgt0Gg0NVLTXaOtra1q/yQ/b0BYJX19fVx77bVceOGFbN68ecbj9957L294wxum/OxVr3oVv/nNb0peM5fLkcvlCt+nUqma9lSJfAnx0iULS67JC04lzy5ZwZx+cgujkWgj9aef4u3aiIjESZ57JSo3DoaF0dRR1d5laogxz8E3I1iROOu3PQfAny9fS19TC52xBL2JZnanx+hNNNMSibI42VbxumNODldKYpbFkuaZ5dIajebwROvHVCrpx4QPVvB3JkRpz64/Du4B4FV9ZfxWplXlKqVQvoubHqZ5y6PBmul+XUyeiBhBGAaelGwPq347ovH9E+ia8rq6qkujOdzR+jGVhuhHyB27Ar+uWvQjT76yy8qOMfLg9UAZY3rA9Tz2ZoLBWO12EOgSZqRsoAsCX2Og4jqNRqOZTk3Brk2bNhX+/OCDD3LbbbfxsY99jKamoAJnfHycr371q1x00UU1b0QIwYUXXljy8e3btzN//tRMQU9PD1u3bi35nM9//vN8+tOfLnxvGAbr1q2reW/F8DyfbVt3ALC0RL88TDaoLy3SyneD9kSCyi6ZGgraRiZfJ5dCju0Dw8IbG2DsD98CIHnu+yA/qSvZUbUQyPEBhj0Xo6mTp4f2sCM9Slskxjm9R5D1PWzDQCnFUDjKt71Kw3s3PHxVqgDTaDSHF1o/JqhGPybaUBQgCtn5ySgp2ZxJszmTwjYMzuheMmNNSb8V6eFKn8hLDyGkj73wWKyumc8vtNiHLSY706N4UhI1TXr244h35eZbGLVfl0ZzuKP1Y4JG6QfAprEhNo0N1a4fBOb0eecS94Ffotwsdt/RRJafgnJzyMzMarztY4O46WFsw2K+DO7xVU3bVfkJjjPbMDUajaYcNQW7liyZuBFecsklrF+/nkWLJm603d3dfPSjH+WSSy7hggsuaNwugUwmg2ma3HHHHbz2ta9l/fr1WJZFJpMp+Zx//Md/5KMf/Wjh+1QqxaWXXtqQ/eRyOVasWMq+/kHmzSvdOlhNG2PBnN6OBRMWB2YKqD+yB5kZRcSaGfv5PyCHd2Eku0ic/W7UyB5AYFRrTJ8Zw3EyjPkKK9bMr557BIA/X35cYZ+2YTLq5vClxDIMknZ1o9/9sLe/WLmzRqM5fNH6MUE1+pH3e8wfWaxiGqIkdw73A3DyvIUki1RBZfziY+OVF0xijL54PwDxYi2MUk4kYuwEg7kMo04OIWBhU2tV3lv1UqjsquYgpNFoDmm0fkzQMP0A7ginMNaqHzBR1WUjSN39IwCazno3Qgjcwe1Bx8kkhlyH4fFhrPQwXfFmCKfLV6rezVd1BYt1sEuj0dRG3c3PL774YtGy3FQqxQsvvDCrTRUjHo/j+z4tLS2sWrWKlpYWhoeHicdLVxxFo1Gi0YmbqNHAAExTU4JLLjm/4rpqDOrVpBbGwgd8M4KIBaa/SikY7ceIN5N76RFyz/4RDJP2d34J4ToowGhqR5jlzePzyLH+oKor0cyW8REe7t+JJQwuX3Ecw7lAvG3DnCg1jsarLh/3wsouS1d2aTSaEmj9qKwfismZeYpn5qXkjqEg2FVsZLxSqjAafsbYeN8llxrB3v5E8HiRYBfSCyqPEXimye70GADzY8mKw0pmi3KDqmLdxqjRaCaj9aNB+gHcHrYw1qwfTDKnf+kBvL0vIWLNJE6+LHhueK4xEm0gDBzps0eOYkaTdCY7STS1BLYrQmA2zyv/CxeCXUK3MWo0mpqp+65x/vnn8973vpeHH36Y4eFhhoeHefDBB3nve9/Leeed18g9ArBgwQL27dvHCSecwCOPPMIJJ5zAnj17WLx4ccNfq5HIMPhTSmgAZGESYxxCYRGxJFbnIqzORZhN7ZgtXcj0KON/+CYArW/8OLFVZ0+Y1ldrTO85yOwog67DTYP7+McHbwLgtYuOYn6sqRCsklIyHraRVNvCCMEIYwiCZRqNRlMMrR+V8SeNjYfirfCjTpZHxoYBOLeI34ojfaRSGEIURsPnUb6L88J9COlDz0rs7uUzNyGDSYxKCHY6DlIpmuwIXbHSU4MbhfLCNkZLB7s0Gs0EWj8qU61+PLQvaIesVT8AnLDF0bzvZwA0veKtGLGmSUNNDMzOxZgdC9kVbcFo6aa5rYfOrkWYHQuDM07HwsoJDalbGDUaTf3UHez60Y9+xHHHHcerX/1qOjs76ezs5DWveQ3HH388P/zhDxu5RwBOP/107rzzzik/u+222zjttNMa/lqVyOUc+vsHJxlAlsavxrMr38YYTaBk2DIySVhkehiZHmHk1/8Cvkt83SUkz30fcnwAUIhoEqOEsf105PgAWzJpPrvlBf7r+cfISZ9X9izhn9adi6dkof9+PDxoJO0IEbN6gfHCNkZLZ180Gk0JtH5U1g857fFiQ07u7t+JpxRHNLUUHSBSzm8F30U9fy8A1nHFfW6U9MF3GfYkGRVUKC9ItFRd6VsvyvdAhr6VOtil0WgmofWjQfqxZwuekhzR3FG7fhAEw8TwTnj2dgCaznoXAMqd8HkUQrA3myLjuRhC0BuNIwQIo/rGIhWeK4QOdmk0mjqou42xtbWVr3/963z9619naGgIgPb22U3f2717N57nsXv3bgB27tzJ+Pg4TU1N/OVf/iVr167lRz/6ERdffDG/+c1vuPnmm/nSl740q9esh5de2sLvbriVpUsX8ZY3F2n9mISkfLAryID4gEDYcfCDlhRCIVBK4Y8PMvrbf0WO7MGav5z2t38JlMIfGwiuXaVXl5KSP2zdwP954UlGPA/bMPn7487inSuORwhB2gsCbSaC4bwxfbT6qi7QbYwajaYyWj8q64ea5rlSTEP+GGblz5m3oOg1Ml5pvxV/fAhj6+PB48fPnMIIgPTJOFmGpERYERY0tdSU/KgX5U5q59eJE41GMwmtH43Rj9tDv65z+5YVvUY5/YDAoD764C9ASaJHnYndc2Twmk6+BT1GynXYlwlaThc0tWCnh/ABatGRgjm91gKNRlM7dQe7JjNbkclz6qmnsmXLlsL3q1evBuBd73oXP/jBD/jlL3/JRz7yEa688kpWrVrF//7v/7JgQfEP+fuTTZu3ATC/jDF9ngmD+uI36Qm/rsAXS/lTK7tUdozUPdfibH4EYcfofO93MeLN+GP9oHyEFcVItFbcR9pz+fxDN/M/W58DYGmyjS+d+lqO7egprMm3IDrSxxAGpmHQUqNfSr6yy9aipNFoqkDrR3GmGwxP9330peTOgV0AnDO/+ESuwtj4IoeV7LN3IKSH37WExIJVRZ/vOmn2OlmEFaUt0Uxr5MBMRsx7V6L9ujQaTRm0fhSnGv34465gwuWr+oq0sFNePwAcJ0Py4f8FIHn2uws/z0/wlXaU7akRANqiMVojMbyx4Jq1VHYV2hi1Ob1Go6mDWQe7tmzZwoYNGzj33HOJRGY3NWnz5s1lH3/Vq17FE088MavXmC1KKTaHYlNq5O9kCgb1gD+8C398cOrjo3uRqWGMpjaU5+D1bwlG9ro5jGgTmSduIn3PTwBIXnA1Skmc7U8Xbv7VTGB8anAP19y/nk1jQQbsdb1L+cs1Z3J029RRyvlgV9rzSNoR2iOxmtpVpFKF4F6xkmmNRqOZjNaP0shpBsPT76mPD+5m2HVoMS3Wtc+nGOXaUDJP/wEA5+hXlfRY3DM6hCcVETtOb6Kl7H4bip7EqNFoKqD1ozRV6YeTpcWOsq6zr+g1yumHK33Mp27GSA1htPUSWzMxAVOGbYy7PYmLIGKa9Mabwwdr99/KT2PUbYwajaYe6g52jYyMcPnll3PXXXeRyWTYsmULe/fu5fLLL+fGG2+cMib4UKK/f5BUKo1lWSxY0FNx/WSDeqXkhA9JiMqlggot0woe84K2RgF4QzsYv/UbgCK25jXEV5879fmmHUwzKYEvJd997iG+8tS9eErSHYnyoYVHsHrpWrrzwjMJV0o8Kcn5bhDsqrWFMR+AEwJTV3ZpNJoSaP2orB8zPFem3VNv2/kiAGe2dWKHkxGVUuzNpvDCe/mO1CgALXa00JoOoLLjqJceRAADR51FIpyyOP31R7LB8+cnWw/oPb3QxmgfmEoyjUZz8KD1o3H6cVbv0oLHbrX6AZDyHIw//TR4rVPews5s0KWifA8vPYpUkGqSCGGyINFSeH0VnmFEiWqx4r9McI7SBvUajaYe6g52XX311SxdupTf/OY39PQEN93jjz+eyy67jA984AOsX7++YZucS2zesh2ARQt7sazyf31KqSmTUIyW+ZiTglNKKZTngpLYPUeBFSl8yLfmH8Hw1/4clUthda+g453/OXNiiVXez+QTD9/K/9v0FAAXzF/IxxYsZtiMY5o2rUXaQ1zpM+rmsAyThGWXNKUshavN6TUaTRVo/aisH/nDii8VGDM9V+4IR8af3d4FYdZ+zM0V/FHSnsuYm8MyDEZDXcljPXkzSd8l09LNaOcyhnKZontQTpYO2yYRm5kc2Z+oQmWXbmPUaDRT0frROP04t3diCmO1+gGQ2foEvTueQhkmo8e/DhVqiHTS+K6LsCJYwmRevIkme1LVnZ+v7KrhfKE9uzQazSyoO9h1/fXXs2HDBsxpJoNXXXUVK1asmPXG5ir1tDBCUO0kDBtMe2KBk0FYNggzaGP0vUJAa3T9F3G3P4WIJWl7x5cwmtpq2ueWsSF+uflpAD530nlcasHObBqRaKU1EiuapXelZMzN0hVL1FzVBdqcXqPRVIfWj8r6kT+s5I8okw8r21MjbBwZwCCo7MoHu5ywujZmWdiGQdZP0GxHmB9vmnJt99nbUEBm+Svoa26b8XgBM0h8iAPk1QVhEsjVbYwajaY4Wj8apB9C8MqepYWfV6sfAGOPBF5d7jHnMW/+RCWd72WRkShGvIVoUwvt07SjUNlVVxtjQ2ymNRrNYUbdd45EIkF/fz99fVN7vTdt2kQymZz1xuYiruuxfftOoFqxybcwiqLeV3KSOT0AoTl99tk/krrzBwC0XPK3RPqOqXmv//3cw0ilOLt3GW/s6sUZ2sGYMDAi8ZKBrBEngyclEcOqy4jY05VdGo2mCrR+VK8fee+VyUNO7tgZGAuva2mn1bILwa58dW3SiuArhSsl8+JNzI8Hf6cyPczojV/GeeY2AMTKs+lNNNMZSxTdQ0b5SCEObDuh5xD4zAjQwS6NRjMNrR+N0Y8TOvtom3QeqKQfhWunh8k9cWOw9uz3THncSw0iI1HMZDvmtLOGUmrCikW3MWo0mgNE3cGu97///Vx55ZV85zvfAWBoaIiNGzfyoQ99iA984AMN2+BcwjAEb3j9hezYsZvOzsoTYArm9CVM3lUuCHYZ0eCgoaSPP7qXsRu/DEDitD8jdtQrMWIlsu4l2JdJcX1Y1fW+VScjxwcY8VxItBEzLRKWPeM5SikGs0EZcmcsUXLP5dCVXRqNphq0flTWDznte2vSPfn2QgvjPIBCO7sTGgpHDJOh0GMlZloo3yV1148YXf9FZCoYVOKufCWydyWRcgcI78B7ZynPCV8zWtOAFI1Gc3ig9aMx+nFu3xFT1pTSj+mk7vs5ws3idx9JbPkrpjymQnP6QhJ/yqb8Sb9QPdMY9dlCo9HUTt3Brk9/+tN0dHRw6aWXMjAwwJo1a1i0aBHXXHMNH/7whxu5xzmDaZosW7aYZcsWV7XeL0wmLBHsKohCmFWXHrnn70O5WewFx9B05jsRidaa9/mj5x/FkT7rOns5oakFv3+AIc9HxJpLVnVlPJeU5yKEYH6NwbU8urJLo9FUg9aPykilCP4XkM/Mp1yH+/YG7Sxnt4Xj56dVdtmGEYyNVwqx4Y/s+dVn8fa8AIDVu5KWC67m+eQ8MG0iZulgV6GdsNjBZT+h/bo0Gk05tH5Uphr9mB7smqEfzAx2uXteYPz27wKQO+WtRCd5hykpyw8XyVd1CbOmREY9rY8ajUaTZ1YN0FdffTVXX301Y2PBJKfm5gNrYjvXmTyJcTpKSlSYOckfJJTv4e58FoDIspMQhomRaKvpNcfdHD958XEArlx1Mio1SMb3cWJNWIZRsj1xXzYNKJqsKLEilV/VkJ/GaGlB0mg0FdD6UR6pJFIpjNB1JZ80+dPerbjSZ1FTK0fEwiCUMdWzSwHs2kjy919k9MX7giXJTlou+VuaTn872cEdyH1bMU2rZGWX8t2JQ4Z9AINdbqiLRYaoaDQaDWj9qEQ1+rG8eeo098n6IZXCEKKgD8r3GPvDNxm94Yvg5ZDJLpzjLp6iH8rLBs82rKJ+iyo0p69pEiPoNkaNRjMr6i7BWbt2LblcEMFvbm6eIjRbt26d/c7mGKlUmjvuuJct4TSUapBlKruUkwEUmPaEKPge3s4NAFh9KxFmpNDiWC0/e/EJxtwcy1s6OHf+ImRmhCHPwYi30mLHSlZd9WeDCSylvFuqwQ2De7YuNdZoNGXQ+lEZqVThwDHZ9/G2nUELyjm9yyay48LAl8HhRowPkP6ff6L5G2/DevE+sCIkz/8QPZ+6l+Qr34UwLRw3aBW07UjJDLt0HVASYVq1H05mQb4yAF3ZpdFoiqD1ozKV9OPcviOm3Pvz+gETXSlR00IIgbPtKfb++2sZ/fXnwMthrTqbsff/iEiieco1Cgn8Um3v9fh1AUpPY9RoNLOg7k+wW7duJZPJEI1O/UCaSqVYtmwZvu+XeObByebN23jwocfZum0nV7zzzVU9R5bx7Mq3MBqTMub+6F784V0A2L0ry7Yw+sO7kbnUlJ850uf7Gx4A4D29i5H7NiOVYlTYGFa0ZAtjynVIey4CQXs0hlIKR/o4vh/8v/RxfG+GB8B0HD9f2aUFSaPRlEbrR2X88LAiEAUNkUrxx12BufC5PUvBC6oaEAaO7yFG99Ly9bfipYeDfP7aC+m57FNYXUumXNvxgkNJ1CrjxRUOUMGwDmxGveDZdQBN8TUazUGD1o/KVNSP3ml+XXLi83v+z1HpM/KbzzN2y9dB+ohEG22XfZrc8Zeg0mMzqoLL+nUxuR2x1squsCJM6MoujUZTO3UHu9797ndz880389a3vnXGY0qpIs84uNkcZlSWLl1Y9XOmG9TL7HihRcMb3I5Kj4AZwR/rByC78V4AzPYFGLFkyRZG5ebwR/fM+Plv9u5kn5OjOxLl4tZ2HCfNtmyakXgHUc8h53uFPvzJ7EiNsDczjiN9dqbGGHOcqn/H6Uwue9ZoNJpiaP2ojELhK4VtiMLQj6eH9rAvm6LJsjm5sxf2jIEwEELgSh/7+XsQ6WFUay+pS/6BriNPRUQTBY3Jk3WCqoioXXraYaGd0IodMKN4JSXKD4NdehKjRqMpgtaPylTUj3kLpqx3w4CSbZhkPRdz62OIX3+Gsb0vAhBfdwltb/kXzNb5jKWDJMuMYJcTBrtKJSry548azghKKVC6jVGj0dRP3cGu448/np///Oc89NBDHHPMMRhhNU8ulzvkJigppdi8OTB0XLa0OnNIAD+8QZuh0MjMCDI8dPj9W1C+C5YN4Yd756UHgcBAWFjRki2MMhsIjYjEMVvmF17r+08Gz3/3iuOIz1/GpvERnvcFju/T4TlsHR8u+rttT48y7GRojsQmmVkGQauIaYb/b5U02p9M1DAxdWWXRqMpg9aPys9RCiQSQ5iFhMntYQvKGd1LiAhwoWBO70gfEZrQ+4uORSXasIZ24lkzDwiOkwXfxTaMibbBachwWrAo4fO4P1BhxRnGgW2d1Gg0Bw9aPyo/p6J+TLu/5qu5bDeDf+OXSN73U5RSGC3zaX/b54gff/GMtdOHm+TbGI1KlV213NunTHDUwS6NRlM7dX+a/Iu/+AvWrVvHli1buP322ws/l7JSs9vBx959A6TTGWzboq+vu+rnTW9jFHYcI9GOkj7CjiHsGGZLT+HG7/VvASCyZB1mR+kMjsoEwS4j3lao/rpl+/NsTo3SYkd528pT8A2TDft2szWbIWbaNNtRBnOZotdLWhG8SJzeRAvLW9ppjyawtahoNJr9hNaP8uSrgqUCA1FINNyRb0HpO6JQwSAmTWI09waHGd+OI9JDWEikMfPwJzMpIqZNZN9mXLv4QJJ8m/wBNYr3dFWXRqMpj9aP8lSjH9NxpUSkBjG+8y6MwSC4Fj/1bbRf9qkZXSaFNsdJ7YjKc0D5gICSlV157606gl1hBbNGo9HUyqxSp3fddReJxNTqo/HxcVpbS3tNHYzksyqLFy3ALDOmfTqSqQb1ZrIDkh3IzBgqO4qwotjdgego6ePvCw4q8TXnYcSSRa+ppETmxgEw4oEpp1KK724IqrrevuJ4bMNgw/A++nNpDCFYkmyjr6ml5D6FECTtCAkrQosd04EujUaz39H6UZp8okQpiRAC0zDYkxnnqaE9CODs3mUTrR35YJeTwejfDEB/cj65SBI7WlxHPDOGocAyrcLzpyOUQpg2In7g/nuUHVuv0Wg0IVo/SlOVfkzDlT7WYzfA4Dbc5Dx2XfIPzF97AUOuDyMDU9bmwgqtyZVdhRbGSOm293xlV01tjGECRFd1aTSaeqk72LVkyZJC6fBkTNNk8eLqW/0OBvJis3TpopqeN1HZNfXvaUIUJkp93R3PopwMIpLAWnBMyWuqXCo45Jh24fn379vGE4O7iZomly07hhdHBxn3HFzps7CpjVPmL6SlTCuKVIpnhvYC6ECXRqPZ72j9KI8KEyX5tnJTGNwRtqCs7eihK9aETI8EDxoGSkrcPS8SGQvu40NLTsDsOYpMonSSwzQMmlq7Sh5M/LF+RCyJcQAruwrBLj2JUaPRlEDrR3mq0Y/pOL6P8fw9AOw+6TJSy04mW8TjN49pGFM8uwoej3bxFkagMI2x2jZGf6y/MLRLJ0A0Gk291B3s2rRpU9Gfx+Pxko8djEgpGRkeBWozh4RJBvXTfq6cvBfKRFbK2fQQAFbvURhlWjjyfl1GbGLUcr6q65JFqxhzHZQCFHREE4WKrXLkjSmNMAOk0Wg0+xOtH+XJa0f+tGIIwZNDwVCS07vDyYqTKrv8oR14A9uISh9pWJjtC1jR2sm8EhXCAFHTLN8WUoeZ8GxRXr6ySwe7NBpNcbR+lKcq/ZiGk0uR3PIIALkjT69ZP4ol8WdurLo2RuW7eAPbUHl/4lgzVmdtxQYajUaTRzvAVsAwDK688u309w/S3t5W03OnG9TnkUWCXblNDwMQWbC67DUn/LqCYNczQ3u5a/cWDASv7luOUtAWjSFQ7M0G7YlWhQBWPtilpyhqNBpN46hXPwptKOH3phD0ZwMPrd5Evn090BeVHsEXBmJ4JwBOSzeRaLyQ7KgXpcJx7wcy2FWo7NKeXRqN5vBmf+rHZHwpMTY9hOE5OM3zEfOW16wfFScxMsmgvoymyPQI3uD2oApMGJhtvZjNXVXvQ6PRaKZTd7DLMMqbBfq+X/Kxgw0hBPPmddb8vOkG9RBkLPDd4LqT2xg3BxkVe9GxJa+nPCecViUQYWVXvqrr9O7F9CSa6Y4nmRdvYsvYMACtVZT+OqGpp62rujQazQFA60d58ubzFHwfDfaFh5V5+RYUpZBOBpUexWvuRISG8tmWbiwzQmy20wzrMROeBcp3Q4NjQLcxajSaEmj9KE9V+jEJR/rYYQvj6LKTsUyzJv1Q0keFU+VLVXYpKSeqkYtcW0mJP7QDmRoMrmPHsLqW6PZFjUYza+r+FPvkk0/O+Fk6nea///u/Oeuss2a1qUOFfLDLnBzsyo9zt2OIMLgk08N44RQte/Ha0tfLBOXMIppAGCYvjgxy47aNALxp2WoWJVtpjcRwfJ+05wCC9miZkuKQfGWXpSu7NBrNAUDrR3nyVcH52WKmEOzLpMLvFDtTo/ijg8i9WxCROFllkBveTRzItcwnEonOvlI3PwXrACVBlJufxBgtaKNGo9FMR+tHearRj8mMuTnsjXcDMLLsZBKGWZN+KCf06zIjpau28ub0iBlrZC6NP7C10MZuNM/DbOvV0xc1Gk1DqDvYtXp18Xa77u5uLrnkEi6//PK6N3WoUMygfqKvfZJf1+ZHATDb+zCb55W8nsqGUxhjzaQ9l68+cy8SxbrOPl7Vt5yEFYyQz/keWekTMUyaqihDzge7dGWXRqM5EGj9KE/+kCIK/y/ozwaJEkMYDGbTsPcllJNFRBMMx9to3xd41WRbeuiIJmZ1UJCZ0YI/pDAPTEthULUM6BZGjUZTBq0f5amoH7nMlPXje15i4cBWpDAYXbiGLumhsuOFNshK+GMDyFwaI2YhQ6uVGXtyMshcGmFMXaOcNP7IHkAhzAhm56KS0+g1Go2mHhrenzA8PMy2bdsafdmDDqVU0TbGCb+uiYqrvF+X1beqpBmwUqpw+MjaMR4f2MWtO14E4MPHnFoIdAGMOlmklMQiNvEqSpG9QhujruzSaDQvH1o/AmQ+Mx9qSMpz8MKfLUy00JwZwlc+KhLF6F6OjMZJhJ5d1rwlLE621f/amVG8fZsBhRFvRRygg0fBr0ub02s0mjrQ+hFQST9aolNbA+0twYCsVN/RNHlZ+jL9eM5I1a/nj+xGZsZQTRlQxSc4ylwKf2gnwoogiiThjUQbZsfCA+oRqdFoDg/qDnZ95StfmfGzffv2cd111/GmN71pVps6FChMQ6FEG2N08iTGINhl961CmBNBq8moXAqUxMFgu+Pwuy3P4kifNe3dnNEzdbrKUFg91mzHqsruT1R2aZHRaDT7H60f5ZFqak59KMzEJ60I85VH3E3j2zYiuQi7uQtPgRjZDUCie3lVFb1FXzc9gte/BVDB4aNz8YFrJfEm2hg1Go2mFFo/ylNOP7oTSVoiU4Ndzov3A+AuPZFOO0JTJIGoyfNRIOwoRlNrSc8u4bsIO4qIJKatERjJTsxkRw2vp9FoNNVTd7Drf//3f2f8rL29nb/+67/mgx/84Kw2dSgwuaorf1hQbi404BUIO7jZKykLbYx239ElK7vc9AgPjQ6yfniYh8ce5qWxwMTxfUefMuMwMuwEGfL2aHXGjm5Y2RXRbYwajeYAoPWjPFIpJIp8I0q+7aQtEkWM7ALDwGhqD6YWGgbu7peIopCROFbL/Ppec1qgSzR14g9sg6qbWWaHDNv0dbBLo9GUQ+tHeUrqRzQ2w5tXeQ688CcAcguOpUkIrPYFGInWql5LKRV6dins3lUlK3P9sX6EaWMk2rC6lhRdo9FoNPuDuoNdt99+eyP3cciRLyOeMolxUgtjPkDl7X0RlRkBK4o1b9mUbMru9Bh37d7MXbs3/12/iQAAXvVJREFUc8+uTYz5U8uDL1p0FOf1LZ/yM09KxsN2kLZI5WCXJ2UhMKcN6jUazYFA60d5pFJIJTFC+RgMK4LbRCDaItaMUKByYyAEfjjgxGvtxa6jqmtqoKsds3MR3p7nCx6TBw6BqEK3NBrN4YvWj/KU1I9IfIY3b+6lhxBOGj/RjuxYiC3MwrT3qnCDQBfCLN+Cnj+/6HOGRqM5wByYmeKHIX5Rv67QnL5YC2PvUQjTwjcMvv3M/dywbQMbRwamXDNpmqzrWsiFi47inN4jmBefOUI447k40sMyTJqr8D7JtzCahjFlrxqNRqN5eZAopAIDgSEEuzNB1VO7aWJZUazOxWFwKjAjFv2bAfDbeonWaPAu08N4/VuZHOiikK0Hs7X3gE1kFHasZCu/RqPRaCpTSj/aIjEsMfVennkmCBymlqzDMkwi8WRN03CVG05irJCkUOE0RmHoY6dGozmwzOquk0qlaGoKAi6Dg4PcdtttrFmzhpUrVzZkcwczxczphRVBRJswohNBqsl+XQA/3fwsX37qnmA9cFxnL8c1t3GkAStaOlm57PiyfizDThalIG7bRGoyp9ctjBqN5sCh9aM0MhxwIoTAMgz2ZYOx8R2RGNb8pUEFcFg97CIwBrYGz2vrw66hDXBKoKupIzAIFiJMzCgwbczW+toiNRqNZn+h9aM0JfUjGp9he5LNB7sWrMESgki8pbbXKkyYL+7VNbEwSKxTkxeYRqPRzJ66Ixy//OUvueSSSwBIp9OccsopfPazn+WUU07hl7/8ZcM2eLDihwcRc1IWxWzuwu5egZFoK/zM2fwIEAS7XCn5/vOPA/C+VSdz3+s/wNdPfx2XdPVyZCLJ0vaeisbDw/ne/ConWjmhAEV0abFGozlAaP0oT6ENJczM78uEh5X2PoxIWBkcJiocpTDDKi+/rZdIlcEumRqaaF2cFOiCiZZ7w65wgNFoNJoDjNaP8pTSj85YYso6f2QP/o6nUUKQ6g0S7rUGu/Kt7sKuUNkVtjHWZnyv0Wg0s6fuYNfnPvc5rrnmGgB++9vfsmrVKh577DF+9KMf8ZnPfKZhGzxYyVd2mWVaA2V2HHfnBgCs3lXcNNjPjvQondEEVx1zKgLYnRlD5tL0RGO0tXRVfN3hsPWkLVr5kJLxXPaE5c1RLUAajeYAofWjPFIpfKUwhMAUBv3ZIPjUJRT+WD/+WD9yfBCZHiY7PojRvwkAP96ClRsvrCn5NbwbL6wGM5o6sDoXTcn4q2qz9RqNRnOA0fpRnpL6EZ0a7Mo++0cA/J6VyHgzwooSreLsMJmJNsYKzyt4dumzhkajObDUfdd55plnOO200wB47LHHOPvsswE466yzeP755xuzu4MYycw2xuk4Wx4DJTHb+zCSHXxv04MAXHHkOjyl2JEeRTlZOi2Tzuj0cb1FXlMpxtzqJjGmPZfNY0NIpYhb9gwR1Gg0mv2F1o/ySKVQSiEMA1MI+nNBZr7LzeAP7QDAG9kNyieXzWKmhoInGhbmeD9+brSq18kHuqZTGKaidUGj0cwxtH6Up6R+xJNT1uVbGJ0lJyCEQEQT2DV0eSjfBekBAmFV69mlu0g0Gs2Bpe7Kro6ODvr7+wF4/PHHOfbYYwHYu3cvLS21lcEeiviFyq7Sf8UFv67Fx3HX8AAb02M0WTaXLT2GrePDKAUt0qUnGsOINc/otZ/OuOvgSh9DGLSUKSmeHOhKWDZLk22Y2rNLo9EcILR+lEcyNTM/GGbm57V0YCTagq9YE0YsiZ8JAlterAWZ7CLSMm9iTZkvs62veKBLyuqz9RqNRnOA0fpRnlL6MT824RespE9uQ1DZlV2wGgGIaFNtwa5CC2O0sqm99uzSaDQvE3Xfdd72trfx9re/nVNPPZWHHnqIc845B4CvfOUrXHrppY3a30FLvo1xcngq7bnsTo8Vqr7sF+7DBMbmL+cb218E4IKFR9KfyxQCUb0i8GURsakZmWLk/bqa7UjJ4NX0QNcSHejSaDQHGK0f5cl7rghAKVVoT+/uORKrtROlFDI9HCwe3AOA196H0bmQyLyls3rt/AEG09aTETUazZxD60d5SunH/EmVXc6Wx5GpIVQsSWbeUmxhYUebaprKPhHsKp8UCfy6gnOPbmPUaDQHmrrvOv/+7//O17/+dbZu3cott9xCPB5nfHycp556iuuvv76RezwoKWZQP5TLkPbc4BuliGwJzOgfb13MU/v2YQnBRQtXIpUiZlosTjQhh7cBYMSbK77mUCg8rSVaGFOuw5bxYaRSNNkRliTbahI2jUajaQRaP8ojlcInaIMfdXMogjHy8/IGw6G+AKj+zQD4rb1YVvkBJtWg3EBHCkb4Go1GM4fQ+lGeivoB5MIWRm/JCXgY2LHaqrqgBr+usIURYVbsUNFoNJpGU3ewyzRN/vqv/3rKz5LJJH/84x9nvalDgWIG9W5YxtsVSxAf2cVYegjMCOv9ICB2Uc8STpzXB0DCiqBCHxYRiVeVYR8JszftRbIsOtCl0WjmClo/yjN5mlY+K98SiU4MEgmDXb5SiIFgEqNs7yXSiGCXNqfXaDRzGK0f5amoH0D22SDYlV24Fk9JEvFm7Bq7PKqfxBicffQkRo1G83LQ8P41z/P46Ec/2ujLHnTkg12TA0peOCo+aUewtz0JwM4jXsEdYRvK+1esJWlHSdpRDCFQ2WBSohGr7EGglGLMdQBonzZNZXKgK6kDXRqNZo6i9WNCO6RSCCEYCv1W2iNxrPxhJNQSVwmMfLCrrQ/bmn3bocqF5vQ62KXRaA4itH5Upx/++CDO5kcBcBauBsCKJmvz65IS5QUDsaqu7NLm9BqN5mVgVmH2n/70p9x9991kMpnCzzzPY/369XzpS1+a9eYOZooZ1DthZZclDDKbHwHgf/rWAfCq9i5WtHYV1iqlkNkxAESscgvjmJvDkz6mIWiJRAs/H3cdtk4KdC3WgS6NRjMH0PpRHH9S1ZYhBANh8KktGsMK9USpQEscFGb/1mB9Wx8RK1rkitWjpI/ytDm9RqOZ22j9KE41+pF77i5QEmP+cmSyE2FYCMOsLdgVtjAG3o7lj5ITkxh1ZZdGoznw1F3Z9fGPf5yPf/zjRCIRfv7znxONRonH49x555385je/aeQeD0pkKDj5/nSpFI70GMim6M+lSb34APsiSW4kOJxc1tXD7myGXemx4GtkL/3pUfpzWXb7/sTPS3w9N9zPsJPFlYrdmfHCz3WgS6PRzDW0fpRGTRtu0p/PzEfjE34nMljjpoYRuXEUAr+1G3uWbYwqbHkRZkSb02s0mjmJ1o/SVKMf2dCvi6UnBmvtwMurljZG5QTXNSqY0wPg60mMGo3m5aPuO8/3v/991q9fz9q1a7nuuuv4+Mc/Tl9fHxdeeCGf/exnWb9+fSP3edDhT/Ps8qTPcC7LqJNjeGyI1p0b+MXSM/GA1YkkCy2bQdcFwhaS0b0YuSwq3oLMZUq8ygTbUyOMuzma7QgDobjlabYjLNKBLo1GM0fQ+lGavHaEs6sKmfnO6CTD+DCZ4g1tRwBeyzwwbSL2LCu7HN3CqNFo5jZaP0pTST+UUmSfvQMAb+GxABih9UlNlV0Fb8fyfl0wUdml2xg1Gs3LQd3BrtHRURYtWgRAc3MzqVQKgNNOO40/+7M/a8zuDmKmG9Q7UuJIH8swaNn3IuOGye/6jgfgip6FtEVjkGgulAOrUR+iMWjtQsQqT8V6YVTQbEdZ3NRG16T1EcOcWhGg0Wg0LzNaP0ojC4eV4P/zh5WuWNPEonyryuAOLMBt7QVoQLBLm9NrNJq5jdaP0lTSD3fns8iRPQg7jtu7MqjgDXWjpsquaicxAoQWLrqNUaPRvBzU3cZ4xhln8OMf/xiA1atX873vfY+BgQGuu+46lixZ0rANHowopSYZ1Ad/xZ708aTEEgaJnU/z6751ZEybo1o6ee28PjpjTfQ2t9OTaKY7GqfTEHTGEvR09NGTaC77NT+exDIErZEYR7Z2TnmsI5bQgS6NRjOn0PpRGoVCojDCRpTBbBCAmpzEUOHhQQ7uAMBr7QHAbliwq3KCRaPRaF4OtH6UppJ+5MIWxsiyE3FMC2nHscKjYLWVXUqpiWBXhUmMAPhhZZepK7s0Gs2Bp+5g11e/+lWeeuopAP75n/+Z6667jvnz5/Nv//ZvfOMb32jYBg9G8oEumKjscqXEU0FlV3bL41y/4AQA3nvkcUEwalIvu8ob09uxqnxTRp0cvlSYhkFLFSXFGo1G83Ki9aM0vlL4UiIQCDGRmZ9XpLKLoe0AyLZeLMPEmIUnijan12g0BwNaP0pTST/yfl2RpetwpcQPpzRahlF9YtzLBRokDKhiKIo2qNdoNC8ndd95VqxYwbe+9S0A1q1bx7Zt2+jv76erq6vCMw998j3zQkwY1Gd8F6XAEoLfjo0x3NZEXyTKRT3LYGAzYlJGRWbHATDiLVW93nCYjW+xo7qKS6PRzHm0fpRGKoUKJ2kZwmAw9GycH09OLAqrh42hoLJLtfUSmbU5fVjVZUYqTtfSaDSalwutH6Uppx8yO07uxQcAsJYcj4/At6JEDKOuSYzCjlV35ggrkdHBLo1G8zJQd2VXni1btnDTTTfhOI4WmpD8JMZ8CyNA2nUBiI4P8LOuVQC8Z+VJWCo/pWSigktmRgEQseaqXm8oFLM2XdWl0WgOIrR+zEQqha8UAvClT8pzAOiJTQ52SXK+izm8K3hO+wJsa3bTEwvBrqhuYdRoNHMfrR8zKacfuY33gO9idizCb+vBiMRRQmAKo8ZJjLV5O6qwjVEnUTQazctB3cGukZERLr74YtasWcMll1xCf38/jz32GMcccwxbtmxp5B4POsIGk0ILIwSVXQCPb3qMXfE2Wn2Htxx5wgzjRumkQXogDES0iWoYCcfFt0V1sEuj0cx9tH6URiqFRGIIwaiTAwLj4PZJ93clfZyRfQjfRZk2MtmFPevKrnASYzWj5DUajeZlQutHacrpR6GFcfnJuFIhok3kTym1VHbJfLCrCr8upRQUkvo62KXRaA48dQe7rr76apYuXcrQ0BBtbW0AHH/88Vx22WV84AMfaNT+DkomKrumBruUUvzv8CAAbzVcEpYdBLagYNw4kV1vqqo82JOScTfI3LRpnxWNRnMQoPWjNBKFrwL9yLeot0Xi2JMPCkriDgZ+XW5rLxgGdhXeKeXQkxg1Gs3BgNaP0pTSD8swyT5zGwCRxcfhKjkloW4bBkpKvIFteHs3lf1SuWD6ZVWDTPJnHMQUuxaNRqM5UNQdZr/++uvZsGED5rTpGldddRUrVqyY9cYOZvKeXflpKEopsr7HxtEBXhQ2Md/h8qVHBY/ly3uNoAVFuUEmRlQ5VWvMyeEriW2YJGc5iUuj0WgOBFo/SpP3XBEIBsIW9fZoDGtym4lSeIPbMQCvvQ+AiF1/ZVdgTh9qj25j1Gg0cxitH6UppR/0b8Yf2Aamhb14La5pBwOwZJAstw0TlR1FpgareyFh1DiJUVd1aTSal4e67z6JRIL+/n76+vqm/HzTpk0kk8kSzzo8yAe7pkxilJKnBnYCcMHup+l+9dvCxdNG8uaDXVVm6YfCzE1zJDqlkkyj0WjmKlo/ShN4rgRtKHk/xvbp1VbSRw7txCCs7IJZGdQXqrqsqM6+azSaOY3Wj9KU0o9CC+Pi4zEicXwrSGoIgvOKbZiosEtERJMYTe1lX8eIxBFV+HypglWL1hWNRvPyUHcb4/vf/36uvPJKHn/8cQCGhoa44447+Mu//EtdRjzNoN5TElf6DI0FGZNjnFHMeUsBUDLw8hKhQX0hu15NxoSJSYxtVa7XaDSalxutH6WR4aRFMemw0jGt2kopCeEkRq+1BwB7FhqgwvH0uoVRo9HMdbR+lKaUfuQ23g2AvXQdAJ4dR6Eg7ECxDaNw/jBiScxkR9mvqrUi9CvWkxg1Gs3LRd13n09/+tN0dHRw6aWXMjAwwJo1a1i0aBHXXHMNH/7whxu5x4OO6ZVdju/hSUl/LgMIlnb0Tvhx+RMjeZWUtQe7ctqcXqPRHFxo/SiNVBKJwoDC2Piu2LTWQiURw0GlsN/agyFm2cbo5v26dAujRqOZ22j9KE0p/ej8i2+Tfe6uYJFh4VoRPN/DMgyECCq73Pz5Y5bDTiZTqOzSbYwajeZlYlZ3n6uvvpqrr76asbExAJqbmxuyqf1NzstgeTNb/gxhYJvRKetKIYQgYsaKrs15aVw/iycFOc9mNDeOJyWDYRJlQd/ywnrXTYGSSOVCNosnc0TMREEYHC8bZl9m4kifjO8hhKAtEsPxs8HkkxJErYlMTC1rXT9XqFab7dqIGSsE+jzfwc9PaZnlWtuMTlTSSRe/YIo527URDGHWvNaXHl5YtVcMy7Axw0zXXFgrlY/rOyXXmoaFFfrK1bZW4vq5xqwVJpYZfAhTSuH42YasreXffaPuEZXWlv1375X+Xabzgx/8gJ/85Cds3bqVyy+/nBtvvJHFixfzP//zP3zxi1/kl7/8JQCvec1r+NSnPgXADTfcwL/8y7+glKKlpYVrr72W+fPnA5BMJrn66qu55ZZbaG5u5vrrr6e1tbXq/UxG60cJ/fAzOF6GiBVhKDeCgTcl2OV4WbKZYfxUP9IUeC0d2MolpzwML0vEqu59JBCFtSqXxpUOvgFGiX1r/ahnrdYP0PpRz1qtH+XR+lGbfgg7SmThajLD2/Ati6yXIeu52KaJkpKcl8F1xohgQGijUq1+QGlN8J1xpJ8jNqmNUeuH1g+tHwFaPw6MftQU7Prnf/7nqtd+4hOfqOXSB5RP3XwRZnTmf8ij55/B+079j8L3n7jpNSXfpMs7T+CqM75d+P4zt76OlDNcdO385qPo6rkaJQQJIfiZeRtD638+ddGT4dpYHx9b+/8Vfvylu65gz9imotdtjXWz7qh/I2ZaxK0IX7n73Wwbfrbo2qZIG5+98JbC99+572peHHik6NqIGeNfL76r8P33H/x7nt17T9G1AF9+3YOFP//4kU/y+K4/lFz7hdfeWRCnnz/xOR7cdkPJtZ+54GaS0cA34FdPf5l7Nv+i5NqPn/drOhKBf8P6Z7/B7S9eV3Lt353zM3pblgNw68bvc9PG75Zc+zev/AGL21cDcOdLP+O3z3yl5NoPnf4tVnSdCMCftlzPL5/895Jr3/uKL7O6+0wAHt5+Iz99rPS/rXed9HmO7zsPgCd338EPH/rHkmv//PhPcMriSwHYsO8+/uv+vym59rI1f8uZy94KwEsDj/H1e/+q5NpLj/lrXrXinQBsH97Al+96d8m1Fxx1JReueh8Ae8Y28W93/FnJtecufwevW301AMOZ3Xzm1teXXHvG0jfz5rV/D0DKGebjN72m5NqTF13M5es+BQQfrP5h/Vkl1x7X+2reffIXCt+XW7u/7hGL2o7mo2f9qPD9F25/K0OZXUXXdthLS+6vGGvWrOHf//3f+Yu/+AseeughFi5cyK233sqmTZu45557EELwvve9j1//+te8/vWvp7u7mz/84Q/E43G+853v8OUvf5nPf/7zAGSzWT7wgQ/wL//yL3z4wx/mv/7rv7jmmmuq2ofWjwmqfW90AqdFOpgXe23hZ4X3xnmhX82ef4U9wAvQ3byMfzh3QlvK6Ud7vJdPnP8blO+hfIdvPf9vbH9ic9G1Wj8m0PoRoPUjQOuH1o9aeDn1Q2ZG+dKzn2DIHSh63fmxPq5Z9c+Fyq5q9CPP1+55X+nzh5nk02f8tPC91g+tH1o/ArR+HBj9qCnY9alPfQohBK95zWvo7e0tGZkX2ih9ClKp/7+9O4+Pqrr7B/65y+wz2YAEQggRARFEQLC4IvqIVVBRtIq7reijFav1KfXnUoGqtZa6tFaLtVWs1rrg2lLUuqS2RRAXpFJAkDUCYUtCJrPfe35/3JmbDMkkM2GS2T7v1ysvnZmTmZObzHy4557zPdgbMGqiDC7uC0iWTtsnu4RRjx5/t8Uav1MXEVGUx+NBcXExPB4PJEmCxWLBW2+9hb///e84/vjjAQA+nw81NTWYPn06mpqaMG3aNPj9fuzfv99sAwB2ux1VVVUAgHHjxmHVqlVJ94P50X3lDlfXjbopVpwePO5EdBDmR+4rd7ggIiGIcBKzMiSlZ5YcchkjUcHJlvyQRGdzSQ+yZs0aPP/881i8eDFqampw+eWXY8aMGXC5eu4f4unk9XoxefJkvP7ms3C52tcmSdcUwW3eBnjDYVQ6PSixOfDp3m/w6pav8Oa2dfh21TA8+K0pEBDQAy3Q9myCpFqhDjgC2r7t0P2NcJQdBqWoH4DOpxN+vncH6gNBDPGUYXSf/lzGyGnEnEbcjba5No3Y1+LH9HMvR21tbZc7Ty1atAhbtmzB1Vdfjauvvhq1tbWoqanBBRdcgLFjx+KKK65o9z2DBg1CbW0tDj/8cLz++ut4/fXXsWjRIgDGNGKv12s+9yeffILf/OY3nfYhhvnRqrO/jQ1Ne7HpwD6U29247t9vIKRreOOM7+KIktZM2LF4LsSyZ+EbfjJaJl+Lfq5SVA4a2X5pSRLLULSm3dCadkKzOSH3qUrYZ+ZHd9oyPwDmR3faMj/iMT9adSc/hioStIZvEFZVNBf1x06/F0EtApuioo/dgX7Qoe3bBpu9BJb+wwGkZxljZPcmiGALnOXDzB0emR/MD+aHgfkRr6fyI6Wh9lGjRuG+++7Dfffdh48//hgPPPAAbrjhBpx77rmYP38+hg0blsrTZYxNdcR9QHbWLpXnjJFlPyyKAofFCZtqR0Qo2Bed2VXtLjEDQpdDiCg2SBYnLKoDYV1AyDZIltY/5rZh0pYuBPzRz/TSaHH6tn+sXUmlbds3Vzrbqoo16T/AlNrKFvMDLFNtFVk1P8hzoa0sKUn/vafWVu6RtpIk9UhboPvv+3S2TfS+B4CImvT1iYSmTJmChx9+GDNnzoTFYsEPf/hD/O///i9GjBgBTdPQp08fAMDy5csP+bVimB/JtZVlGyDbEIGKgC4BUFFubz2hs6p2KA07IGkCUskgWGQbXLaiDl+vs7+jGBEyssnqKIGSZJ+ZHz3bNhsygfmReluA+cH86Fym8kM07wYA2F390CxbYVHs0BCGRbHAbXHDGmqBJtsgtfnbSSY/zLYJMkGWVAjFFrcbI/OjZ9tmQyYwP1JvCzA/eio/Ul77tn//fjzxxBOYM2cOPvnkE8yePRt33nlnzgRNb4hdsYiN3vsjEeyLbu1e7Wotpiaio/RS9ANBRIzRaknt+gM7oEUQ1DTIsowiK3diJKLknXnmmTj11FNx3HHH4ZhjjoEQwvwM/8UvfoGTTjoJJ5xwAoYPH44VK1Zg8eLE9SpSwfzomi50CCHQFDKuBjoVCzxtPuOFEBD7jZ0YwyVGnRCLmtw/gjsSW8bInRiJKBnMj+yVKD+UPtVQ+w2B7CpBKLpDYuy01SIrrTvBp3EnRqB1N0YoSucNiaggZCI/UlrGOHXqVLz33nsYOXIkrrjiCpx22mmQE9SKOvroow+5cwebN28e5s+f3+7+ZH+E2DTipX9b3OE04nRZ37gHYV3H4UVlsMgK3qr7Cj/7vBZ7gz78cfKFOK68GgCgNdVDa9oF2VUGpbgC4R1rAUiwDBrdZd2Bvf4W/Lt+G5yqilMGDIGVQUJUEFpafDhr6oVJTSPOJsyPrgkhsHr/LmxpbsCBUAD3rKpFpdOD2rOvbW2jRbD9/42G7GtE/SUPQS6rwrABQ+EuHZD662kRhL9ZAwCwVB0FSWaOEOUz5kf35Et+AMDXB/bDHwnDr0XgUFQcXlQGdf92iEAzlLJBUNxlaetTaNtqAAKWyiPTPpBGRL0rV/MjpWWMb731FgDgiy++wBdffAFJkjr8oJckCZqWeH3zobjmmmvwyCOP9Mhzp4tmzuySENI1hLQIGqJXz6tdJWY7c2aXopqFIyWLLakCmw2hAAABp2rhQBcRZT3mR9c0IcyNRxqjV+bLbPEnRrq/CbKv0Whf3B8yAGs3TyJiSxgl1c6BLiLKWsyPriWTHwAQ1jXoEObSHmNmV/IrS5JlzOqK/o6SXNJGRJRuKX366Hriwn+9pby8POtHE/U2g13N4SCaQgFoQsAqK+jv9LQ21KLFBhULRDg6hbiLnRiFEPBFwmiILosssSa/DpeIKFOYH13ToycrEiQ0RS+AlNriP+PD9V8DADRHMRSrA7IegZrkDr4Ha13CyBwhouzF/OhaMvmhC4GIrkPTdaiSDFmSoEgSwrFljJY0zr6KneNIMiTuGE9EGZJzQ+2lpaWZ7kKn9DZXmhRJhi8cxt5ocfoqVzHkNrO2hBar2aVADxg7DHR0VSWkafBGQvCGg/CGQ9CjA16SBJSwXhcRUVKyPz90aEJAkiQ0Bo2TlT4HXZkP7NoIAIiUVELWNVgkqdtbxZuDXR1c/Sciolb5kB/haA0tTQhYFAUWWQais7ogyZCU7td/PFisXpfEWV1ElEE5N9QuhMC0adMwePBgXHDBBdi6dWvCtsFgEAcOHDC/mpube7x/WnTbW0kyZnb5tLBZnH6wuyS+sd5mZpd5VcUGIQS84RB2+ZqxsWkfvmraix0tB3AgFIQuBBRZNmaJOTxwpfMqDBFRHsv2/NAB6NAhS63LUPraDzpZ2b0JgDHYBaHDIslAN09Q9NgyRgtndhERdSYv8iM2ABW9Hb+EMc3nE+Y5DpfIE1Hm5NRgl8PhwNNPP405c+ZgyZIlcLlcmDp1KiKRSIft77//fhQXF5tfVVVVPd7H2MwuKRolgUjrzK5qd3Fc27Yzu2LLGFsg4a26DXjvm41YsXs71jTU4+sD+1DX0oT9QR8CWgQRXUOR1Q6naoW9m1f0iYgKSa7khy4AGbJ5stLP7oprE95jDHZpJf0BAKqsdmuJiNDCgBYGwGWMRESdyZf8CEXrmcUWmaiy3GYnxvTV6wJaz3FYr4uIMimnBrtuu+02rFmzBpMnT8ZRRx2F3/3ud6irq8OKFSs6bH/77bejqanJ/Kqrq+vxPsaK0yvRJGk7s6u6zcwuIYR51UMA5v/Xh8MIaRFIkgSP1YYKpxs1nlJUuYpRZnPCrqjmQJpdUWHjYBcRUZdyIT90oUMXOiQJ5tbx/RzxJyv6HmM2QbjY2H2x+8Xpo0sYLXbWUyEi6kS+5EfInNllnEcYM7uMwS6kfWYXlzESUebl3CdQ262G7XY7qqursWPHjg7b2mw22GytVyoSbVOcTnp0GaMiGa8V0CLYF+hgGaPeejVIxK60KFYcCBvTiWvcJRhZWtHpaymSlNTOjURElAv5YRQYliGZJysVjtaCyEIIiH1bIQHQiisgAbBYureEUUQvwkhW1usiIupKrucHAIQPKvRvkRUg3NPLGHPuVJOI8khOXc5dvnw5WlpazNuhUAh1dXWoqanJXKcOorXZiREAWsKhDmd2oe30Xi16VcViQ1N0OWOJ1QFVljv94kAXEVFyciE/dLRmyIGQkQX925ys6M17IQVbICAh4ukHALByJ0Yioh6VD/kBtM7sirHKcpuaXT2zjJEzu4gok3LqE+juu++GxWLBgw8+CJfLhXvvvRfDhw/HhAkTMt01k95mGWNY09AQ9COs61AkCZXOIrNd211KYvW6oFrh9RtFLEtt3GWRiChdciM/dOjRDUp0CEiIr7kS2f210c7T1yxK391ljHo4NtjFmV1ERJ3Jh/wAWgvUx6iSHLdBVlppLFBPRJmXUzO7Fi9ejKqqKkyaNAkjRozA/v378eabb2bVDCezQL0koSXSOqtrgLMI1rYf+NHCwFBUIDrY5RVSdLdFCe50hw4RUQHLlfzQhY4DYWMJSpHFBrvaukwxVG8MdkVKBkCKLpm3dCMrWovTS5C6OTOMiKhQ5EN+6EIgoht1veRYzS6hw6gcLHV7V99EhM6ZXUSUeTn1CVRUVIQnnngCTzzxRKa7kpDWpmaXPxLuuF4X2szsUlRzOUlT9DG3asuqACUiynW5kB+xmisNQeNkpdQWv8QwNtgVLhkABQKKJEFRUz9BMet1WWwsTk9E1IV8yI/YrC5NCFhkBbIkQYrtyNsT5x2xWWQc7CKiDOK/ctOs7TLG+J0Yi+MbRgNGtJlC3BQtHFlk5awuIqJCowsBTQjzynyZLX6JobmMsXgAoAtYJAmQuzHYFeISRiKifNJVfsQGu2KzuqxtdmJMe3F6tKnZxWWMRJRBHOxKs7YF6n3hMPYGOihOjzYhENsZRVLg1Yz/L7ZyWQkRUaHRIaBD4EB0aXvZQVfmI3u2AAC0kgGA0GCRZUjd2OlKD8V2YmRxeiKifNBVfoTM843oEkZZBqLF6WFJ72CXEAIQnNlFRJnHwa40a53ZJSOgtS5jPHiwKza9V8AIH8liQ3M0oIp5AkJEVHBiy1BiO2n1bVNcWOgaxN4tAIBIcX8AgEWSu1VnhTO7iIjyS2f5AQCh2EX26G2LrPTYToyI1usCAMic2UVEmcPBrjTTozW7JEmCLxLG3mCCml2xAvXR8AnIKoJaBICEYhanJyIqOJquQ7RZhtLX3joYpTXsACIhCEWF7iwFJBkWxZJyzS096DNORCSZxemJiPJEZ/kBAGFzZpfxH0tPLmOM7cQoq6xBTEQZxcGuNNPa1OzaF/AjEP3AH+Q6qGZXbGaXZvz3gG6EgVO1wML17UREBScUzYXm6JX58jZX5mP1urTiAcaMYEmCpRvF6XVfAwBAdhSzOD0RUZ7oLD+A1ppdMRZZhgj3zGCXuQkXlzASUYbxX7ppFlvGqAsdO/3NAIB+dhccB52UmDO7hDEYdkCwOD0RUSGL7eYbq7nSz+E2H4vUbzLalFZC6LHBrtROUIQQ0H3Gvr+yqyQNPSYiomzQWX4ArYNhiF2UFwKIfg96ahkjL94TUYZxsCvNYmGj6QJ7/F4A7XdiFLpuBkysUH1zNHy4hJGIqDBFdCMHvGGjjkp/Z+vJSjg2s6tkgDEzWJJhTTEvRMBr7AQsq5DsnjT1moiIMq2z/BBCIBJbxhhlMXdLtKZ9qaG5CRdndhFRhnGwK81iURLQWut11bhLD2pkhIDQItGAkcyZXdyJkYioMEWEhqCmwRed+Vthbz1ZkauOQmjU6QhVDIMsdAASrCnO7NJ9jcZzOYtZR4WIKI90lh+xJYy6EJAl49RP1aMrTNJdrwswS7WwOD0RZRqH3NMsVqA+qGkJd2KMXfGITSWOyBb4IsZ9HOwiIipMYU0zl6CokoyyNgWGlWNnwDfiNIR2bQC8e6DKckp1VoSuty5hdJZ20ZqIiHJJZ/kRW8IYu8ahyjKk6KBY2ovTAxB6bNYYTzOJKLM4syuNdCFi41cI6BHsC3Y82GXO7IoOjDVLEoQQsCpKu9peRESU/4QQ0ITAgZAfAFBis0NuM/sqFF2CIkNAaBossgJJST4vROAAIDRIihXyQYWLiYgodyWfH8Z9xk6MxnJHKd31ugBAi83s4mAXEWUWP4XSKFavCwBCmmYuYxzcbmZXdOpwbOcUYYSPx2Lj0hIiogKkR09WmqI7aZXZDt42XjMukEgAhDHYhRQGu/SWRgAsTE9ElG+SyY+2LLIMEYnuxJhi7cdw/dcQwZYuWkWv/HMZIxFlGAe70khEp3XJkoSGkN8sEnlwgXrzikc0fJqi31fEJYxERAVJh4AudDSHYycrjrjH/ZEwIHRIAsbMLkVJeomI0DXo/gMAANlZktZ+ExFRZiWVHzDOTzQhDprZlfwyRj3ogwh6k2ssyZAPGnQjIuptHOxKI63NYFed16iNUmSxtRvEEuYyRmOw6wB3YiQiKmhCCGho3UmrT5uTBCEEfJEwoOtQIAAJsEhS0jO7jML0ApLFDsnq6Ko5ERHlkKTyA4Aiy9A0DSqEWVIFKSxjFP5o3UdHMZSygZ03lhRIMqvlEFFmcbArjWKDXboQ2OlrBgAMOnhWFwBoEQhdhxSdduyLTvct5kkIEVFB0kT0ynx0aUnfNsWFA1oEuhBQAEi6BkCGRU1+u3hzCSML0xMR5Z1k8kOWJCjRml1qbFmjYklpQEr3xWYIF6dUM5KIKFM45J5GsZ0YNSFQHzDWs1d3UB9F6BFj+rCswA8JEWHsjOK29MD2v0RElPV0IaALYV6ZL3e0bhvfEl1u4lBUhHUNkizDmuRmJiISMpedsF4XEVH+SSY/XKoFkeh5iiW2W2IqO/qGgxCRAAAJkqMoTT0nIupZHOxKo9aZXTr2+I3BroOL0xsNw0B0sKspWpzeqVqhcrovEVFBihUYbomerPRrs2NibAmKU5YQ0YyTFKuaXI1H3WcsO5Fsrh7ZYp6IiDIrqfxQLQhHd2VUo7WDU9mJMVb3UbK7IbHwPBHlCI6upJEeHewK6Rr2RXcqOczTftmI0DVAC0GSFRyI3lfEel1ERAVLh4AQAt7oVfj+ba7Mx67WWyQJQo9AkmSoSc7s0n0NAFiYnogoXyWVH7JRuUaSAEXrRnF6s14XZ3URUe7gYFcamYNdmoa9AR8AoNpT0r6hFoGIhAFZxYHo7rxFVg52EREVKl0IhIVmLjmpcHoAAIFI2Ky3ogKArkOVZMhJnKSIcAAi5AcgcbCLiChPJZUf0RqPqiQDKQ52CS0CEb2Iz8EuIsolHOxKIy26Fr4lHERTKACg/TJGoUUACKOOiiSjJTrYVWJNbkkKERHlH10ItIRC5jKT8ugylJY2S1AiQoPQI7AqCqB0vb+MWZje7oGURHsiIso9yeSHFt0MyyIrRt1gIOmdGM0ljFYHl8MTUU7hYFcaxWZ27fR7IQDYFTVu+1+jUQRCGEsZg0IgBAmyJMPDZYxERAUrInTzIoldUeGKblgSu1LvVC0IRyLmzK5kdsLSfY0AWJieiCifJZUf0R0YVUkyagcjhZld0cEu2dHBDvNERFmMg11ppAkBHQK7fM0AgIHOonZbwwstEq3XJeOApkHICmyKAhuvuhMRFaywpqExbGwbX2pzmPfHrsy7VCvCWgQQGiyyDHQx2KUHfRCRICDJkHiCQkSUt5LKj+isL2t0J0ZISlIzfoWuQw8Y5zWSw5PObhMR9TgOdqWRLnREdB17A8a69kHuDk4w9IgxfVhWcCA6EFZktbUbFCMiosIR0TUciF6Zj80IDmoRaLoOWZKiV+YjEJoGi6xC6qJAvd6yH4BRmF7iTr9ERHkrufyIzuyK/leyJDmrK+gFhA5JsUK2Orv+BiKiLMJ/AaeRDiNw9gaN4vSDXO0Hu4QWASJhSIqKZj062GVhvS4iokIWFrq5a1bsZCV2Vd6hWiBJEoLRkxmLLAFy4ivyQgjovujOWSxMT0SU15LJj1B0kEuJDXYlW68rmiWSk4XpiSj3cLArjbTozK49fmOw6+Di9EajCIRmFKf3Ru8q5k6MREQFLaLraI4uQ+ljj56shFvrrQBAOLaFvNr5bGARaAb0CCCrkOzuhO2IiCj3JZUf0WWMqh6r15XkYFd0CaNs52AXEeUeDnalkS4EwrqGfdGZXTWe0nZtRHQZYwgyApAgQUIRi9MTERW0sN56Zb6fuZOWcdulWqELgUh0u3hLF7v3mrswukq4RJ6IKM8lkx9abLBLi9bsSqI4vR70GcXsJYUXTogoJ3GwK400IeDTwmgM+QEAh3Uw2AXNGOzyA4jICqyKAge38SUiKmia0OGNGFfmy+0uhLQIIroOSTKuzEd0DdAikAFYOskMoevQ/bEljB1kEBER5ZWk8gOALElQowXqk5nZJWJZ4mi/4RYRUS7gYFca6ULHLp8XmhBQJRmVHaxv18MBQOhoEgAUC1yqFSqLBxMRFbSwrplX5iscrtZ6K4oFsiQhpOsQWggWqfPCwsLfZBQTVm2QbSwmTESU75LJDwBQJcnYpRfJFajXfQcAADJ3YSSiHMVRljQRQkAIYJffqMRV4XBD6WAQS0SXOHolCyQYOzESEVFhC2oafNETlAqnx1yC0lpvxZjZpUoSJCXxSYq5hJGF6YmICkJS+QFAjQ56QZIhKZ3v6CvCAYhIAIAEycF6XUSUmxJv50Qp0YSALnTsjg52DXR1HAwiZAx2NUcHwoq7qL1CRET5z6+F4NOMk5Vyh9ssNuyOXn0PNO9DpGk3lFALtOZ9CZegmMWEXSU932kiIsq4rvLDHOwSsZ0Yk5jV5TeyRLK7IclK2vtMRNQbONiVJnp0J8b9QaNeV5WruF0bIQREOICwEAjICsDi9EREBKAxGIAuBADAo1qxL2BcGHFEr777gl4g2Aw1EoQI+6D7GhI+l2R1QrLwQgoRUSHoKj/80VlflhTqdelt6nUREeUqDnaliSYEwkLD/ugyxUHu9oNd0MIQ4SACukBIscAqK+YUYyIiKlz7ohdK3KoVEWEsNbGrKhRZRkiLoEWxAVYXSm0OqGWDIXdwQSWGJydERIWjq/xojtbzKo5VV+liZpfQIhDBFgDMEyLKbRzsShNdCIR1HQ3RwBncwRISoUcgtDBaBKDLFthVBTaFvwIiokKmC2FmR6nNYRYXdkdPSPYH/ZCsDritdtgsKpTS/pBtroz1l4iIskMy+QEYSxqtfh90dL2MUfcbheklqyOpJY9ERNmKBerTRBcCYU1DQ8gIlRpP+y3fRTgI6BEcACApKtyqjVv5EhEVOF0INIUCAIA+Nid8bYoL60KgIRSA0CIoU6KR3UmBeiIiKhzJ5EfsMRF9rKtljMIf24Ux8QxiIqJcwMGuNNGEjn1BH8K6DglAdQfLGGM7MTZLMiRJRrGN9bqIiAqdLgSawtETErsDQc0oIuxUrWgKBaDpOixCh1uSIMkKJM4IJiIiJJkfsgy3xQoRMQrXdzZbS+i6udGJ5PD0cO+JiHoWB7vSRBcCO33GTox97S44OwgSPdiCiBDwS0adLu7ESEREmtDRHDJOQootDgCAXVGhyjL2RS+SlCqyMRNYsXBGMBERAUguP8psTkALAxAApE5rdomgFxA6JMUK2ers6e4TEfUoDnaliSYEdvqMKyH9HW6ocgeHNuRDUAiEFQtUWYGL6+CJiApeRNfhjS4vKbEZF0FcFit8kTACkQgkCSiBsdMWlzASEVFMMvlRanO0WcJo7fSCie4zdmGUnCxMT0S5j4NdaRLSNewJGDO7BibYJUvoGvy6QERRYZMV2BXuxEhEVOgiuoaW6G5ZHouxvN2pWszdfYssdijmlvHMDSIiMiSTH6ost1nCmLiEihDCLE4v2znYRUS5j4U/0iSoRczpwlWujgPCdth4BEsHA/t3wWmxdDz7i4iICoo/EjF30CqyGiciVllpLTpsd0IcqAcASAprPRIRkSGZ/AAARGd2wdLJEsaQH9AjgKRAsrt7rtNERL2Eg11pEtQi5va+gxLM7AKAA+EgJFlGsYX1uoio502ePBmNjY2w243PnBkzZmDnzp1YtmwZTjjhBDz88MPw+/0499xzsXTpUqgqY6G3BfSIuYNWqdUBm6KgJRKCEIBdVeFULdA8ZdBLKyGzYDAR9RLmR/ZLJj8AJLUTo/AbSxhlRxFrQxLRIcmW/GAqpUmgzWBXtbukwza6EGgOR4tIsjg9EfWSpUuXYsCAAQCAxsZGXHrppVixYgXOO+88NDY24tFHH8WNN97IE5UMaQ4F4deMZYolNgccisXMkzKbcVVeUlTINhekaAFiIqLewPzIbsnkB4CkdmLUfdEljLyoQkRpkA35wWRKk30BPwLRsKl2dzyzK6BFENIikCVjC2Aiop4mSRLKysrM24qiIBgMQtM0BINB7N69G8uWLcNPfvKTDPaysO0OtAAAJACeaDaENA2yJKEkemFE6LrRWOLydyLqHcyP7JdMfmiNuxDesQ4QxkYnHc7uEgJCCwGQIDlYr4uIDk225Af/1Zwmdb5GAECxxYaiBLO2ApEwgroGm6LArnCckYh6ntPpxIIFCzBx4kRMnz4d+/fvx5QpUzB+/HiccsopsNlsWLhwYaa7WdD2BIydfJ2qFYokI6AZ9VfKbA7IsaUkwhjskmQlI30kosLD/Mh+yeSHHglBREIQWhhCGLO82n1pxjJH2VHEnCGiQ5Yt+cERlzTZ6TPCptzhhtrBlff9AR+2tzRBCAGHosLGwS4i6gUXX3wxxo4di7vuugt//OMfcf3112Pp0qW46KKL4PF48MADD+D999/H5ZdfjltvvTXT3S1Ie/3GkhO3xQoJQEDTABgnKybO7CKiXsb8yH7J5Ids90AtGwRJsUDtPyzxk0ngUnkiSotsyQ/+qzlNwtETkQFODyxtrohEdB1bmxuww9eMgBaGQ7Wg3OFm4Uci6hVXXnkljj76aADARRddhFWrVkEIgeuvvx6bN29GY2MjVq5ciXfeeQderzfDvS1MsZ18PRYbQrpxouK2WGFte1FExAa7mB1E1DuYH9kvqfyAgGS1Q3IWQ7Y5E39ZnTw/IaK0yJb8KMjpRcIfhpDD7R+QZUg2Ja5dQpIEyd56+PY0HIA9BJRoKr6u3wVAQkskjD2BFmgQEDYZfewuVDqL4NLkxM990POKQMRcY39IbQFIDkv32ga11lkFh9gWdtUMUhHSAC1NbW0qJDnaNqwBkTS1tSqQFDn1thEdCGuJ21oUSGoWtdV0INRJW1WGZFFSb6sLIBhJT1tFhmSNthUCCKSpbSrv+0P4jEipbSfvT9HZz3KQSCSCOXPm4J577oHb7cYHH3yACRMm4IUXXsDZZ58Nm80Gj8cDRVFgt9uhaZ38XglAz+SH94AP9hDQV1gR9oVhVQXKFJfxHNG2IjrYJYKC+QHmB/MjxbbMj9bHksT8SL9M5QeiOzEiojA/wPxgfqTYlvnR+liSsik/CnKwy3vWy9BhaXe/euJAOB853bzdfMZLCf9IlWMq4HriTPP2bT9twn2+PgAaALxr3j8cQPPhLux69Hhz6aLn6vfRvMvX4fPKhxXD/dJ55u2WK/8KfXNTh22lAS543rywte11b0Ffu6/jtiU2eP4+07ztu/ldaJ/Vd9gWdhVF/7zMvOm/7QNE/v1Nx20BFK28qrXt3H8i8t7WhG09H14KRMMp8LOPEF7ydcK27ncuhlRq1D8LPLwS4cXrE7d94wJIlW4AQPDxzxF6bk3Ctq4XzoVyeKnR9un/IPTkF4nbLpoGZVRfAEDohbUI/vrThG2dC78NdXx/AED41a8QWLAiYVvHw/8Dy0lVRtulmxD46b8Tt73/FFhOrwEARGq3wX/7PxK2td99IqznDDXaLt8B/w/fS9x2zkRYLxoBANBW7Ybv+rcTtrX9YDxsVxwFANDX7UfL1UsStrVeOwb268YabTc3omXmm4nbXj4K9psnAADErhZ4p7+SsK3lwiPguO04o21jEN4zXkzcdtrhcMw7ybgRiKB50vMJ26r/MxjOn082b3fa9hA+I7znvgLRGOywrXxkH7j/eHZr24teh9jZ0mHbwODklxioqopx48aZa+NLS0vx+OOP45prrsHf/vY3WCwW7Ny5E6NHj8aUKVNQXNzx5hrUqify49afNmBuSx8AIQC1rc+BNn8b0cGuwLXLIOoDHT4v86MV8yPalvkBgPkRw/zIrEzlh4gOdgX+92OIen+Hz8v8aMX8iLZlfgBgfsTkan4U5GBXT9AhYOyF0l6R1YZ+ZRUAjJ0JApKExNc0iIjS58orr8SVV14Zd9+777YOyL/wwgu93SXqBqW4PxRPPwSlDZnuChEVCOZHflD6DIJSXM78IKJeky35IQnRyVzSPOP1ejF58mT87ZU/w+Vytm9wCFME1+3YgY9216HS6UKVuwSqJKPSVQS3xdpzU4M5jbgVpxEfWltOIzZvZvs04hafH1NnzERtbS3cbnfi56S06sn8OPeNp7GluQEX1ozChUOOwrDivlBlucO2zA/mB/OjG22ZHwCYH5nC/GB+pNyW+WFgfqTelvkRpyBndkkOS9wHZGftkqHpOpotOspK3LBa7fAUGbW5zLA5+HntyR/2rGhrUwAktw1xSm2tPdTWogCWDLdVZUBNbv+HrGiryICjB9rKkjltPK1tpZ5pCyT/vu/Rtp28PyW9k9CiHpfu/ACAvQgiYAVKSzzwFLlhcdkSP282ZALzo2fbZkMmMD9SbgswP6hzzA/mR4+3zYZMYH6k3BZgfvSUghzsSjdFlhHRdUiQUOUsQrW7JNNdIiKiHHFixWBs8e7HYZ4y9LF3cNWfiIioA8wPIqLEONiVJv3sLtgVFX0drkx3hYiIcsicMSdjy4EGlNodcKrJX4EjIqLCxvwgIkosubmA1CUBAYuswCInN82UiIgIABpDATgtVvSx82IJERElj/lBRJQYB7vSxG2xwW2xwpqgThcREdHBdCFQYrXDrqgosdoz3R0iIsoRzA8ios5xGWOaDHB6Mt0FIiLKMbIkodzhRrkjd3a2ISKizGN+EBF1LuemIQkhcNddd6G8vBxutxszZ85EQ0NDprtFRERZjvlBRETdwfwgIso9OTez65FHHsHixYvx3nvvobS0FLNnz8asWbPwyiuvJP0coZAGi0Vrd78kSbBY5Lh2ifRUWwCwWlvrfqXSNhzWIYTI6rYWi2xsxQogEtGh6+lpq6oyZDl72mqaDk1L3FZRZChKd9oKaJreSVsJiiKn3FbXBSKRxG1lWYKqZk9bIQTC4fS0zYb3fSptu/pMoMSYH4nbMj+ypy3zg/nB/Mg+zI/EbZkf2dOW+cH8YH7Ey7nBrl//+tdYuHAhRo8eDQBYtGgR+vfvj+3bt2PQoEFJPceDD3wOVW2/tn3Y8GJcduUR5u0F93+e8I90cI0H3511pHn7kV9+AZ8v0mHbyoEuXHfDKPP2Y7/+D5oaQx227VfuwI0/GG3efnLhf7Fnt7/DtsUlVvzwR2PN20//fi12fNPSYVunU8WP7zjGvP3cM+uxdUtzh20tFhl3zp1g3n7pzxuw4aumDtsCwLx7v2X+/2uLv8Z/1yS+0nXH3ePNcPrLG1vwxed7E7adc/s4uFzGzjJvL92GlSt2J2x78/+NQWmpDQDw/rt1WPavXQnbfv+mo1BeYWzP/M9/7MA/PtiRsO2114/EwCpjeviKj+rx97e3J2x71fdG4LAhRQCAT1fuwd/+ujVh20uvGI7hR5QAAFZ/sQ9vvLo5YdvvzByKUUeVAQDWrW3Ayy9sTNh2+ozDMO6YfgCArzc24flnv0rYdurZg/Gt4yoAAFu3NOOZp9YlbDvl24Nw4skDAAA7d7TgyYX/Tdj2lFMrcer/VAEA9u7x4/FHv0zY9oST+uOMM6sBAE1NIfzqwS8Stj12YjmmnVMDAPD5Ilhw/+cJ244Z1xfnXzAEgPEPoJ/99NOEbUeOKsVFlwwzb3fWNhs+I0pKpYT9o84xP1oxP1oxPwzMDwPzgzrC/GjF/GjF/DAwPwzMj+yTU8sYd+7ciS1btmDSpEnmfSUlJRg7diw++uijdu2DwSAOHDhgfjU3d/zhSkRUiFatWoUrrrgi093oFcwPIqL0YX4wP4iIuqM380MSnc35zDIrV67Eaaed1i40zjvvPJx00kn40Y9+FHf/vHnzMH/+fPO2LMsYN24c3nj9RbhcznbPnw1TBAFOI+5OW04jjrXlNOJU22bD+z6Vti0tPkw/72LU1tbC7WZR2mQxPzpvy/zInrbMD+YH8yO7MD86b8v8yJ62zA/mB/MjXk4tY/T7/VAU44Nt1qxZqK2txcaNG6GqKvz+9lNtb7/9dtx6663m7ZaWFpxzzjmwWpW4D8hEkmmTTW3b/rHmQtvYh0E+tjUCoifaSuZ7IJ1tZVlK+m8tG9pKUs+0BbLjvdxZ23A4+edZtGgRnn/+eWzbtg2XXnopli5diurqatx777244oorEAwGEQ6H8eWXrVO9r776ajidTnz11Veoq6vDo48+iilTpiT9mtmK+dG5bMgE5oeB+dGzbZkfyWF+tGJ+dC4bMoH5YWB+9Gxb5kdysik/cmoZo8PhgKYZI47V1dUYMWIEACASicDhcLRrb7PZUFRUZH55PJ5e7S8RUaaNHj0aL774It544w0sW7YM//rXvzBs2DAsX74cr732WoffM2jQILz77rv405/+FPcP9lzG/CAiSg3zw8D8ICJKTbbkR07N7Bo4cCC8Xi8CgQDuvvtu8/76+npUV1dnsGdERNnJ4/GguLgYHo8nOl3Z0uX3DBtmFMwcN24ctm5NXOg0lzA/iIhSw/wwMD+IiFKTLfmRUzO7KisrMXjwYHz44YfmfY2Njfj8889x3HHHZbBnRET5R5Zl6HriegO5hPlBRNR7mB9ERNQd6cyPnBrsAoCbb74Zt9xyC9asWYNvvvkG11xzDaZOncorK0RE1CnmBxERdQfzg4go9+TkYNeMGTNw6qmn4ogjjoDFYsEf/vCHTHeLiChnbNiwAccddxzOP/98bNq0Cccddxxuu+22THerxzE/iIgODfOD+UFE1B2ZyA9JdLZPa57xer2YPHkylv5tcYdb/xIRZbuWFh/Omnphzm39m+uYH0SU65gfmcH8IKJcl6v5kXMzu4iIiIiIiIiIiBLhYBcREREREREREeUNDnYREREREREREVHeUDPdgd4UK0/W4vNluCdERN0T+/wqoHKLWYH5QUS5jvmRGcwPIsp1uZofBTXY5Yv+ki688MoM94SI6ND4fD54PJ5Md6NgMD+IKF8wP3oX84OI8kWu5UdB7cao6zr27NkDp9MJSZIAAM3NzaiqqkJdXV1O/eLY796Xq31nv3tfT/ZdCAGfz4d+/fpBlrkSvbcwPzIvV/sN5G7f2e/ex/zIP8yPzMvVfgO523f2u/cxP9orqJldsiyjoqIi7j5d16HrOlwuV05to8l+975c7Tv73ft6uu+5Fr75gPmRebnabyB3+85+9z7mR/5hfmRervYbyN2+s9+9j/nRXu4MyxEREREREREREXWBg11ERERERERERJQ3Cn6wy2azYe7cubDZbJnuSkrY796Xq31nv3tfLvedkperv2f2u/flat/Z796Xy32n5OXq75n97n252nf2u/flct97SkEVqCciIiIiIiIiovxW8DO7iIiIiIiIiIgof3Cwi4iIiIiIiIiI8gYHu4iIiIiIiIiIKG9wsIuIiIiIiIiIiPJGwQ52CSFw1113oby8HG63GzNnzkRDQ0Omu9WlefPmQZKkdl/Z6v3334fD4YAkSWhsbGz32NFHHw273Y4xY8agtrY2I33sSKJ+b9mypcPjv2jRooz1tS2fz4ebbroJlZWVKC8vx6xZs9Dc3Gw+nq3HvLN+Z/Mxb25uxjXXXIM+ffqgoqICs2fPhs/nMx/P1uNNh4b50TuYH72L+dG7mB+FifnRO5gfvYv50buYHykQBeqhhx4SRxxxhFi9erXYvn27mD59upgxY0amu9WluXPnimuuuUY0NzfHfWWjFStWiJKSEvHwww8LAKKhocF8bNu2baK4uFg89dRTYs+ePeLJJ58UxcXF4ptvvslch6M66/fmzZuF3W5vd/zD4XDmOtzGNddcIyZNmiTWrVsnNm3aJE4//XTxve99TwiR3ce8s35n8zG/4IILxJlnnik2btwo1q1bJ771rW+JH/zgB0KI7D7edGiYHz2P+dH7mB+9i/lRmJgfPY/50fuYH72L+ZG8gh3sqqmpEW+99ZZ5u6GhQdhsNrFt27YM9qprc+fOFbfffnumu9Gluro60bdvX7Fo0SKxefPmdh/a8+bNEzNnzoz7nu985zvinnvu6eWexuuq35s3bxYDBgzIXAc7oWmamDp1qti4caN537Jly4TH4xFCZO8x76rf2XzMP/vsM7Fv3z7z9iuvvCKGDBkihMje402HjvnRs5gfvY/50fuYH4WJ+dGzmB+9j/nR+5gfySvIZYw7d+7Eli1bMGnSJPO+kpISjB07Fh999FEGe5ac0tLSTHehS5WVlXj22Wdx1VVXdfj4smXL4o4/AJx22mlYtmxZb3Qvoa76DWTv8ZdlGUuWLMHhhx9u3ldaWgqfz4dwOJy1x7yrfsduZ6Nx48ahrKzMvC1JEux2O4Ds/RunQ8P86HnMj97H/Oh9zI/Cw/zoecyP3sf86H3Mj+QV5GBXXV0d3G43HA5H3P39+/fHtm3bMtSr5AkhMG3aNAwePBgXXHABtm7dmukutSNJEs4888yEj9fV1aG8vDzuvmw4/l31GwDKysrwwAMPoKamBhMnTsTixYt7qXep+/DDDzFmzBhYLJasPeYdadtvIDeO+d69e/HQQw9h9uzZALL3b5wODfOj5zE/sgPzo/cwPwoD86PnMT+yA/Oj9zA/OleQg11+vx+KogAAZs2ahaFDhwIAVFWF3+/PZNe65HA48PTTT2POnDlYsmQJXC4Xpk6dikgkkumupST2O6itrYXT6URtbW1OHH9VVfHll19CURT8/e9/xw033IArr7wS//73vzPdtXb27NmDuXPn4kc/+hGA3DnmB/c724/50qVL0adPH5SXl2Ps2LG44YYbAOTO8abUMD8yL1ffW9n+WdYW86N3MD8KC/Mj83L1vZXtn2VtMT96B/MjOWqmO5AJDocDmqYBAKqrqzFixAgAQCQSaXe1JdvcdtttmDNnDmTZGKf83e9+h4qKCqxYsQInnnhihnuXvNjvoKioCCNGjEBRUREaGxuz/vhXVVVh37595vEfNmwYPvroIyxatCirjr/X68X06dNxxhln4JJLLgGQG8e8o35n+zE/9dRT8cUXX2Dnzp246667cNttt+GBBx7IieNNqWN+ZF6uvrey/bMshvnRe5gfhYX5kXm5+t7K9s+yGOZH72F+JKcgZ3YNHDgQXq8XgUAAd999N/76178CAOrr61FdXZ3h3nUt9qYDALvdjurqauzYsSODPUrdwIEDsWfPHhxzzDH47LPPcMwxx+Tk8QeA4cOHZ9Xx9/l8OPvsszFgwAD84Q9/MO/P9mOeqN9Adh9zu92OqqoqHHvssfjtb3+LBx98EIFAIOuPN3UP8yPzcvm9lc2fZQDzo7cxPwoL8yPzcvm9lc2fZQDzo7cxP5JTkINdlZWVGDx4MD788EPzvsbGRnz++ec47rjjMtizri1fvhwtLS3m7VAohLq6OtTU1GSuU91wwgknxB1/AHj//fdx/PHHZ6hHyTlw4ABWrlwZd9+mTZuy5vj7/X6cc8456NevH1588UWoauvkzWw+5p31O5uP+fr16+NuK4oCTdPQ0tKS1cebuo/5kXm5+t7K5s8ygPnR25gfhYf5kXm5+t7K5s8ygPnR25gfKcjwbpAZ89BDD4kjjzxSfPnll6Kurk7MmDFDnH/++ZnuVpemTJkipk6dKtauXSu2bdsmrrvuOvGtb31L6Lqe6a61s3PnTrF9+3bx0UcfCQBizZo1Yvv27WL//v1i27ZtoqSkRDzzzDNi79694qmnnhIlJSWirq4u093utN9/+tOfRN++fcWSJUvE7t27xeLFi4XH4xFffPFFprsthBDijDPOEOecc45oaGgQzc3N5lcwGMzqY95Zv7P1mG/fvl243W7x6KOPivr6evHVV1+J6dOni3POOUcIIbL6eNOhYX70POZH72N+9B7mR+FifvQ85kfvY370HuZHagp2sEvTNHHnnXeKfv36CZfLJS6++GKxf//+THerS01NTeK6664T/fr1E06nU1x44YVi165dme5WhwYPHiwAtPu66qqrhBBCvPfee2L06NHCarWKo48+WnzwwQcZ7W9MV/1+5plnxJFHHilsNpsYNWqUePvttzPb4TY66jcAMXfuXCFE9h7zrvqdrcd82bJlYtKkScLlcokBAwaIa6+9Nu5zJFuPNx0a5kfPY370PuZH72J+FCbmR89jfvQ+5kfvYn4kTxJCiO7PCyMiIiIiIiIiIsoeBVmzi4iIiIiIiIiI8hMHu4iIiIiIiIiIKG9wsIuIiIiIiIiIiPIGB7uIiIiIiIiIiChvcLCLiIiIiIiIiIjyBge7iIiIiIiIiIgob3Cwi4iIiIiIiIiI8gYHu4iIiIiIiIiIKG9wsIu6raamBiUlJQgEAuZ9ffv2RW1tbdpeY968eTjvvPPS9nw9be3atTjssMMgSRIkScK8efMy3aWUXH311WbfJUnKdHeIKE8xP9pjfhARdY350R7zg6hjHOyiQ+L1erFkyZJMdyNrvP766zjqqKPQ3NyM5uZm3HHHHZnuUkqeeOIJNDc34+OPP850V4gozzE/4jE/iIiSw/yIx/wg6hgHu+iQnHbaafjTn/6U6W5kjWAwCEVR4Ha74Xa7YbVaM92llNhsNrjdbjgcjkx3hYjyHPMjHvODiCg5zI94zA+ijnGwiw7JpZdeiqVLl6KpqandY4sWLcLYsWPj7pswYQIWLVoEwJgiPGvWLAwaNAjjx4/HO++8g7KyMnz7299u91zz589HSUkJBgwYgCeffDLusdWrV+Okk06C3W7H8OHD8eabb8Y93nZa7Ntvv41LLrkELpcLZ599dtI/58aNGzFlyhTY7XZUVVXhoYce6vA15s+fjzfeeKNb04h37NiB888/H2VlZXC73fj2t7+NVatWmY/X19fj4osvRklJCfr164frr78ewWDQfHzy5MmYM2cOioqKcNNNN+HnP/85PB4P5s+fH9dmwYIFOP/88+FwODBq1KiUr6Js27YN06ZNg8PhQHV1dbvfRyQSwa233orKykrY7XaMGzcOixcvTuk1iCj/MT/iX4P5wfwgouQwP+Jfg/nB/KCOcbCLDklNTQ3Gjx/f7Q+Tbdu2Yfny5QgEAnjttdfw+eef47PPPsP69evNNitXrsTIkSOxfv16/PKXv8Ts2bPx1VdfAQD8fj+mTZuGiy66CJs3b8Zvf/tbXH/99VixYoX5/bEpvX369MFzzz2Hq666Cjt27Ei6z7quY/r06TjhhBOwadMmLF68GAsXLsTLL7/c7jVuv/12nH322d2aRnzjjTeiqKgIq1evxvr163H22WdjwYIF5uNPPvkkhgwZgvXr1+Nf//oXVq1ahV/+8pdxz2G32/HRRx/hD3/4A/r27YtXX30VCxcujGvz+uuv484778TGjRtx1llnYebMmdA0Lak+CiFw/vnnY8yYMdi4cSMWL16Mhx56CC+99JLZ5rHHHkNtbS3effddbN++HfPnz8ejjz6K5ubmpI8FEeU/5kf8azA/mB9ElBzmR/xrMD+YH5SAIOqmwYMHiw8++EA8/vjj4tRTTxVCCNGnTx/xwQcfCCGEePrpp8WYMWPivmf8+PHi6aefFkIIMXfuXHH33XcLIYS47LLLxFNPPSWEEOLEE08UH374odlmypQpcc8xc+ZM8/t+//vfi3PPPTfu8QceeEBceeWV7frbp08f8eijj6b8c7799ttixIgRcfe99NJL4vjjj2/Xdu7cuWL69Okpv4YQQhxzzDHixRdfTLr9ww8/LM4880zz9imnnCLef/99IYQQAwcOFJs2bRLhcFjIshzX5sEHHzRva5omBg4caP7OYv7zn/+Ijj4e3n33XXH00UfH3ffiiy+KSZMmmbdvvfVWccMNNyT9cxBR4WF+MD+EYH4QUeqYH8wPIZgflBw1w2NtlAcuuugi/PCHP8SOHTtS/t7Yjhuqqsb9f9uRfqfTGfc9w4YNw+bNmwEAa9aswTvvvIO+ffuajweDQYwcObLD10t0f2fWrl2LoUOHxt03fPhwrFu3LuXn6syNN96I66+/Hq+88gqOOuooTJw4Eaeffjpk2ZiAuWnTJtxxxx349NNP0djYCL/fjwkTJsQ9x8HHU1VV6Loe16bt8ZRlGUOGDMHmzZsxefLkLvu4Zs0arFu3Lu54h8Nh2O128/YVV1yBKVOmYNOmTRg7dizGjh2Lc845By6XK+VjQkT5jfmRHswPIio0zI/0YH5QPuNgFx2yPn36YMqUKfjzn/+ckde/+OKLce+998bdl6gwY+yDOx2EEGl7LgD43ve+h7POOgsffvghvvzyS/z4xz/GoEGD8Je//AWA8SF++OGH4/XXX0dxcTEWLVqEd999N619SMZJJ52EZ555Ju6+tsd17Nix2LJlC2pra/Hll1/i2WefxR133IGPP/44LqSIiJgf6cH8IKJCw/xID+YH5TPW7KK0uOyyy9rtilJaWoo9e/bE3ef3+1N+bp/PF3d7w4YNOOywwwAAo0aNwqZNm1BVVWV++f3+dldjDsWIESOwYcOGuPu++uorjBgxIm2vARjr7gcMGICLL74Y99xzDz744AP89a9/xe7duwEAq1atwk033YRRo0ahqqqq2zuttD2euq5j06ZN5vHsSux4V1ZWmsc7dgWn7c/hcrkwbdo03HbbbViyZAk8Hg/ef//9bvWXiPIb8+PQMT+IqBAxPw4d84PyGQe7KC3OPfdcbNiwAY2NjeZ9xx57LPbt24eFCxdi9+7d+OMf/4j6+vqUn3vNmjV4+eWXsXv3bjz//PN49dVXcemllwIALrnkEnz99de455578M0332D58uWYNm1a3I4oXq8XXq8XgBF2bW8nY8qUKZBlGXPnzsXOnTuxfPly3HXXXbj11lvNNj6fD16vF6FQCJqmma+RbOHF/fv344gjjsCvfvUr1NXVob6+Ho899hgqKyvRr18/AMBRRx2FF154AXv27ME//vEPPPfcc9A0DYFAIOmfBQBeeOEFfPLJJ9ixYwd+/OMfw2Kx4OSTTwZgTMH2er3mPwpiP0coFAJgbPVcVlaG2bNnY+vWrVi9ejUuuOAC/P73vzeff9q0afj+97+PdevWYf/+/XjjjTewadMmjB49OqV+ElFhYH4wP2KYH0SUCuYH8yOG+UEdynDNMMphsQKRMVdccYUAEHff888/L6qrq0VpaalYsGBBuwKRc+fOFUIIcdVVV5n3n3LKKeZzxAouzp07VxQVFYny8nKxcOHCuH6sXr1anHzyycJms4nq6mrx8MMPxz0OoMOvVGzYsEGcfvrpwmaziYEDB8YVWYwdi45e4+DCi5357LPPxFlnnSWKioqEx+MRp556qvjss8/Mx1etWiXGjx8v7Ha7mDhxoli5cqUYOHCgWZCy7XEbPHiw2Lx5s/nzx5xyyili3rx54pxzzhE2m02MHDlSLF++3Hz8qquu6vDniP2ehBBi69atYtq0acLhcIiKigpxxx13iEgkYj6+e/duMWvWLFFRUSHsdrsYPXp0SoUviSj/MT/ijwXzw8D8IKKuMD/ijwXzw8D8oI5IQqR54S8RZa3JkyfjvPPOwy233JLprhARUQ5hfhARUXcwPyhTuIyRiIiIiIiIiIjyBge7iIiIiIiIiIgob3AZIxERERERERER5Q3O7CIiIiIiIiIiorzBwS4iIiIiIiIiIsobHOwiIiIiIiIiIqK8wcEuIiIiIiIiIiLKGxzsIiIiIiIiIiKivMHBLiIiIiIiIiIiyhsc7CIiIiIiIiIiorzBwS4iIiIiIiIiIsobaqY7QERElK10XUcgEMh0N4iIOmS1WqGq/Oc8ERHRwZiOREREHQgGg/jvf/8LXdcz3RUiooT69OmDwYMHQ5KkTHeFiIgoa3Cwi4iI6CBCCGzZsgWKImFQVTkkmSeRRJRlhIDPF8TuPfsAADU1NZntDxERURbhYBcREdFBwuEwvF4vKivL4HTaMt0dIqIOORzG59PuPfvwn/+sxmmn/Q9cLleGe0VERJR5LFBPRER0kEgkAgCwWnhNiIiyW2xAftPXG7FkyV/Q0tKS4R4RERFlHge7iIiIEmENHCLKdtHPqYqK/ti4YQO2bNmc4Q4RERFlHge7iIiIiIhynGqxAABavN4M94SIiCjzONhFRESUJ84883y43BXtvpYtW4H77lvQ4WP33bcg092mNlzuCnyx+stMdyNvtX2PuD39MeqoY/HMH5/v0dfszd+piH4REREVOhYjISIiyiP33PMTXHftd+PuczodmDBhHG6++fvYvr0OE46dhA1frUJRURGsVkuGekqUGbH3iBACn3/+BS6eeRWOnXAMRo4ckemuERERUZpwsIuIiCiPWK0WuN3td2OzWq2wWq1wOh0AAKfT2WE7onzX9j0yadKJOOGEifjnP5dxsIuIiCiPcBkjERERUQeOHDnBXPL2x2f/jB/NuRMDKodiwrGTEA6Hcffce3H40KNR0X8Izjv/Emzbtr3d9z/22O9wyuQzUdF/CGbOvBoNDY3m46FQCNffcDP6lddg1FHH4q23323Xh88+W4XJp56F0rJBGH30RLzw4mLzsWefewGXXXYNJhw7CUeOnIBly1bg8KFH44QTT+eOfClQFAWhcIi/UyIiojzCwS4iIqIuCCGgB30Z+RIi/yrwCCHgi4R7/SvVY/npJx+iftcmjBkzGkv/9g4mfmsC1ny5Ev/88G38+9/LsXbterzz9htYteojVA2sxPdvvLXdc9T+45948ne/wb//9S62btuOn93/S/Oxxx5/EsuXr8TSv72Kd//+F3z26aq47/V6WzDjgstw+WUzsXbtp3jkkV/g9tvn4ZNPPjPbbNj4NV5/7c8YOnQIHnr4Ufzzw7cRCoaw7KOPU/ulpEEoFE74FYlEkm4bDifXNh22bt2GFcs/wQnHT+TvlIiIKI9wGSMREVEXRMiPHbcenpHXrnzoa0g2Z9Ltf/rTn+MXDzwSd9+XX36MoiJPmnvWfX4tgrGvPtrrr7tqxk1wqsnXKHM6jeMuyzJqDhuM73znfPOxyZNPxuTJJ5u3r73uuzjttGntnuOi78zA8OFDAQDXX38NnnjiKfOxP//5ZfzkrtswYcIxAID/+7+b8PMHHjIff+mlVzBmzGjMmnUVAKB/RTl+8IMb8JvHfodFTy8EAIwZMxpVVQMxYfw4KIqCysoBOHrMUdizZ2/SP2e6/OrXv0/42JDDqnHBBa3H5/HHFyF80ABYzKCqSsycOd28/bsnn4PfH2jXbs6PbuhWP2PvEQEBIQRuueVGjB8/DgD4OyUiIsoTHOwiIiLKI7fcfCOuuurSuPs8HneGepM/RowYHnfb5/Nh/k9/jvfeq8WePXsRiUQQCLQfkLHbbeb/l/frG7fkbdu27Rhy+GHmbZvNBlVt/afZuvUbMLTN4wAwbOgQvPzya+ZtSZIAIO77VFWFpmkp/oSFI/YeOffcizF79nX47nevAMDfKRERUT7hYBcREVEXJKsDlQ99nbHXTkVRsQcDB1b2UG/Sw6GoWDXjpoy8bnfJcnzlh1/84hH8618f4bHfPIiBAyuxYcPXOPuc7xxqF5OSrUtbb/7BrISPybIUd/v73786YdvYYE/Mdddefkj9OljsPfJ/P/oB7r//l7jyykuhKAp/p0RERHmEg11ERERdkCQppaWE1DlJklJaTpiNVv9nDS688DxMnHgsAGDXrvqUn6O6ehC+3rgJ48YeDQAIBoNxta2OGD4Mb/7lb3Hfs2HjJnMJXbaxWpP/nfZU21RcfNEM/OxnC/DSy6/hkpkX8ndKRESUR1ignoiIKI+EQmF4vS1xX7quIxQKwettgc/nB2As2fJ6WxAKhTLc4+wVO0a6riMUDJnHUwiBkSNH4J2330Vd3TdYu3Y9Hn74MQBIace8mTMvxL33/QKffvo5du6qxyOPPBb3+EUXzcCqVavx+98/g/r63Xjv/X/g17/+LW6a/b9p/TkLlaIouPWHs/HLBb+Cruv8nRIREeURDnYRERHlkZ/85B5U9B8S97V8+UosWPArVPQfggnHTgIADBs+FhX9h2DBgl9luMfZa/yESajoPwRffPEf/ODmOebx3LZtO/7v1ptQVFyEY8afhAu/czm+d82VOO20UzD8iHFJP/+N378WEyYcg2+feT5OP/1sjJ9wTFydJo/HjddefR7P/ekFjDhyPG655ce4//55ZvFzOnSXXz4TzV4vXn/9r/ydEhER5RFJsEgAERFRHJ/Ph7Vr16KmpgIOuzXT3SEiSsgfCGHLlnps3rwJ69evw+mnT8HEicdlultEREQZxZldRERERERERESUNzjYRUREREREREREeYODXURERERERERElDc42EVERERERERERHmDg11ERESJcA8XIsp2sc8pfl4RERGZONhFRER0EFVVAQChcCTDPSEi6pzPFwQAhMPhDPeEiIgoe6iZ7gAREVG2sVgscLvd2L27CRZVhSRLme4SEVE8IeDzBbF7TxMaGxqg63qme0RERJQ1ONhFRER0EEmSUFNTgzVr1mDrtt2Z7g4RUUKNDQ3YtWsnRHQZo9ViyXCPiIiIMo+DXURERB2w2WwYOnQo/vLmG9jfsB8V5RWQFSXT3SIiMgiBcDgMXdchhMCuXbvgdrnRr7w80z0jIiLKOEkIVrMkIiJKpL5+F/7y5puo310PLmYkomwkhICnqAhnnHEmRowYkenuEBERZRwHu4iIiLrQ1NSI3bv3IBgMZLorRETtqKoFZaWlKK+oyHRXiIiIsgIHu4iIiIiIiIiIKG/Ime4AERERERERERFRunCwi4iIiIiIiIiI8gYHu4iIiIiIiIiIKG9wsIuIiIiIiIiIiPIGB7uIiIiIiIiIiChv/H+cNOlf1kv8lAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ - "fig, axs = plt.subplots(nrows=1, ncols=2, figsize=(8,4), constrained_layout=True)\n", + "fig, axs = plt.subplots(nrows=1, ncols=3, figsize=(12,4), constrained_layout=True)\n", "axs = axs.flatten()\n", "# for ax in axs.flat:\n", "# ax.set_aspect(0.6)\n", "\n", "lim=(raw_data[y_name].min()-1, raw_data[y_name].max()+1)\n", "\n", - "plot_BO(axs[0], \"./out/ocm_gpt35turbo_12744_1_1_test0.pkl\",\"GPT3.5-turbo: 1.2\",\n", + "plot_BO(axs[0], \"/Users/shane/repos/BO-LIFT/paper/out/biasfree_ocm_gpt-turbo_300_1_1_lambda_mult0.1_corrected_tablepromptgpt44.pkl\",\"GPT-4: Ada|$T_{n=0}$\",\n", + "\n", " raw_data[y_name], \"C$_2$ yield\", lim, label=True, M=5)\n", "\n", - "plot_BO(axs[1], \"./out/ocm_gpt35instruct_12744_5_1_test8.pkl \", \"GPT3.5-turbo: 1.2\",\n", + "plot_BO(axs[1], \"/Users/shane/repos/BO-LIFT/paper/out/biasfree_ocm_gpt-turbo_300_1_1_lambda_mult0.1_corrected_tableprompt_transfer_data_10_large_embedd.pkl\", \"GPT-4: Large|$T_{rand,n=10}$\",\n", " raw_data[y_name], \"C$_2$ yield\", lim, label=False, M=5)\n", "\n", - "fig.suptitle(\"Bayesian Optimization on OCM dataset\")\n", + "plot_BO(axs[2], \"/Users/shane/repos/BO-LIFT/paper/out/biasfree_ocm_gpt-turbo_300_1_1_lambda_mult0.1_corrected_tableprompt_transfer_data_cosine_10_large_embedd.pkl\", \"GPT-4: Large|$T_{foc,n=10}$\",\n", + " raw_data[y_name], \"C$_2$ yield\", lim, label=False, M=5)\n", + "\n", + "fig.suptitle(\"BO-ICL: Bias-Free Dataset with In-Context Transfer Learning\")\n", "fig.legend(loc='upper center', bbox_to_anchor=(0.5,0),\n", " fancybox=True, shadow=True, ncol=6)\n", - "plt.savefig(f\"figs/BO_C2\", dpi=300, bbox_inches='tight')\n", - "plt.show()" + "plt.savefig(f\"/Users/shane/repos/BO-LIFT/figs/BO_C2_paper\", dpi=300, bbox_inches='tight')\n", + "plt.savefig('BO-ICL: Bias-Free Dataset with In-Context Transfer Learning', dpi=500)\n", + "\n", + "plt.show()\n" ] }, { @@ -1478,7 +3029,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.14" + "version": "3.11.9" }, "vscode": { "interpreter": { diff --git a/paper/dataset/make_ocm_dataset.ipynb b/paper/dataset/make_ocm_dataset.ipynb index e41f8bc..1361f40 100644 --- a/paper/dataset/make_ocm_dataset.ipynb +++ b/paper/dataset/make_ocm_dataset.ipynb @@ -57,7 +57,20 @@ "execution_count": 18, "id": "15599bfb", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Index(['name', 'm1', 'M1_atom_number', 'm2', 'M2_atom_number', 'm3',\n", + " 'M3_atom_number', 'sup', 'Support_ID', 'M2_mol', 'M3_mol', 'm1_mol',\n", + " 'm2_mol', 'm3_mol', 'react_temp', 'flow_vol', 'ar_vol', 'ch4_vol',\n", + " 'o2_vol', 'contact', 'CH4/O2', 'CH4_conv', 'C2y', 'C2H6y', 'C2H4y',\n", + " 'COy', 'CO2y', 'C2s', 'C2H6s', 'C2H4s', 'COs', 'CO2s'],\n", + " dtype='object')\n" + ] + } + ], "source": [ "name_dict = {\n", " 'Name': 'name',\n", @@ -109,7 +122,23 @@ { "data": { "text/plain": [ - "array([700, 750, 775, 800, 850, 900])" + "array(['Mn-Na2WO4/BN', 'Mn-Na2WO4/MgO', 'Mn-Na2WO4/Al2O3',\n", + " 'Mn-Na2WO4/SiO2', 'Mn-Na2WO4/SiC', 'Mn-Na2WO4/SiCnf',\n", + " 'Mn-Na2WO4/BEA', 'Mn-Na2WO4/ZSM-5', 'Mn-Na2WO4/TiO2',\n", + " 'Mn-Na2WO4/ZrO2', 'Mn-Na2WO4/Nb2O5', 'Mn-Na2WO4/CeO2',\n", + " 'Mn-Li2WO4/SiO2', 'Mn-MgWO4/SiO2', 'Mn-K2WO4/SiO2',\n", + " 'Mn-CaWO4/SiO2', 'Mn-SrWO4/SiO2', 'Mn-BaWO4/SiO2',\n", + " 'Mn-Li2MoO4/SiO2', 'Mn-Na2MoO4/SiO2', 'Mn-K2MoO4/SiO2',\n", + " 'Mn-FeMoO4/SiO2', 'Mn-ZnMoO4/SiO2', 'Ti-Na2WO4/SiO2',\n", + " 'V-Na2WO4/SiO2', 'Fe-Na2WO4/SiO2', 'Co-Na2WO4/SiO2',\n", + " 'Ni-Na2WO4/SiO2', 'Cu-Na2WO4/SiO2', 'Zn-Na2WO4/SiO2',\n", + " 'Y-Na2WO4/SiO2', 'Zr-Na2WO4/SiO2', 'Mo-Na2WO4/SiO2',\n", + " 'Pd-Na2WO4/SiO2', 'La-Na2WO4/SiO2', 'Ce-Na2WO4/SiO2',\n", + " 'Nd-Na2WO4/SiO2', 'Eu-Na2WO4/SiO2', 'Tb-Na2WO4/SiO2',\n", + " 'Hf-Na2WO4/SiO2', 'Blank', 'BN', 'MgO', 'Al2O3', 'SiO2', 'SiC',\n", + " 'SiCnf', 'BEA', 'ZSM-5', 'TiO2', 'ZrO2', 'Nb2O5', 'CeO2',\n", + " 'Na2WO4/SiO2', 'Mn-WOx/SiO2', 'Mn-MoOx/SiO2', 'Mn-Na/SiO2',\n", + " 'WOx/SiO2', 'Na/SiO2'], dtype=object)" ] }, "execution_count": 36, @@ -118,8 +147,165 @@ } ], "source": [ - "# df.groupby(['name', 'm1', 'M1_atom_number', 'm2', 'M2_atom_number', 'm3', 'M3_atom_number', 'sup', 'Support_ID', 'M2_mol', 'M3_mol', 'm1_mol', 'm2_mol', 'm3_mol']).count()\n", - "np.unique(df['react_temp'])" + "df[\"name\"].unique()" + ] + }, + { + "cell_type": "code", + "execution_count": 84, + "id": "4ff20ff1", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "95th percentile threshold for C2y across the dataset: 12.85\n", + "Probability of C2y > 12.85 in 'Mn-Na2WO4/SiO2': 24.07%\n", + "Probability of C2y > 12.85 in other catalysts: 4.62%\n", + "Difference in probability: 19.46%\n" + ] + } + ], + "source": [ + "import pandas as pd\n", + "\n", + "# Assuming df is your original DataFrame\n", + "# Filter out rows where 'react_temp' cannot be converted to numeric\n", + "df = df[pd.to_numeric(df['react_temp'], errors='coerce').notnull()]\n", + "df['react_temp'] = df['react_temp'].astype(float)\n", + "\n", + "# Determine the 95th percentile of C2y in the entire dataset\n", + "percentile_95 = df['C2y'].quantile(0.95)\n", + "\n", + "# Define the target catalyst and filter data\n", + "target_catalyst = \"Mn-Na2WO4/SiO2\"\n", + "target_data = df[df['name'] == target_catalyst]\n", + "other_data = df[df['name'] != target_catalyst]\n", + "\n", + "# Calculate the counts and probabilities\n", + "target_above_95_count = len(target_data[target_data['C2y'] > percentile_95])\n", + "other_above_95_count = len(other_data[other_data['C2y'] > percentile_95])\n", + "\n", + "target_total_count = len(target_data)\n", + "other_total_count = len(other_data)\n", + "\n", + "prob_target_above_95 = target_above_95_count / target_total_count if target_total_count > 0 else 0\n", + "prob_other_above_95 = other_above_95_count / other_total_count if other_total_count > 0 else 0\n", + "\n", + "# Calculate the difference in probabilities\n", + "prob_difference = prob_target_above_95 - prob_other_above_95\n", + "\n", + "# Display the results\n", + "print(f\"95th percentile threshold for C2y across the dataset: {percentile_95:.2f}\")\n", + "print(f\"Probability of C2y > {percentile_95:.2f} in '{target_catalyst}': {prob_target_above_95:.2%}\")\n", + "print(f\"Probability of C2y > {percentile_95:.2f} in other catalysts: {prob_other_above_95:.2%}\")\n", + "print(f\"Difference in probability: {prob_difference:.2%}\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 86, + "id": "00e81061", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "99th percentile threshold for C2y across the dataset: 16.17\n", + "Probability of C2y > 16.17 in 'Mn-Na2WO4/SiO2': 8.33%\n", + "Probability of C2y > 16.17 in other catalysts: 0.88%\n", + "Difference in probability: 7.45%\n" + ] + } + ], + "source": [ + "import pandas as pd\n", + "\n", + "# Assuming df is your original DataFrame\n", + "# Filter out rows where 'react_temp' cannot be converted to numeric\n", + "df = df[pd.to_numeric(df['react_temp'], errors='coerce').notnull()]\n", + "df['react_temp'] = df['react_temp'].astype(float)\n", + "\n", + "# Determine the 99th percentile of C2y in the entire dataset\n", + "percentile_99 = df['C2y'].quantile(0.99)\n", + "\n", + "# Define the target catalyst and filter data\n", + "target_catalyst = \"Mn-Na2WO4/SiO2\"\n", + "target_data = df[df['name'] == target_catalyst]\n", + "other_data = df[df['name'] != target_catalyst]\n", + "\n", + "# Calculate the counts and probabilities\n", + "target_above_99_count = len(target_data[target_data['C2y'] > percentile_99])\n", + "other_above_99_count = len(other_data[other_data['C2y'] > percentile_99])\n", + "\n", + "target_total_count = len(target_data)\n", + "other_total_count = len(other_data)\n", + "\n", + "prob_target_above_99 = target_above_99_count / target_total_count if target_total_count > 0 else 0\n", + "prob_other_above_99 = other_above_99_count / other_total_count if other_total_count > 0 else 0\n", + "\n", + "# Calculate the difference in probabilities\n", + "prob_difference = prob_target_above_99 - prob_other_above_99\n", + "\n", + "# Display the results\n", + "print(f\"99th percentile threshold for C2y across the dataset: {percentile_99:.2f}\")\n", + "print(f\"Probability of C2y > {percentile_99:.2f} in '{target_catalyst}': {prob_target_above_99:.2%}\")\n", + "print(f\"Probability of C2y > {percentile_99:.2f} in other catalysts: {prob_other_above_99:.2%}\")\n", + "print(f\"Difference in probability: {prob_difference:.2%}\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 92, + "id": "42314efe", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0kAAAIoCAYAAAC8pqALAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACsPUlEQVR4nOzdd1QUVxsG8GcLHSlSpStKVMDeey/YK7bEaBJL7Bo1thhjYvnsiSWaWGMUA0rUWKJRsWDvJTbsiKJU6bC78/2BjqyLsrsCC+b5nbNH9947M+/MDsO+3Dt3JIIgCCAiIiIiIiIAgNTQARARERERERUlTJKIiIiIiIhyYJJERERERESUA5MkIiIiIiKiHJgkERERERER5cAkiYiIiIiIKAcmSURERERERDkwSSIiIiIiIsqBSRIREREREVEOTJKIiIiIiIhyYJJERERERESUA5MkIgO6fv06hg4dirJly8Lc3BwlSpRA/fr1sWLFCigUCoPGtm3bNpiZmWHx4sV6r+PTTz+FRCIRX02aNNFpeYlEgqVLl+q9fV3kx/4WpHfFt27dOkgkksIPKoeifvwuXboEHx8ftfPx/v37hg5LJ9oeY2339UM4Jv8V73stJSLdMUkiMpCVK1eiSpUqCA0NRZcuXbBkyRJMnz4dcrkcX375Zb592Zw1axaMjY1x7949jbpr165BJpPhl19+0ahTKpVQKBTvlaz98MMPuHLlCq5cuYJOnTrpvR5dvUoaXr1KliyJnj174sGDB29dJj/2N+f2vby83ns9OeVnfNrSZT8MEZ8u5syZg4oVK4rn45UrV+Dq6mqweAryHNV2X4vaMdFHfv6sJSQkYOjQoXB2doalpSVq166NPXv2FIn4DHUtfaUgrmlERZ3c0AEQ/Rdt2rQJQ4cORbt27RAUFAQLCwux7quvvsKmTZtgb2+fL9saM2YMli9fjunTp2PDhg1qdZMnT0b58uUxcOBAjeV69OiBHj16vNe2XV1dxS9dNjY2SEhIeK/16er06dMwMzNDVFQUZs+ejUaNGuHy5cuwtrbWaJsf+1uQGN/7efr0KTw9PeHn52foUNQUxDmq7b4W1WNiCIIgoEOHDoiPj8cvv/wCe3t7hISEoGPHjti/f7/Be24MfS0l+i9ikkRUyJ4+fYphw4ahYsWKCAkJgYmJiUabPn365Nv2zMzMMHPmTHz++eeYOHEifH19AQAnTpzAjh07sHPnTshksnzbXlFSoUIFWFpaws/PDw0bNoSXlxeWLl2KKVOmFOh2nzx5UqDrLywfyn4A2V+Ci6KCOEe13deiekx0kV/n6I4dO3D8+HFERESgdOnSAIC6desiJiYG+/bt0ztJ+lB+hj6U/SDSiUBEherrr78WAAh79uwptG0qlUrB399f6NSpk1jWqFEjoUmTJmrtDh06JABQex06dCjXdd69e1fo1q2bYG1tLVhaWgqdO3cWIiIi3hpD//79hcaNG7+1fs2aNULp0qUFU1NToX79+sLVq1cFAMJPP/2ky64KgiAIa9euFQAISUlJauUjR44UatWqJb7XZX8PHz4sNGvWTLC1tRXMzc2FGjVqCKtXr9bY5tteOfe9cePGanURERHC2LFjBXt7ewGAcOLECZ3ie7Xt27dvC02aNBFMTU0FT09PYeXKlWrtpk+fLnh6emosD0BYu3atzvuhy/G7fv260KFDB6FEiRKChYWF0LZtW+HKlSu57seFCxeEWrVqCebm5kLVqlXfus68vHmc33zdu3dP69i0/cy0ld/nqLb7qm07QdDuZ1yX46LN+rQ5B3Q5R7U1cOBAoWnTphrlKpVKo2zDhg1C5cqVBTMzM8Hd3V0YM2aMkJycrHd8ea3vTW+7lmZlZQnOzs7C4sWLNeoWLVokeHh4CEqlUizLz2uaNusjKm7Yk0RUyDZs2AB3d3e0atWq0LYplUoxd+5cBAQE4MyZM3j+/DmOHj2KU6dOqbWrWbMmrly5AgCIiopC69atc11fbGwsGjZsiFKlSmHjxo2wsLDA4sWL0ahRI9y4cQMlSpTQKb6wsDAMHDgQX375JXr37o2kpCTMmjVLv519hzJlymDNmjXie233NyIiAm3atEGPHj0wY8YMGBkZ4fjx45gwYQKcnZ0REBCAzp07o0aNGgCA5cuXY/v27fj777/FdeQcUrl27VqkpKTgzJkzGDhwIJYtWwYnJyfs3r0bZmZm8Pb21im+V77//nuMHz8eVlZWCAoKwuDBg+Ht7Y3mzZtrfYx02Q9t43vy5AkaNGiAZs2aYfv27ZBIJPjll1/QsGFDXLx4EZ6enmrtly5dipkzZ8LMzAxz5sxBx44dcevWLTg7O2u9H8Dr4wwAAwYMgKurK77//nux3tXVVevYtP3M3pe+56g2+6pLO21/xrU9LrpeM951Duhyjmrr2rVrqFSpkkb5mxOibN68GV988QUWLlyIWrVq4d9//8Xo0aORkpKClStXAtDtZ0ib9WlLLpfj888/x6pVqzBq1Ci1ulWrVuGLL76AVJp9K3p+X9O0WR9RsWPoLI3ovyQiIkIAIAwZMsQg22/evLnQrFkzoXLlykKvXr3e2fbevXtv/av11KlTBUdHRyEhIUEsy8zMFMqWLSvMmDEj1/W9qyepffv2Qps2bdTKoqOj870n6VV5ZmamxjLv2t9NmzYJAITExES18pz7n9Pbemze9KqXYNmyZXm2fVd8r/br0aNHauUBAQFCu3bt8owLOXqSctJ2P/KKb+LEiYKvr6/aX7FVKpVQvXp1YdiwYRr7ER0dLZbFxcUJMpks1/h00bhxY6F///56x/aKLp/Zu+T3OZrT2/ZVl3a6/ozndVy0XZ+u54Au5+i7lCtXThg3blye7VJSUoTjx4+rlc2YMUNwcHDItX1e8em6PkF497X04cOHgkwmE44cOSKWHT58WJDL5UJUVJRYlt/XNF3XR1QccHY7okL06NEjANl/Lc5LRkYGBg4cCA8PD1hZWaFOnTo4ceLEe21/3rx5OHToEK5fv/5ePTX//PMP2rRpo3ZzuZGREVq0aKHXbFCXLl3SGPPv6OiY6/1ahlC1alWYmJhg7NixOHLkCGJiYgAg15vr9dGoUaN8WY+bm5va+2bNmuHy5cv5su73cejQIdSvX1/8KzaQ/Rf6Ro0aISwsTKO9o6Oj+H9bW1s4OTmJPzuGju2V/PrMiip9f8bfdlx0XV9hngO6MDc3R926ddXKPDw88Pz58yKxPnd3d7Rr106tF2rVqlXo2LEjSpUqJZbl9zWtoK+RRIbAJImoEL2aujcrK0urtl5eXjh27BgSEhIwevRodOjQAcnJyXpvv2rVqqhTpw5at24t3pysj5iYGPz222+Qy+Vqr5UrV+LZs2c6r+/Zs2d6DZHRVWJiIiwsLGBkZKTTcuXLl8eBAwcQGxuLnj17wsHBAa6urhg/fjwyMzPfOy5LS8v3XkduLCws9Po88ltsbGyuQzCtrKwQGxub5/JGRkZQKpUFEZresRXUZ6bvOZrf9P0Zf9txed9rRkGeAwBQsmRJvHjxIs92L168wJAhQ+Dp6QlTU1PI5XJ89tlnem83v9cHAEOHDsXWrVsRHx+P+Ph4bN26FUOGDFFrk9/XtIK+RhIZAu9JIipEZcuWBQBcvXo1z7YWFhb45ptvxPe9evXC2LFjcfPmTVSvXl3vGIyNjWFsbKz38gBgZ2eHWrVqYdKkSbmuX1cODg5ITU19r5i0ce/ePVSsWFGvZevXr4/69esDyP5iEx4ejk8//RQKhQKLFi3KzzDzTUpKitpf5GUymUGeY2RnZ4ekpCSN8hcvXsDOzq7Q48mpqMX2Pudofsrvn/H8Xl9+8/X1xZ07dzTKBUFQuy9p1KhR2LdvHxYsWAAfHx8YGxtj+/btmDp1ql7bze/1AUDr1q3h4uKC33//HYIgwNXVFS1atNBol9/XtOJ4jSR6F/YkERUiLy8v1KxZE8HBwTh//rxGfVJSEhYsWJDrsrdv30ZcXJyYaBlSQEAAbt68iYoVK8LPz098JSQk6HxzPQBUrlwZhw8fVit7/vw5MjIy8itkpKWlISgoSK8HMT58+BDXrl0T31tZWaFt27aoW7cu7t69q9H+zZu9C0tkZKTa+0OHDqndjO7m5oanT58iLi5OLHvX1L75tR+tWrVCeHg4VCqVWCYIAo4cOYLGjRvnyzb0VZRie59zNL/l9894fq/vlfw6Rzt27IjDhw/j/v37auWffvopJk+eLL4/e/Ysunbtil69eqFatWrw8/ODlZWV3vHpuj5tSCQSDBo0CL/++it+/fVXDBo0SCOO/L6m6bo+ouKAPUlEheyXX35B48aNUb9+fQwcOBD+/v5QKBQ4f/48tm3bhgYNGmDcuHFqy6SlpaFfv36YNGlSgY7xTklJwb179wBkz6QFZP9l+9WDbT/66CMYGRlh7NixWLVqFbp3744vv/wSVlZW+PvvvzFr1iy1L3mPHz9GfHw8gOyn2aekpIi9aBYWFuKQvzFjxqBFixYYOXIkAgMDkZSUhKCgIMjl73eJun79OszMzHDnzh3MmTMHJiYmGD58uM77u2LFCixduhTjxo1Dy5YtYWxsjEOHDmHPnj1YunSpxnYdHR2RlZWFGzduiGXm5ubw8PAQt5Fz27du3RKHUbq5ucHGxkan+F6ZOnUqevbsCWtra2zZsgW7du3CP//8I9a3bdsWZmZm4rmUmpqKoKCgtx6/vPZD2/jGjRuHlStXolevXhg6dCikUilWrVqFO3fuYOvWrW/d/vvKef6lpKQgISFBPP9sbW3h6uqqdWzafma6yq9zVJt91faYAND6Z1zb46Lt+nSV1zmqrY4dO6Ju3bro2LEjZs2aBQcHB2zbtg2///479u3bJ7arXbs2tm/fjlatWqFUqVK4cOGCOBvh1atXUbZsWZiammodn7br0/Za+srAgQPFkQgDBgzQ2N/8vqbpuj6iYsGw80YQ/TdFREQIAwYMEFxdXQUjIyPByclJqFOnjvDtt99qPDckMzNTaNeundCnT59cn9mhq8aNGwvdunXLtS63Z7LkfL35DJUePXoINjY2grm5uVCrVi3hzz//VFtf//79tX7Gxi+//CJ4eXkJJiYmQsOGDYXr168LJiYm7zW73auXjY2N0L17d7X4dd3foKAgoWHDhuKzdCpXriz8/PPPuW4/Li5OaNCggSCTyXLd33c9qybnDF7axqftc5JerbNq1aqCmZmZUL16deHChQtvnd0ur/3Q5fhdv35daN++vWBpaZnnc5Le5OnpKUyfPj3XY/0u7zr/cs7qpk1s2n5m2srvc1TbfdW2nSBo9zOuy3HRZn26ngN5naO6iI+PFwYPHiw4OjoK5ubmQvXq1YVdu3ZptPnkk08EOzs7wdzcXGjXrp1w584doXr16oJEIhEuXLigU3zark+Xa+krDRs2fOcspvl5TdN1fUTFgUQQPoBHbhN9oFQqFfr06YOUlBSEhoa+d88KERF9+J4+fQp3d3fs379fY+ZQItIOv3ERFWGDBw/GkydP8PfffzNBIiKid3ry5AkSExOxdu1a+Pj4MEEieg/sSSIqoh48eAAvLy+YmppCJpOJ5Xv27EHDhg0NGBkRERVFn376KTZs2ABvb2+sW7dOnG2OiHTHJImIiIiIiCgHTgFORERERESUA5MkIiIiIiKiHJgkERERERER5fBBT5elUqnw/PlzmJub59tTuYmIiIiIqPgRBAGpqalwcHCAVPruvqIPOkl6/vw52rVrZ+gwiIiIiIioiNi1axecnJze2eaDTpLMzc0BACEhG2Dx8v8FKStLgYOHTqJZ0zowMvqgDy0VYzxPqajjOWpYksSrMD3WCekNtkOw9jN0OEVSUT5HE29F4OjgUWi4cgmsfcoaOhwykKJ8jhpSSmoqunf/RMwR3uWDPmqvhthZmJvDwqJwkiQTExNYWJjzhKQii+cpFXU8Rw1LkmUKMxMVZOamEArhd2dxVJTP0SwzU5gAMDczLZTvPlQ0FeVztCjQ5jYcTtxARERERESUA5MkIiIiIiKiHJgkERERERER5cBBikRERCQSrMojrdUFCCb26uWCAKVSBaVKBQgGCq6IUCiUMDIyQmamAipV0ToYJu7uaPpnEIytrZCRkWXocMhAivI5WmAkgEwqhUwmzZdH/zBJIiIiotekxhDMXNSKsrIUiIl5gfSMTAMFVbQIAuDq6oroZwkoso9hfJ5o6AjIgIrFOVpATE2NYW9n9d4TVjBJIiIiIpEk5T6M/v0eWRWnQrDwgiAIeBwVB5lMAgd7a86UBUAlCEhJSYWFhTmkRewbqCorCxlx8TApaQupkZGhwyEDKcrnaEHKylIgPiEZj6Pi4Onh8F49SrzSERER0WtZLyCP2omsciOz32YpIAgqONiXhKmpsYGDKxpUKgEZGTKYGBtBKi1aX0AVKiXSU5Jh5GAHuQmTpP+qonyOFiQTEyPI5TI8eRqHrCwFjI31/xngxA1ERET0VsLL2xnyY4w/EVFBe3WtEt7zViwmSURERERERDkwSSIiIiIiIsqB9yQRERGRSDB1RmaFyRBMnd/Z7serxwspomwj/erp1N7C0gktWjTF9j+DAADXrl1HrdpNMHnSV5gyZXy+xNQ2oAuOHz+FmzfOw8WlFACgQcNWGDx4ID7u10urdcTExGLCxGn4Z/8hGJsYIzCwG76dPglGRkY4evQ4pkydgSOH/9ZYztrGFc+i78LExASPHkXiy2FjceLEaZS0tcHIIZ/hyxFDc93eqFET8Ovq9Zg79zsMHzb4rXF16NgTo0Z9iRbNmwAAbt2KwKTJ03Hq1FkoFArUqFENM7+biqpVK6stl5ycgooVa2DEyCEY/9UotborV69h5MjxuHTpKtzdXTH9m0no2rWjVseCqLCxJ4mIiIheM3WEwmcUYOpo6EjeW1jYUcTExAIAgoNDC2QbEokEwSF/6r18/08HIyszC8eO7cOO7Vtw4EAYFiz4CQBgY2uN2Ng4jWWSk1NgbGwEExMTCIKAnoH9Ua6sN65dPY1161Zi/k8/Y+/+AxrL3b//AH/t2ovKlf3fGdOTp9G4efM2mjZpCABQKBTo3qMfSnt54tTJQzh75gj8/X3RoWNPJCUlqy1rZCRHOR9vODmpnz8pKSno0qUPAtq2wq2bFzDrh+kYNnwsLl66otWxICpsTJKIiIjotaxEyJ7sBbKK/3N2ypf3QWjoTgBA6J870fxlr0h+aty4AbZs2arXsomJLyAIApYvXwQPD3dUrFgeY8cMR8jWPwEAtjY2uSZJiYmJsLW1BQAcO3YCsbFxmD//Bzg5OaJO7RqYPH40li1bpbHc9z/Mw8iRQ2FVosQ74woJCUWXLh0gk8kAZPciPXjwCLNnz4Crqwvc3Fwxe9a3CDu0ByVKWKota2JiggP//IVPPu6tVh7651/w9HTH+PGjYW9vh3bt2mDQoAFYtWqNVseCqLAxSSIiIiKRJOUBTE73hyTlgaFDeW+9e/dAcHAozpw5Bw8Pdzg7O4l1R46Ew8W1HDZtDkbpMn4o4+2fa2KRl/bt2iAi4g5u3ryda/2SH1egom8NODh6oUXLDrhy9ZpYZ21thd27tqolGja2NkhOTgEA2NraICkpGZmZmdjyx1ZYWDrhzp17SEhIhK2tDQDg5KkzqF+/DqTS7K90qswsVPcujdNnzkHIMb3X9es3cezYCQweNCDPfQoK2opegd3E9wqlEkqlEomJL9TalS1bRvz/bxuDYGHpJL5+2xik1vbUyTNo2EB9yGSjRg1w6uRZrY4FUWFjkkREREQfpMaNG+DBw0dYuHApAnN86X8lLS0dsbGxOHniIJYsnovJU2aoDf/ShrmFOdq3b5trb9KNG7ewZ/c+BP/xG/69dhZNmzRC376fvXN94eEnUO3lfT4WFhYwNjZGbGwczp27CEdHB1y6dAWJiS9Q8mWSFPX4ifj/V+xsbZCamqbWCzVz5lyM/2oUTE1N37n9mzdvIy01Te1eI9+K5VGurDc6de6Fjb9vQUTEXY3levfqjuindxH99G6uw/keRz2BbUlbtTJ7ezs8iozU6lgQFTYmSURERPRBkkql6NGjC/b/cwidOrbTqJfJZBg+bDCcnBzRoUMAateqgePhJ3XeTmBgN/wRvE2jvHx5H+zdGwpf3wpwcLDHsGGDcOfOPURHP8t1Pbdv38HPP6/GiBFDxDIbG2vExMbi/PmL6Ns3EJcuX1EbbpeWngbpy2Fxr8hfvk9PTwcAXLhwCVev/Yv+/fvkuS9BQSEIDOyqViaTybBrVwh8fStg0qTpqFylLqpWrY+wsKOvtymXw9LSApaWFmKvVk5paWmQydTL5TIZ0tLStT4WRIWJSRIRERF9sHr36o52Aa007p0BAGNjI7WH5Do42CM+PkF8/+hRJFxcy4mvWrWb5LqN5s0aIykpGadPn1UrV6lUmD17AerUbQav0r6oVKkOgNfJS07R0c/QvUc/jBg+BHXr1hLLbW1sEBsTh9u37qBL5/a4ePEKEl+8gI2tNQDAzNQMKqVSbV2Kl+9f9Rp9O2M2Jk/+CnJ53pMaB4eE5trr5uJSCqtW/ohHD2/g6pVTaNy4AXr1/hQJCdrdu2ZmZgalUqURp5mZZs/W244FUWHiFOBERET0mtQEqhIfAVITQ0eSL3x9K2DKlAl6LeviUgpnTh8W38vekmTI5XJ079ZJY8jd+vW/47eNm7Fi+WKUKeOF9PQMVKmqOZX58+cxaNeuO1q2bIapU9VjtS1pg3//vQFPL3f4+lbAtWvXkRD/uifJxcUZ/16/KbaXSCVISE6BubkZ7OxKIjz8JJ48eYqePdR7h3Jz4sRpODk5wsvL853tSpf2wsKFs/FH8Dacv3ARzZo2znPdLqWcER8Xr1YWExMLdzc3tbJ3HQuiwsQkiYiIiESC1UdIb3bE0GHkKx+fsnotJ5PJ4OrqolXbwMBu6BnYX21yiMuXr6F1qxZo3LgBAODZs+cay8XGxqFd++5o1rwx/jd3pka9jY01zp2/CH9/X5iamsLG2hr//nsDHp7uAIDatWvi19UbIAgCJBIJZCYmuPDgIWrWrA6JRIKwsKO4c+cevLx8xXUmvniB8xcuYtdfe7Fnz+up0bds2Ypegd01YoiLi8fZcxfQqmUzsUypVCIzM0tM1vJSu05NrF//u1rZ0SPhqFW7utbHgqgwMUki+oBo83BHiUpAGQA/Xz8FQSrJs31xp+sDKImI9FGrVg2UKGGJf/+9IZZVrFgeP/+8GhERdyGTSTF/wY+Qy+VITU0DAKSmpqJ9hx6oW6cWvpn2tdpMbqamJpDL5bC1tcXx4ycxYnj2vTl+/hXxz4FD+GrcSABAw4b1ULKkLcZPmIoJ40fj3r37mPn9//DTj/MAACNGDMGnn/ZVi7Xfx5+jZYtm+Pzz/mJZVlYWdv61B9OmTdTYtzNnz6NPn4GYNm0ievbogqysLMz93yJ4eXnAz7cCgOxnKaWnZwDIHmaYmZGJ5OQUyGRSmJmZoWuXDpgxYzYWLlqK/p/0wZkz57Dql7XYtWur1seCqDDxjCMiIiKRJPEqTI91QnqD7RCs/d7ajn+A0NSzR1fMmbtQfN+/fx+cPXcBDRu1grm5Ob7//hsAQM1ajRH56CYSExNx+fJVXL58Fb+uXq+2rp9/XoKP+/WCjY01Hjx4BD+/igAAf39fBAeHij04EokEW4LWYdjwcahQsQbsStpi5Kd90frlM6GsrErAykr9uUgmxiawsi4BR0cHsWzfvgOoVq0y7OxKauxX61bNERS0DnPmLMCsWfNgZmqG+vXrYGvIRhgZGQEANgeFYMiQUeIyI0eNx8hR49GwQT3s3RsKCwsLhIZuwsiR4/H99/+Dm5sLlv60AFWrVAKQPcwur2NBVJgkQs5J9D8wycnJaNKkCfbsDoGFhXmBby8rS4F9+8PRqmV9GBkx/6TCp3VPUqQCd93k7EmiIonXUsOSJFyG2eGWSGu8H4JNJWRkZCHqSSxcStnBxMTI0OEVCSqVgBdJybAqYQlpEbuOKtLSkXT/AUp4eUKey6QIb/PJJ1+gU6f26NatUwFGR4WlKJ+jBe1d16yUlFS0DeiOsLAwWFpqTuaSE2e3IyIiIvoPe/EiCUePnUBAQCtDh0JUZDBJIiIiIvoPe/48BrNnfwszMzNDh0JUZHAcAxEREdF/mLd3aXh7lzZ0GERFCnuSiIiISCRYls2+H8lSv2mzybBkJsYo4eUJmYmxoUMhKtbYk0RERESvyc0h2FQydBSkJ4lUqtOEDUSUO/YkERERkUiSGgmjS19Dkhpp6FBID8qsLKQ+jYYyK8vQoRAVa0ySiIiI6LXMOBjdXwtkxhk6EtKDoFAiIz4BgkJp6FCIijUmSURERERERDkwSSIiIiIiIsqBEzcQERGRzhJ3zS/U7Vm3+0qn9haWTmjRoim2/xkEALh27Tpq1W6CyZO+wpQp4/MlJl+/GjAzNcP588cAAHFx8Sjj7Y+ePbti1cof81x+8JBRqF6tCgYNGqBWvjkoBHv37sf6dSsBACEhf+K7mXMQGRmFKlX88eOSefDzq6ixvuTkFPj61URMTCweRFyG/VsmcHj8OArNW3TAv9fOQCrN/nv5ps3BWLRoKe7evQ9bWxt07twe306fDEtLC43YRo+egJMnDqJ0aS+1uhUrfsWixcsQFxeP+vXrYNnSBXBzcxXrDx8+hmnfzMSNG7dQurQXZs6chlYtm+V5nIgMgT1JRERE9JqJPbK8BwMm9oaO5L2FhR1FTEwsACA4OLRAtnHz1m1cunwVALB9+1/I0mHCBBsba8TGat77lZiQiJK2tgCA8+cvYsTIrzB3zne4dfMCWrdqjq7d+iItLU1juWXLVqJyJT8AgFQue+t2t/yxDd26dRITpCNHwjFmzETM+HYybt44jy1B63DixGlM/HqaxrIlS9qiXLmyMH3jwbM7duzG/+Ytxob1q3Dt6mmU9vJEr94DIAgCAOD27TvoGfgJBg0aiKtXTmPC+NHo23cg7ty5p+XRIipcTJKIiIhIJJi5IMvvOwhmLoYO5b2VL++D0NCdAIDQP3eiefMm+b4NP7+KYgL2R3AoWrVq/s72Ae26wcOjAq5duw5bGxvExsZqtElMTIStrQ0AYOWqtRg8aCDatm0Fe3s7TJw4Fm5uLvhz+y61ZeLjE7By1VpMmpTd4yaVG701hi1btqJXr27i+71//4NOndojIKA17O3tUL16VezetRXfTp+ssWzrVs1x7Og+lHJ2UitfseIXfDNtIurUqQknJ0csXDgb0dHPcOLEaQDA7dsRGDDgY/TrGwhHRwd069YJdevWxs6/9rzzeBEZCpMkIiIiek2RAmncGUCRYuhI3lvv3j0QHByKM2fOwcPDHc45vtgfORIOF9dy2LQ5GKXL+KGMtz+WLVul8zZ69eqOrVu3IyrqCaKfPkON6lXV6o8dO4FGjVvD3sELfv614OzshBMnDsDHpyxsbW0Q87InqUPHnmjRsgMAICHxBWxL2gAATp06g4aN6quts1HD+jh18oxa2aLFS9GzZ1eUcsreR0GpyjXea9euQ6VSwd/PVyxTKBSIj49Xa2dtbQUHh9e9iW3adIGFpZP4ykkQBJw6fQ4NG76OUyqVokGDujh5KjvOgIDWmDN7htpytjbWSE5KzjVOIkPjPUlERdyhA9o/qyT1Wd5/95BCAKyBtGtSqCDRKRZz/9x/6RLRh0OSfAemR9sjrfH+Yv9Q2caNG2DFil+xcOFSBAZ2w5Ej4Wr1aWnpiI2NxckTB3H69Fn0+/gL1G9QF1Uq+2u9jbLepeHs7IivvpqC7t07i8PLAODFiyQE9uqP//3ve7Ru1RznL1zCZ599ie9nToORkRFsbF8Pt7t58zaUSiUEQUBiYiJ8fSsAyL5/qOTLXqVX7B3scOXqNfF9dPQzbNy4BadPhSHx5fqUWZm5xhu0JQS9enVXK+vcqT1at+mMYcPHonPnDqhRvarYk/VKaOgmKJUq3Lx5C40at1Gri4mJRUZGhsYy9vZ2iHz0ONc4FAoFTp46i8DAbrnWExkae5KIiIjogySVStGjRxfs/+cQOnVsp1Evk8kwfNhgODk5okOHANSuVQPHw0/qvJ0+vXti+45dGl/4b9+OQFZWFvr26Ql7ezu0atkMrq4uOHPmPADA1tYWsbFxuHPnHtzcXOBdpjQiIu4iMeGFmBilpaVDKlO/v0gukyMtLV18P2/eYgwc8DHs7e3eGacgCAgJ2Y7Anl3VyuvVq40tQetw+9Yd9OjxMbxK+6JPn4GIj08Q25iZmcHS0gKmppqTQaSnZ8ciezNOuRxp6Zr3TgHAggU/ooSlJVq3bvHOmIkMhUkSERERfbB69+qOdgGtUKKEpUadsbERJJLXPeoODvZqicGjR5FwcS0nvmrVbpLrNrp164T69erA27u0WrmXlyeUShWOHj0OALhx4xbu3bsPH5+yALKHmyUmJuLcuQvw860If/+KuHjxMhJfvICNjQ0AwMzMFCql+oNhFUoFzF7OXPfoUST+3L4LI0cOzfNYHDt2Ap4e7mozzr0SENAa+/Ztx/Nn9/DXzmDcuhWBr8ZPyXOdAMTESflmnAoFzEzNNNpv27YDP/70M9asXaGRWBEVFRxuR0RERB8sX98KmDJlgl7LuriUwpnTh8X3MnnuX5tKlrTF0qULNMrt7Epi/bqf0alzLxgZySGRSPDt9MmoUOEjANk9SSqVgHPnL8LPryKMjY1w6fJVJCS8nrjBxaUU4nIkbgAQ8zwW7m5uAIBZs+dj2LBBsLIqkef+BG0JQWBg13e2MTIyQsOG9TBt2kStkyQ7u5IwMTFBfHwC7OxKvo4zJhb+/r5qbXfu3I0RI7/ClqD1qPRGHVFRwp4kIiIiek0ig2BsB0g+nL/wv+q50ZVMJoOrq4v4cnZy1GkbSqUSy1f8iq0hG3Hl8ilEPb6NoUM/F+ttbKwBAOfPXYS/vy/8/X1x6dIVJCQkwLZk9hTgtWvXxLGXPVGvHD12HLVq1wAAhIUdw/z5S+DhUQEeHhXQqHn2sMIqNRth9eoN4jIZGRnYvXsfunTpqBFnWNhRPI1+plaWlp6mcY/R20ilUtSqWR3Hjr2OUxAEhIefRO1aNcSyPXv2YdiwcQj+4zc0aFBXq3UTGQp7koiIiEgkWPsire2/hg7jgxATE4sLFy7B3d0N5ubmyMjIgFmO5wvZ2togLS0Nl69cha9vBRgZyXH58lVkZmaK9yQNGTwQ7Tv0QJ26tVCjelWsXbcRjx49RudO2cnQoUO7oVQoxHU+fhyFps3aYf++HXB3dxPL9+79B3Vq1xQTs5zWrtuIy5euYsHCWajk74eIiLuYPXsB+vUNFNukpaVBqVSJ9x8lJ2fPfmhqagK5XI4vv/wCo8dMRMWK5eHl5Ym5cxfC0dEB9erVBpA9m+AXg0Zg3bqVqFTJT1wegMYDa4mKAiZJREREpDPrdl8ZOoQiz8nJEdWrV0XlKq97TaytrTB40EBMnz4JMpkMGRkZsLMrKQ6XsytZEpGPH8PY2BgAUK1aFfy4ZB7Gj5+CyMgoVKnij21bf4e5uTkAaPRuKV4mTKVKOaslH0FBmrPavfLrL0sxd+4iDB8+Dk+fPoOrayn06xuIMWOGi226dOmDozl6ipycywAAfv55CT7u1wsdOwYgMvIx+n38BWJj49CgQV0EbV4r3vN19OhxxMcnoFOnQLwpJTlayyNKVHgkQs65Kj8wycnJaNKkCfbsDoGFhXmBby8rS4F9+8PRqmV9GBkx/6T8ocsU4Kee5d1WCgG+1pm4lmj8n5gCfKRfPUOHQDritdSwJC9uwOR0f2TUWg/BqjwyMrIQ9SQWLqXsYGLy9geU/peoVAJeJCXDqoQlpNK3X0eDtoTg7JnzmDfvB0gkEgiCgMjIx2jRsiNCt21CxYrl8z02ZXoGUiIfw8LNFTJTEwBAQkIiqlarjxvXz8HExCTft0lFj7bn6IfoXdeslJRUtA3ojrCwMFhaak7mkhN/+xAREdFrqkxIU+4Dqtyfs0Pau3TpKh4/foKoqCewtrZGZmYmbty8jdTUVPGeo/wmCAKUWVlqz2sKDd2BgIBWTJCIdMAkiYiIiKgAjB71JcaNm4z6DVoiISERlpYWKF/eBz+vWIxSzk6FFoeNjQ2GfTmo0LZH9CFgkkRERERUAJycHLFx46+GDgNdunQwdAhExY5BpwD/9ttvIZFINF6vHDx4EJUqVYKpqSkqV66MsLAwwwVLRERERET/CQZ/TtJnn32GpKQktRcAPHr0CF27dsWYMWMQGRmJESNGoHPnzoiKijJwxERERB8uwaI00usGQbAobehQSA9SYyNYurtBasxJNojeh8GTJEdHR1haWqq9AGDNmjVo27YtBgwYAHt7e3z++edo1aoV1qxZY+CIiYiIPmBGJaBybAoYlTB0JKQHqUwGI0sLSGUfzsOAiQzB4EmSrW3us7scP34cjRo1Uitr1qwZjh8/nmt7IiIiygfp0TC6MQ9I57NriiNVlgJpz2OgylLk3ZiI3srgEzcIgoB27drh6tWrqFGjBhYuXAhPT09ERkbC0VH9AWnOzs54+PDhW9eVkZGBjIwM8X1KSvbTnLOyFMgqhIvFqwe4KRS8MFH+EQTtn00kRd6PPXvVRpu2b5Koit9j1QrjZ5/yF6+lhiVNjoL5zflIt28BlcwOCoUSggCoBAGqYngNKBiC+K+qiD0+TqnIQnpMLOSWFgB7k/7Diu45WtBUggBBABQKpcYzonT5TmDQJMnMzAxr167FihUrYG9vj//9738ICAjApUuXkJaWBplMhrCwMAQEBGD37t2Qy+VIS0t76/pmz56NGTNmiO+lUimqVq2Kg4dOFuqzAQ4eOlVo2yLKydda+7YVrLN034D2z7UtMvZFhhs6BNITr6WGYSPcRUsAJ09dRILkBYyMjODq6oqUlFRkZPBLd04vklIMHYKmzOznW6UkpwKZ/EPDf12RPEcLmEKhRFpaBsKPn0dWlvp3nZydKXkxaJI0ceJEjB8/HlJp9qi/VatWwcnJCadOnYKZmRmUSiWsrKxQvnx5WFlZISEhAWZmZm9d36RJkzB27FjxfUpKCjp06IBmTevAwsK8wPdHoVDg4KFTaNa0NuRyg3fS0Qfi6GHtJys5+/xxnm2kEFDBOgvXE42ggm5P4TbzLX5/jhpSobahQyAd8VpqWNJEKyAcqFO7ClTW/sjMVCD6WQIsLMxhkmMygLCDeV9v8lOTZq46tS9h5YwWzZsiNHQzAODff6+jdp2mmPT1OEyePP49oxHwIikFZqbG+GHWfAQHb0N09HN4enrgi8/7Y/Dgz9Rm632bIUNHoXq1KvjiiwFq5UFBIfj773+wdu3PAICtW//EzJlzEfk4CpUr++PHJfPg61tBY33JySnwr9kQMTGxuB9xCXYlSua63cePo9CyVQdcvXJG/A62eXMwFi9Zhrt378PW1gadO7XHN99MgqWlhUZsY8ZOxPHwgyhd2lOt7ueff8XiJcsRFxeP+vXq4Kef5sPN7fXnduTIMXzzzfe4cfMWSpf2wnczpqJly2Z5HifSR/Y5alXCAtDxd31xl5GZBTOzdNSvVw3Gxuq/Q1JSUrF4sXbrMfhvn1c/nABgamoKDw8PREVFwdXVFc+fP0e3bt1w/vx5AMCZM2fg4eHx1nWZmJio9Ri9WreRkRxGRoW3q3J54W6PPmwSifa3DuqS9Kgg0TlJEqTF70LLn8Xii9dSw5DIs3uL5HIZBCM5VCoBEgkglUjUhq5okQPkqzeHzWgj7PBRxMXFwd7eDiEhfwIAJG/shz5eDV+aN28Jdu/+G79vXA0PD3ecOnUGQ4aORkk7W/QK7J7nemxtbRAXF68Rz4sXL1CypC2kUgnOn7+IkaPGY83q5ahZszpWr16Pbt374tLF4xp/OF6xYhUq+fniYNgRSPD2/QwOCUW3bp0hf/lZHzkSjrHjvsbaNStQq1YNPHjwECNHTcCkyd9g2dKFasva2ZdEuXJlYW5hprb+HTt2Y978Jdi8aS1Kl/bE7NkL0KfvQBw98jckEglu376DwF79sWDBbLRq2QxHjx5Hv48/w8kTh+DtzZkU89vrIXbvf74XN1KJBBJJ9jXszd8huvxOMejEDSdPnhTvGwKAzMxMREZGwsvLC/Xq1cORI0fU2h88eBB169Yt7DCJiIj+O4ysoXDrBhjpMH63iCpf3gehoTsBAKF/7kTz5k3ydf1///0PRo36EtWqVYG9vR3atWuDo0f+Ro/uXbRa3tbGBrGxsRrliYmJsLW1AQCsXLUWgwcNRNu2rWBvb4eJE8fCzc0Ff27fpbZMfHwCVq5ai68njAYASGRv/4q3ZctW9OrVTXy/9+9/0KlTewQEtIa9vR2qV6+K3bu24tvpkzWWbd2qOY4d3YdSzk5q5StW/IJvpk1EnTo14eTkiIULZyM6+hlOnDgNALh9OwIDBnyMfn0D4ejogG7dOqFu3drY+dcerY4VUWEzaJL0zTffoGfPnrhx4wYePXqEESNGwMfHBzVq1MBnn32GPXv2YMOGDYiNjcXatWuxb98+DBw40JAhExERfdAEC09kVl8OwcIz78ZFXO/ePRAcHIozZ87Bw8Mdzjm+2B85Eg4X13LYtDkYpcv4oYy3P5YtW6XT+hVKJeLjE9TKvLw8IXs5YcJvG4NgYekEC0snVKhYA+fPX0St2k1QwqoUQkN3wtbWBjGxcQCADh17okXLDgCAhMQXsC1pAwA4deoMGjaqr7aNRg3r49TJM2plixYvRc+eXeHm6Q4AkBkZ5xrztWvXoVKp4O/n+3o/FArEx8ertbO2toKDg734vk2bLuK+WFiqJ0iCIODU6XNo2PB1nFKpFA0a1MXJU9lxBgS0xpzZM9SWs7WxRnJScq5xEhmaQZOkkJAQuLm5oVGjRihfvjzi4uKwY8cOSCQSuLu7Y+vWrZg/fz5cXFywePFihIaGwtVVtzHJREREpANlOiTJ9wBluqEjeW+NGzfAg4ePsHDhUgQGdtOoT0tLR2xsLE6eOIgli+di8pQZuHjpitbr79y5A3744X+YPXsBTp8+q3FTeO9e3RH99C42/vYrAOCP4FBs+n0NnkRFoGPHANjYWiP2ZZJ08+Zt3Lv3AIIgvOxJyn5EyuPHUSj5slfpFXsHOzyKfD2TTnT0M2zcuAVfjRsJ4eUMhMJbpjQL2hKCXr3UhwJ27tQee/f+g2HDx2L/P4c0Ej8ACA3dhOind3Hk8F6NupiYWGRkZIi9X2Kc9naIfJT7vWsKhQInT51FtWqVc60nMjSDJklWVlZYuXIlnj17hpSUFAQHB8PJ6fVfJ5o1a4bLly8jIyMDly5dQpMmTQwXLBER0X+AJOkWzA7UgSTplqFDeW9SqRQ9enTB/n8OoVPHdhr1MpkMw4cNhpOTIzp0CEDtWjVwPPyk1uv/atxITJ48Hlu3bkez5u3hVdoX07/9AaqXCYpcLoelpQVMTU0QFfUEEyeMQdmyZWBpaQGZTAZbW1vExsbhzp17cHNzgXeZ0oiIuIvEhBdiYpSWlq7xYFi5TI60tNdJ7Lx5izFwwMewt7eD8uXsdq/+zUkQBISEbEdgz65q5fXq1caWoHW4fesOevT4GF6lfdGnz0C1ZMnMzOzlvphqrDc9PV08nmpxyuVIS899VuIFC35ECUtLtG7dItd6IkMz+MNkiYiIiApK717d0S6gFUqUsNSoMzY2UpuFzsHBXi0xePQoEi6u5cRXrdpN1JaXSCQYNXIozp49gidREVi8eC5WrVqL337brLEtZ2cnjZ4WWxtrJCYm4ty5C/DzrQh//4q4ePEyEl+8gI1NdlszM1OolEq15RRKBczMTMUY/9y+CyNHDs3zWBw7dgKeHu5qM869EhDQGvv2bcfzZ/fw185g3LoVga/GT8lznQDExEn5ZpwKBcxMNWcl3rZtB3786WesWbtCI7EiKio4bRAVCYcOFJ0H8DRt7mboEIiIKJ/4+lbAlCkT9FrWxaUUzpw+LL6XvWNK+hIlLBHYsxvOnD6Hw0fC0b9/X7X6nLP5vmJrawuVSsC58xfh51cRxsZGuHT5KhISXk/c4OJSCnFvDH+LeR4Ld7fs31WzZs/HsGGDYGVVIs/9CdoSgsDAru9sY2RkhIYN62HatIlaJ0l2diVhYmKC+PgE2Nm9nnY8JiYW/v6+am137tyNESO/wpag9aj0Rh1RUcKeJCIiIvqg+fiU1Ws5mUwGV1cX8eXs5KhWv3Xrnxq9J2np6Rr3EL2NjU32DILnz12Ev78v/P19cenSFSQkJMC2ZPY9SbVr18Sxo8fVljt67Dhq1a4BAAgLO4b585fAw6MCPDwqoFHz7GGFVWo2wurVG8RlMjIysHv3PnTp0lEjjrCwo3ga/eyN/UjT6Pl6G6lUilo1q+PYsddxCoKA8PCTqF2rhli2Z88+DBs2DsF//IYGDThbMRVt7EkiIiIi0lFqaiq++24OtvyxFdOmfQ2XUs44ciQcf/yxDdv/3AIge7hZenoG0tMzIAgCkpOzH3tiZCSHiYkJbG1tkJaWhstXrsLXtwKMjOS4fPkqMjMzxURryOCBaN+hB+rUrYUa1ati7bqNePToMTp3yk6GDh3aDaVCIcb18O59tGjbBXt3BsOrrLdYvnfvP6hTu6aYmOW0dt1GXL50FQsWzkIlfz9ERNzF7NkL0K9voNgmLS0NSqVKvP/o1b6YmppALpfjyy+/wOgxE1GxYnl4eXli7tyFcHR0QL162Q/0PnIkHF8MGoF161aiUiU/cXkAGg+sJSoKmCQRERGRSLCphNRO0Xm2+68PTTY3N8f+/Tsx7ZuZ6NixJ1JTU1GuXFn8+ssyMTHYHBSCIUNGics4OZcBAPTtG4hVK3+ETCZDRkYG7OxKisPl7EqWROTjxzA2zp7Cu1q1KvhxyTyMHz8FkZFRqFLFH9u2/g5zc3MA0OjdUrxMmNy8PNWSj6AgzVntXvn1l6WYO3cRhg8fh6dPn8HVtRT69Q3EmDHDxTZduvTB0Rw9Ra/25eefl+Djfr3QsWMAIiMfo9/HXyA2Ng4NGtRF0Oa14j1fR48eR3x8Ajp1CsSbUpLzPt+ICptEEATB0EEUlOTkZDRp0gR7dofAwsK8wLeXlaXAvv3haNWyPp8SryPek/R2uhybU8/ybiuFAF/rTFxLNIYKuj2F29w/9ylli7KRfvUMHQLpiNfSoiUjIwtRT2LhUsoOJiZGhg6nSFCpBLxISoZVCUtIpbpdRw0hISERVavVx43r52BiYmLocKgQFLdzND+965qVkpKKtgHdERYWBktLzclccuI9SURERCSSJEXA5EgAJEkRhg6F9KDMyEDS/QdQ5nhmU2joDgQEtGKCRKQDJklERET0mjIVsvhzgDLV0JGQHgSVAEVauvhQWQCwsbHBsC8HGTAqouKH4xiIiIiIPmBdunQwdAhExQ57koiIiIiIiHJgkkRERERERJQDkyQiIiISCebuyKi2DIK5u6FDIT1IjYxg4VIKUiPOREj0PnhPEhEREb1mbAule+7P06GiTyqXwdjaytBhEBV77EkiIiKi1zJiIL+7BsiIMXQkpAeVQoGMuHioXj5Uloj0wySJiIiIRJK0KBhfmQRJWpShQyE9qLIUSI1+BlUWkySi98EkiYiIiHSWvupiob50ZWHphE6de4nvr127DgtLJ/zww7x8OwZtA7pg6bKV4nuVSoW2AV3x+RfDxbLDh4+hUePWcHQqjdp1mmLf/oNi3YMHD2Fh6YSRI8eLZXv27IOFpRN+2xikdRyPHkWiQ8eesHfwQsXKdbDuj21vbTtq1ARYWDqpxZ2bDh174p8DYeL7W7ci0K17X7i5fwTnUt5o36EHLly4pLFccnIKPDwqYN78JRp1V65eQ9NmAShp54HKVepi27YdavUxMbEY+NmX8PCogLLlKmPK1O+QlZWVx94TFQwmSURERPRBCgs7ipiYWABAcHBogW9v3rzFiIp6gsWL5gIAbt++g56Bn2DQoIG4euU0Jowfjb59B+LOnXtqy23fvguKl8Pj/tAxTkEQ0DOwP8qV9ca1q6exeuVPWLx6Pfb8/Y9G2/v3H+CvXXtRubL/O9f55Gk0bt68jaZNGgIAFAoFuvfoh9Jenjh18hDOnjkCf39fdOjYE0lJyWrLGhnJUc7HG05OjmrlKSkp6NKlDwLatsKtmxcw64fpGDZ8LC5euiK26f/pYGRlZuHYsX3YsX0LDhwIw4IFP+l0PIjyC5MkIiIi+iCVL++D0NCdAIDQP3eiefMmBbatkyfPYP6CH7Fu3UpYWloAAG7fjsCAAR+jX99AODo6oFu3TqhbtzZ2/rVHbVnnUk44cPAwUlNTER5+ErVqVdd6u8eOnUBsbBzmz/8BTk6OqFunJr4a/BlWrFqj0fb7H+Zh5MihsCpR4p3rDAkJRZcuHSCTyQBk9yI9ePAIs2fPgKurC9zcXDF71rcIO7QHJUpYqi1rYmKCA//8hU8+7q1WHvrnX/D0dMf48aNhb2+Hdu3aYNCgAVj1Ms7ExBcQBAHLly+Ch4c7KlYsj7FjhiNk659aHwui/MQkiYiIiF6TW0Lp0ASQW+bZtKjr3bsHgoNDcebMOXh4uMPZ2UmsO3IkHC6u5bBpczBKl/FDGW9/LFu2Sq/tJCQkYsDAoZg+fRKqVqkklgcEtMac2TPU2traWCP5jd6XV3Hu3r0PrVo2g4mxiVr9ps3B8POvBduS7mjaLEBtmNvJU2dQv34dSKXZX+kkUikaN6yHM2fPQxAEsd316zdx7NgJDB40IM/9CQrail6B3cT3CqUSSqUSiYkv1NqVLVtG/P9vG4NgYekkvt4cLnjq5Bk0bFBPraxRowY4dfIsAMDa2gq7d21VS7psbG2QnJySZ7xEBYFJEhEREYkEyzLIqLcFgmWZvBsXcY0bN8CDh4+wcOFSBOb40v9KWlo6YmNjcfLEQSxZPBeTp8xQG/6lrZEjv4KDgx2GfTnone0UCgVOnjqLatUqq5V37dIB+/cfxPoNmzTiPHXqDKZMmYElS+bh+vVz6NsnEN2690NKSnbyEPX4CUra2ojtZSbG8Kjkh9TUNMTGxonlM2fOxfivRsHU1PSdMd68eRtpqWmoWvV1jL4Vy6NcWW906twLG3/fgoiIuxrL9e7VHdFP7yL66d1ch/M9jnoC25K2amX29nZ4FBn51ljCw0+gWtXKb60nKkhMkoiIiOg1QQlkJWX/W8xJpVL06NEF+/85hE4d22nUy2QyDB82GE5OjujQIQC1a9XA8fCTOm0jODgUh8KO4tq1G3j8+N0zAi5Y8CNKWFqidesWauVWVlZo3Kg+bt2KQIMGddXqVvy8GsOGDULzZo3h7OSIzz/vjypVKmHLlq0AgLT0NEhfDosDsu9RkkokAID09HQAwIULl3D12r/o379PnvsTFBSCwMCuamUymQy7doXA17cCJk2ajspV6qJq1foICzsqtpHL5bC0tIClpYXYq5VTWloaZDL1crlMhrS09FzjuH37Dn7+eTVGjBiSZ8xEBYFJEhEREYkkiddgvrssJInXDB1KvujdqzvaBbTSuHcGAIyNjSB5mVAAgIODPeLjE8T3jx5FwsW1nPiqVbuJxjquXPkX2/8MQt26tTDjuzlvjWPbth348aefsWbtCvFeH7U4e/dAjx5d1OIBsnt2ynqr9+qVLVsGN29FAADMTM2gUr5OaJXpGYi7eQsAxF6jb2fMxuTJX0Eul781vleCQ0Jz7XVzcSmFVSt/xKOHN3D1yik0btwAvXp/ioSExDzXCQBmZmZQKlVqZQqlEmZmmj1b0dHP0L1HP4wYPgR169bSav1E+Y1JEhEREX2wfH0rYMqUCXot6+JSCmdOHxZfO3b8odFm5IghqFatCn74YTr++GMbLl2+qtFm587dGDHyK2wJWo9K/r65bqtly2b4bODHWsf26n4jFxdnxOVI7AAgNj4B5uZmsLMrifDwk3jy5Cl69uiay1rUnThxGk5OjvDy8nxnu9KlvbBw4WxIpVKcv3BRq3hdSjkjPi5erSwmJhbubm5qZc+fx6Bdu+5o2bIZpk7V73Mjyg9MkoiIiOiD5uNTVq/lZDIZXF1dxJfzG9NaA4C9gx0AoHIlP/Ts2RVTpqhP1LBnzz4MGzYOwX/8pjGULie5XI7Spb1yjT3ijvo9QBERd/GRTzkAQO3aNXH8+Cm1SRpOnLuIGtWrQiKRICzsKO7cuQcvL194eFSAh0cFnDh5Gt99Nwdt23ZRW++WLVvRK7C7RgxxcfFqz3cCAKVSiczMLNja2mq0z03tOjVxLPyEWtnRI+GoVfv1TH6xsXFo1747mjVvjPnzftBqvUQFhUkSERERUT6Y/s3XOHHitJhQHDkSji8GjcCatStQqZIfkpNTxJe2vhz6OZYuXYkDBw8jOvoZfv11PS5cuCQOiWvYsB5KlrTF+AlT8ezZc5w+cw4LVq7G0EEDAQAjRgzB5UsncOLEAfFVrVpljB41DOvXv57NLysrCzv/2oOuXTtqxHDm7Hn07j0Ai5csR1TUEzx48BCjRk+Al5cH/HwrAMielOLVvqlUKmRmZCI5OQVpaWkAsienuH//IRYuWorY2Djs3bsfq35Zi0Ev40xNTUX7Dj1Qt04tfDPta7Vj9eoZUkSFKe/BqURERERvMB1UxdAhFDlubq4YNuwLTJ36HVo0b4KjR48jPj4BnToFarRNSY7Wap21a9fErFnfYtSo8Xj8+AmqVPHHtq2/i89ikkgk2BK0DsOGj0OFijVgV9IWIwd+goA2LQEAVlYlYGWl/lwkE2MTWFmXgKOjg1i2b1928mRnV1IjhtatmiMoaB3mzFmAWbPmwczUDPXr18HWkI0wMjICAGwOCsGQIaPEZUaOGo+Ro8ajYYN62Ls3FBYWFggN3YSRI8fj++//Bzc3Fyz9aYE4Zfrz5zG4fPkqLl++il9Xr1fb/s8/L8HH/XppdbyI8otEyNk/+4FJTk5GkyZNsGd3CCwszAt8e1lZCuzbH45WLevDyIj5py4OHXj7FKCFrWlzt7wbFSJdjs2pZ3m3lUKAr3UmriUaQwVJnu1zMvdX5d2oiBnpVy/vRlSk8FpqYKosICsRMLIGpEbIyMhC1JNYuJSyg4mJkaGjKxJUKgEvkpJhVcISUqlu19GCJggCBKUSEplMYxKId/nkky/QqVN7dOvWqQCjo8JSlM/Rgvaua1ZKSiraBnRHWFgYLC3f/Sw4DrcjIiKi16RGgIl99r9U7EgkEkjlcp0SpBcvknD02AkEBLQqwMiIihcmSURERCSSpNyH8amPIUm5b+hQSA/KzEwkP3oMZWam1ss8fx6D2bO/hZmZWQFGRlS8MEkiIiKi17JeQP50H5D1wtCRkB4EpQpZyckQlNoPj/b2Lp3rrHZE/2VMkoiIiIiIiHJgkkRERERERJQDkyQiIiIiIqIcmCQRERGRSDB1RqbvDAimzoYOhfQgNZLDzNEBUk6fT/Re+BNEREREr5k6QlF2iKGjID1J5XKY5vJAWCLSDXuSiIiI6LXMBMge7wAyEwwdCelBpVQi80USVEqloUMhKtaYJBEREZFIkvoQJme/gCT1oaFDeW9hYUdhZ+8JC0snJCQk5tomISERrVp1wieffIGMjAydt3H16r9w9ygPC0snXLp8Va1u0OCRsLB00njVqdsMAPDoUSQaNGwFT6+K2LQ5WFwuaEsIevT8WOsYsrKyMPHrb+DhUQEeXhUx6IvhSIyLF+tTU1MxbtwkeJetBE+vivhy2BgkJSXrvK8fggoVa4ifQ5s2XfRaR0JCIgZ+9iUcnUrD07MiJk+ZAYVCodZm9eoN+Kh8NZS080D7Dj1w+/YdsW7T5mB4elVEg4at8OhRpFjevkMPbN++S78dM6CdO3eL5/TbJCenwMOjAubNX6JW/tvGILWfjSNHwgsyVJ0wSSIiIqIPztmz59G332eYMWPyW9uoVCr07jMA3mVLY/36VTAxMdFpG/fuPUCnzr0wedJXb23z45J5iH56V3wNHjQQ5cv7AAB+mDUPHdq3wV9/BWPq1O+QkpICAFi39nd88cUAreOY+f1chIefxM6/ghG2fyeiY2IwdvwUsf6r8VNw9ep17Nm9DYfD9uDhw0hMmDhVp339UJw7ewTRT+9i9uwZeq+jd58BMDIywtkzR7B3byjOnjmP72bOEes3/r4FixYvxbq1P+Pa1dNo3LgBOnUORHp6OlJSUjB16nf4669gdGjfBrNmzwcA3Lt3H7dv30G7dq3fex+LIiMjOcr5eMPJyVGtvHev7uLPhl3JojVMlEkSERERfVCiop6gW7d+mDt3Jjq0b/vWdgsXLUVmZiZ++nE+JBKJTttIS0tDp0498cXnn2Lo0M/f2s7YxBiWlhawtLSAqakJtoXuQN++gQCACxcuo1u3zvD380Xp0p6IuHMPt2/fQdSTJ2jZoqlWcWRmZmLVqrVYsWIRKlfyg5enBxZ/OwX2dnYQBAEqlQpPnz7DihWL4eNTFl5enpg2dQJCQ3fqtL8fCnNzc1haWsDYyEiv5S9euoLz5y9iyeK58PBwR4UKH2HRojlYvXqD2Oann37GlCkTULduLZQq5YzxX41CyZIlsX//QdyOuIvSpT3h7+eLbt0648KFywCA9es3YcCn/SCXF7/pAh49epxnGxMTExz45y988nFvtXK5XC7+fBQ1TJKIiIjog1KqlDN++XUp+r1MRnKTlpaGn378GfPnz9Lri6mZmRnmzfsBX3899q1t5s75Dt26dhTf79mzD0ZGRmjerDGA7J4sqTT7q5hUIoVKqcS69b/js8/6a520Xb58FSbGJvD38xXLHO3tMPv7byCRSCCVSrFt6+8oU8ZLrLexsUFqahqysrIAAO3ad8eaNRvU1rvlj61o3bqzVjHklzZtumDR4mXo1etT2Nl7okaNRjh79rxam02bg+HnXwu2Jd3RtFkALly4pFZ/5849tO/QAyXtPFDOpwp+/OnnfI3x7p17cHN1hampqVhWrpw3EhIS8eRpdHabu/dQrmwZteXKli2DGzdvQ1CpIJW8/MylUiiVSigUCmz5Yxs+HdBP6zgEQcDEr7+Bk3MZfFS+Gnbu3A0PjwricLUHDx7C1bWs2jDTSZO/xaDBI8X3ERF30alzLzg5l4F32UqYMWM2BEEQ648cCYeLazls2hyM0mX8UMbbH8uWrRLr27TpAgtLJ4yfMBVXrlxTGzb3ypvD6X7bGKT1Pr6SkZGBMWO+hqubD1xcy2HCxGl6DY3VFZMkIiIiek1mCpW1PyAzfWez9JhYJNy4pfZKefwEAKDMyNSoS7hxS1w26cFDjbrMxBcAgIz4BI265IeRucbwNhKJBK1avvseia3bdsC7bGkcOnQEfv61UL9BS/y+6Q+dttO6dYt31tva2sDc3Fx8v+G3zejdu7uYGPn5VcTRo+GIiYnFvfsP4O7uhm3bduDjfr20juHRo8dwcLQX30ukEshMTCCRvj3JCg8/AX9/Xxi97E3p2zcQQUFb1dps3hyCPn16aB1Hfvnrrz2YMGE0rlw+iZatmqH/p4OhfDkJxalTZzBlygwsWTIP16+fQ98+gejWvZ84TFGlUiEwsD/q1K6Ja1dP4/eNv2L16vXYtm1HvsVnb2+Hp9HRYkwAEBkZBQB48fIctre3x+OXPwuvPI6MwosXL+DtXQb37j9ATEwsjh4Nh7+/L/bu3Y9aNavB+Y2haO+ydet2BAeHIviP33D48F7cun0HKampOu3LkiXL0aplM1y7egbbtm1CcEgotvyhfh6kpaUjNjYWJ08cxJLFczF5ygxcvHQFABAaugnRT+/ixyXz4OtbQW1Y6Ss5h9NVruyvU3yvTPvme9x/8BCHDu5G+LH9ePjgESZO/Eavdemi+PXpERERUYERSvggvck/eba7t20nbv66Xq3MrU0L1PhuCtKePUfYJ4M1lul8+hAA4PyMuYi/+q9aXfUZk+HetiUe/3MIl+f9qFbnWLsG6v00T9ddeaejR4/jRWISrK2ssG3rJpw+cw6jR0+Ag4N9ngmWPqKjn2HfvoP44fvpYtmkr8ehc5demDBxGr6dPhnGxsZYu2YFSpa01Xq9aenpaj1hMhMTWOXoNXrT8+cx+P6HeZiT456cTh0DMHbs13jw4CE8PT0QHf0MJ0+exob1q966noLSqVN7VKtWBQDww/ffICTkT4SHn0SjRvWx4ufVGDZskNgT9/nn/bF7zz5s2bIVAwd+goOHjkClUmHq1AkAsnsUp38zCUuXrUTXHD1676N69SowMTHB99//D5Mnf4X09AwsXrwMEokEzs7ZPSjtAlph7v8WoWbNaihVyhkhIX/i1q0IdOnSAVZWJTBu7Aj4+tWEnV1J/BkaBIVCgR9+mJ7HltVt+WMrRowYgkaN6gMAxowehjlzFui0jp9+mi/+397eDm3btsKJ46fRK7C7WC6TyTB82GBIJBJ06BCA2rVq4Hj4SVSp7A8zMzMA2UNKpVJprkPmsofTZZ+fr/44oIvU1FSsXr0Bt25egN3Lqe1//HEeyvlUwf/+NxPGxsY6r1NbTJKI6D8hcdf8vBsVI9bt3n6jOFFhKN21A0o1qqdWZlSiBADAzNEBTTasfOuy1aZPhDItXa3MvFT2w2tdWzRFSX9ftTp5jt6Y/PLkyVPUrFUNn332CQDAx6csrly5ht82bC6QJGnT5mBUq1YZPj5lxTIfn7L499pZREY+hqOjAzYHhWDhwp/g7OSE5csXwdu7dJ7rNTM11ZhZ7W2Sk1MQ2Ks/mjdvgp49u4rlFhYW6NSpPbZs2YoJE8YgJORPtG7dAlZWJXTax27d++LEidPi+5DgjahXr7ZO6zB/+cUbyP5SXdrLE/cfPEQj1MfNm7fRuVN7tfZly5bBzVsRAICbN26hjLeXen05b9x6WZ8fLCws8NuGXzBo8AgsXrIcjo4O6P9JH1Sq5AdraysAwLRpX2Pw4JEoX6E6zM3NMHrUMABAw5c/L0OHfo5PP+2L+PgE2NhYY9jwcTh16gzatmmJ+fNnaTXU8sGDR+jX93WPo1QqhZmp2TuW0HTx0hXMnDkH16/fRHJSClLT0jSSSWNjI7V4HBzsER+foNN23sedu/eQkZGBqlXrq5UrFArcvXtfnASlIDBJIiIiIpEk4QpMjwYgveFuCDZvHx5jam8HU3u7XOtkJsaweceXlxKeHm+tM7G1gYmtjdbx6suqRAmUK1dWrcynXFmcOnWmQLa38bcgfPnlFxrlMTGx6NgxENu3B2HGjNkI/mMDDh8Jx5QpMxAUtC7P9bq7u+L5sxjxvSI9Hcn3H8LSywPyHPfNpKamonv3fnB2csKK5Ys01tO3T0+MGfM1JkwYg81BIZg2baLO+/jziiXIzMwU39u/5fzIbznvo9GnXlf169fBtatnEB+fAGtrK3Tv8TEGD3o9G6G1tRWCgtYhNTUVEokEe/bsh49PWbX7xjZvDsbNWxHwcHdDZkYmQrdtxrDhY7Fr1160f8dkI/lFEAT06PExevbsitmzZsDCwhxz5y5CeiHc66MrU1NTnDhxQKPc0dGhQLfLe5KIiIgoBwESVSaA/P1iWdT4+JTF/XsP1MruP3gATw93jbapqala99bk5vTps7j/4CG6d++sUTf3f4swaNAAPH0ajXJlvVG9elV06dxe696PSpX8kJGZgStXr2UXCED08xhMmvKdmBykpaWhe4+PYW9vhw0bVuU6UUXDhvWQmpaGLX9sRVTUE7Ro3kTn/XRwsIerq4v40nVKdQBITUsT/69SqXDv/gN4vUyqfXzKIuLOXbX2ERF38ZFPuez6j8rhTsQ99frbd9R67/KTra0Ndu3ai4iIOwgM7KZRb25ujszMLEyd9h2+njROLE9NTcXiJcsxbuwI3LoVgdZtWuCjj8qhcaMGYq9YXjw83HDn7ut9ValUSEt/fexsbGwAZCfhr6Tn6L2NiYlFVNQTjB71JXx8ysLV1UWv4XAFzbtMaSiVSmRmZornlbOzE+Li48V76gpK0TsaRERERO/pafQzPH4chejoZwCyh9c9fhwlDhX6/PP++PPPvxAauhPPnj3H7t1/Y+3ajRg16ku19aSkpKCMtz86ddacTOF5TAweP47C48fZN+4/f579/vnzGLV2GzZsRvv2bcThWK88ePAQe/fux4AB/eDm7oaIO3dx9+59HDx4BJ5eb+9ty8nY2BiDBg3A0KFjcPnKNdx/8BBjZszG85gYcZhUYK9PYWFhjqVLFyA9PQPJySlITk5R6/WRSCTo07sHRo+eiJ49u0Imk2m1/fwWEhKK8+cv4smTp5gy9TsYGclRv34dAMCXQz/H0qUrceDgYURHP8Ovv67HhQuXxASlebPGkEql+P77/+HJ02icPn0W382cgxHDh4jrT01Nzd73rCwolUrxWOSciEFb585dwJfDxmL9upVqs929kp6ejsDA/ujUqb14HxUALFu2Ch06BMDR0QGeXh44evR49n1gp86ICWFeevboiqVLV+LIkXA8jX6GRYuXQaV6/YcNa2srVKjwERYs/BFPo5/h+PFTOHr0uFhvb28HR0cHBG0JwfPnMdi9+2/s/fsfKBQKtfNCG5YWFhAEAenp6eLrFYVCIR5jlUqFzIxMJCenIO1lMpyzHsi+xy5nvbm5Ob744lMMGjQSV65eQ2TkY4wY+RUmT9b/OVfaYpJEREREH5ymTQPg81FVNG3WDgBQo2Yj+HxUFRO/zp4Vy8WlFLZu3Yi5/1uEj8pXw9SpM/HrL0vFSQNekUqlsLCwgLWV1ZubwCeffAGfj6rC56OqAIBOnQLh81FVfPzx62F1aWlp2LptO/rlMmPddzPnYtTIL2FiYoJSzk4YOXIoGjZqheXLf8F3303RaP8206ZORL16tdGuXTc0at4OdrY2WDjvB7H+wIEw7N69D65uPnByLiO+5s1boraewMBuePEiCX369NR62/mtTeuWmD1nAXz9amH/voNYv26lmLDVrl0Ts2Z9i1GjxqN8her4fdMWbNv6uzhhgFQqxR9/bMDJU2fg61sTfft9joEDP1G7z6Z6jUZwci6DSZOm4/iJU+KxCA8/qVOce//+B917fIxVK39E1aqVNeqfPXuOtgFd4VXaA9/PnCaWx8XFY9Uv6zBmdPZ9Sp8N/ATR0c9QqXId2NvboVOndlptv3v3zujWrRN69PwYjRq1hk85b1i8ce/e4sXzcPXqv6hUqTZ++XUdmjRpINZJJBKsXbMCa9dsRPkK1bFy1VqsWb0c+/YdwJSp3+l0LJo1awy5XA47e0/x9crmoBDxGF+6dAUjR42Hk3MZdOnSR6M+Ni4OXbv2UasHgJnfTYW/vy/atu2KGjUbIelFMtauWaFTjPqQCPk9ULMISU5ORpMmTbBndwgsLPL/ps83ZWUpsG9/OFq1rA8jI97upYtDB3Sb3rUgNW3uZugQ1OhybE49y7utFAJ8rTNxLdEYKuj28ERzf5VO7YuCkX7ZN8py4obig9dSw5IkXIbZ4ZZIa7wfgk0lZGRkIepJLFxK2cHEpGCHtxQXKpWAF0nJsCphCek7pto2BEVaOpLuP0AJL0/Izd49jfub9u7dj+nfzsKpk4cKKLp3a9OmC9p3aIPhwzRnRqS8eXhUwMaNv6JRo/pF+hwtaO+6ZqWkpKJtQHeEhYXB0tLynevhbx8iIiISCSXKIa3pYQgWnnk3piJHZmIMq9JekBprn9AqFAooFAps2vQH+r7jAbxE/yUcbkdERESvycwgWJUHZLpNJ0xFg0QqhczUBBIdbsKfO3cRHBxLI+rJUwz4tF8BRkdUfLAniYhy5RB1VaPMI/2KASJ5P4kPjufdiIhEktRHMLq5EFkfjYVgrjnTGxVtyswsZMTEwsTeDjIte5OmTBmPKVPGF3Bkedu7N9TQIRRrDx9eN3QIHxT2JBEREdFrmfGQP9wEZMYbOhLSg6BUIiMxEYIes7UR0WtMkoiIiIiIiHJgkkRERERERJQDkyQiIiIiIqIcmCQRERHRayYOyCo3AjBxMHQkpAepXAZTu5KQymWGDoWoWOPsdkRERCQSzEohq+JUQ4dBepIaGcHMkQku0ftiTxIRERG9lpUMaUw4kJVs6EjeW1jYUdjZe8LC0gkJCYka9du27UDNWo3h6FQaTZsF4Ny5CzqtX6lUYubMuShfobq4jhMnTqu1sbB00nj98MM8AMCjR5Fo0LAVPL0qYtPmYHGZoC0h6NHzY63jyMrKwsSvv4GHRwW4uZfH5599icQc+5uamopx4ybBu2wleHpVxJfDxiApqfh/vvqoULGG+Dm0adNFr3UkJCRi4GdfwtGpNDw9K2LylBlQKBRi/W8bg3L93B88eAgA2LQ5GJ5eFdGgYSs8ehQpLte+Qw9s377r/XbQAHbu3I06dZu9s01ycgo8PCpg3vwlauVvHqsjR8ILMlSdMEkiIiIikSTlLkzDu0KSctfQobyXs2fPo2+/zzBjxuRc648dO4Fhw8fiuxlTcOXyKfTo3gVdu/ZFfHyC1ttYseJXbA4Kxvp1P+Py5VMIaNsK3Xv0w/PnMWrtrl45heind8XX+PGjAAA/zJqHDu3b4K+/gjF16ndISUkBAKxb+zu++GKA1nHM/H4uwsNPYudfwQjbvwOP7z/A6NETxPqvxk/B1avXsWf3NhwO24OHDyMxYeJ/s7fw3NkjiH56F7Nnz9B7Hb37DICRkRHOnjmCvXtDcfbMeXw3c45am2bNGqt95tFP78LDwx0pKSmYOvU7/PVXMDq0b4NZs+cDAO7du4/bt++gXbvW77V/RZWRkRzlfLzh5OSoVt67V3fx+NiVLGmg6HLHJImIiIg+KFFRT9CtWz/MnTsTHdq3zbXN7dsRmDBhDNq2bQUnJ0d8+eUXsC1pg7Cwo1pvZ9/+Axg8+DPUrl0Tzk6OGD9+NKytrXD69Fm1dq6uLrC0tBBfxsbGAIALFy6jW7fO8PfzRenSnoi4cw+3b99B1JMnaNmiqVYxZGZmYtWqtVixYhEqV/KDl6cHFn87BfZ2dhAEASqVCk+fPsOKFYvh41MWXl6emDZ1AkJDd2q9nx8Sc3Pz7M/ASLsH7b7p4qUrOH/+IpYsngsPD3dUqPARFi2ag9WrN6i1s7MrqfaZW1paQCKR4HbEXZQu7Ql/P19069YZFy5cBgCsX78JAz7tB7m8+N0J8+jR4zzbmJiY4MA/f+GTj3urlcvlcvH4FDVMkoiIiOiDUqqUM375dSn69Q18a5sBAz7GmNHD1MpsbKyRlKz9MDQjuVzjy7axsTGMXiZBAGBubiYmRW9SqVSQSrO/ikklUqiUSqxb/zs++6w/JBKJVjFcvnwVJsYm8PfzFcsc7e0w+/tvIJFIIJVKsW3r7yhTxkust7GxQWpqGrKysgAA7dp3x5o16l/yt/yxFa1bd9YqhvzSpk0XLFq8DL16fQo7e0/UqNEIZ8+eV2uzaXMw/PxrwbakO5o2C8CFC5fU6u/cuYf2HXqgpJ0HyvlUwY8//ZyvMd69cw9urq4wNTUVy8qV80ZCQiKePI0Wy2xtbHJdXlCpIJW8/MylUiiVSigUCmz5Yxs+HdBP6zgEQcDEr7+Bk3MZfFS+Gnbu3A0PjwricLUHDx7C1bWs2jDTSZO/xaDBI8X3ERF30alzLzg5l4F32UqYMWM2BEEQ648cCYeLazls2hyM0mX8UMbbH8uWrRLr27TpAgtLJ4yfMBVXrlxTGzb3ypvD6X7bGKT1Pr6SkZGBMWO+hqubD1xcy2HCxGnIyMjQeT26YpJEREREukuPhiThsvor5UF2nTJdsy7hsrioJClCsy4zPrsyI0Zz2WTdhv5JJBK0avnueyTeFB+fgGvXrqNa1cpaL/NJ/77Y+PsWPHv2HAAQGroTKpUKjRvVF9vY2tpi4+9b4F+pNurWa45Vq9aKdX5+FXH0aDhiYmJx7/4DuLu7Ydu2Hfi4Xy+tY3j06DEcHO21bg8A4eEn4O/vC6OXCV7fvoEICtqq1mbz5hD06dNDp/Xmh7/+2oMJE0bjyuWTaNmqGfp/OhhKpRIAcOrUGUyZMgNLlszD9evn0LdPILp17ycOU1SpVAgM7I86tWvi2tXT+H3jr1i9ej22bduRb/HZ29vhaXS0GBMAREZGAQBeJL4Qy8zMzTDwsy/xUflq6NS5F65cvQYA8PYug3v3HyAmJhZHj4bD398Xe/fuR62a1eD8xlC0d9m6dTuCg0MR/MdvOHx4L27dvoOU1FSd9mXJkuVo1bIZrl09g23bNiE4JBRb/lA/D9LS0hEbG4uTJw5iyeK5mDxlBi5eugIACA3dhOind/Hjknnw9a2gNrTwlZzD6SpX9tcpvlemffM97j94iEMHdyP82H48fPAIEyd+o9e6dFH8+vSIiIio4EjlUJmWAqTv/opgdH8DjG7OVytTuHVDZvXlkKQ9gdnhlhrLpHbK/ku78YWRkMWfU6vLqLYMSvfukD/eAeMrk9TqlA5NkFFviz57o7UpU2egbt3a8POrqPUynTq2w7/XrqOMtz9MTU1hYW6OvXtDYWJiIrZJSUnB9es3EbptM/799waGDx8HaxsrBPbshklfj0PnLr0wYeI0fDt9MoyNjbF2zQqULGmrdQxp6enqQ7QkEkjlcuAtPVHPn8fg+x/mYU6Oe3I6dQzA2LFf48GDh/D09EB09DOcPHkaG9avynUdBalTp/aoVq0KAOCH779BSMifCA8/iUaN6mPFz6sxbNggNG/WGADw+ef9sXvPPmzZshUDB36Cg4eOQKVSYerU7PuxSpVyxvRvJmHpspXo2rVjvsRXvXoVmJiY4Pvv/4fJk79CenoGFi9eBolEAmfn7B4UUxMTBAeHYvGiOZg4YQw2/LYZ7dv3wOVLJ2FtbYVxY0fA168m7OxK4s/QICgUCvzww3Sd4tjyx1aMGDEEjV4m5GNGD8OcOQt0WsdPP73++bW3t0Pbtq1w4vhp9ArsLpbLZDIMHzYYEokEHToEoHatGjgefhJVKvvDzMwMAGBsYgypVJrrkLns4XTZ5+erXlNdpKamYvXqDbh18wLs7LLvWfrxx3ko51MF//vfzLf20uYHJklEREQkEqwqIr31xTzbZXl9AoXzGzeZG1lnr8OsFNIa73/rsplVfwSU6n/1FszdAQAK145QlqyhvoDcMu/A38OPP/2MffsO4nDYHp2Wmz17Po6Fn8A/+3fC3t4O4cdPonuPfvgzNAjlynkDAB49vCF+OSxbtgxu3rqN334LQmDPbvDxKYt/r51FZORjODo6YHNQCBYu/AnOTk5YvnwRvL1L5xmDmamp2sxqclMTWL/c9puSk1MQ2Ks/mjdvgp49u4rlFhYW6NSpPbZs2YoJE8YgJORPtG7dAlZWJXQ6Ht2691Wb3S8keCPq1aut0zrMX37xBrK/VJf28sT9Bw/RCPVx8+ZtdO7UXq199jGNAADcvHELZby91OvLeePWy/r8YGFhgd82/IJBg0dg8ZLlcHR0QP9P+qBSJT9YW1sBAHr06IJu3TqJn/sP33+D3bv+xp69+9ArsDuGDv0cn36aPUmIjY01hg0fh1OnzqBtm5aYP3+WVkMtHzx4hH59X/c4SqVSmJmavWMJTRcvXcHMmXNw/fpNJCelIDUtTSOZNDY2UovHwcFep8lN3tedu/eQkZGBqlXrq5UrFArcvXsf5cv7FNi2mSQRERGR7kydIJg65V4nM4VgU+mtiwolyr59vSb2EEx0Gz72PlauXIPFi5dh966tcHV10Xq5tLQ0zP3fIlw4Hy4mM2XLlsGli1ewfPkvWLQoe7azN/96Xq6sN7bkGNoWExOLjh0DsX17EGbMmI3gPzbg8JFwTJkyA0FB6/KMw93dFc+fxeTZLjU1Fd2794OzkxNWLF+kUd+3T0+MGfM1JkwYg81BIZg2bWKe63zTzyuWIDMzU3xvb2+n8zr0kfM+Gn3qdVW/fh1cu3oG8fEJsLa2QvceH2PwIPXZCN/83L3LlsaTJ6/vWdq8ORg3b0XAw90NmRmZCN22GcOGj8WuXXvR/i2TjeQnQRDQo8fH6NmzK2bPmgELC3PMnbsI6YVwr4+uTE1NceLEAY1yxwJ+HhjvSSIiIiKR5MW/MP27CiQv/jV0KAVu9eoNmDd/Cfbs3vbOv0inpqaq9dYA2X/JVqlUkMtlauVSmRQZmdlfNDMzMxEeflKt/t79B/DwdBffz/3fIgwaNABPn0ajXFlvVK9eFV06t9e696NSJT9kZGaI97wo0jNw+8RpjB83WUwO0tLS0L3Hx7C3t8OGDatynUGtYcN6SE1Lw5Y/tiIq6glaNG+i1fZzcnCwh6uri/jKOexQW6lpaeL/VSoV7t1/AC9PDwCAj09ZRNxRvz8tIuIuPvIpl13/UTncibinXn/7Dnx83pGUvwdbWxvs2rUXERF3EBjYTSy/ceMWnjx5qtb2/r2H8PTI/txTU1OxeMlyjBs7ArduRaB1mxb46KNyaNyogdgrlhcPDzfcuft6X1UqFdLSXx87m5cTR8TExIpl6Wnp4v9jYmIRFfUEo0d9CR+fsnB1ddFrOFxB8y5TGkqlEpmZmeJ55ezshLj4ePGeuoJS9I4GERERGY5KAWn6E0ClyLttEfY0+hkeP45CdPQzAMCTJ0/x+HGUOFRoyx9bMfP7uQj+YwNcXV2QnJyC5OQUpL5x83tKSgrKePujU2f1yRRKlCiBFs2bYPyEqbhx4xaeP4/Bzp27sWnTH+jSJXvI0tmzF9C1Wx8EbQnB8+cxOHjoMJYsWY5BL3sdHjx4iL1792PAgH5wc3dDxJ27uHv3Pg4ePAJPLw+t9tPY2BiDBg3A0KFjcPnKNdy//wCjps3E85gYcZhUYK9PYWFhjqVLFyA9PUPc15y9PhKJBH1698Do0RPRs2dXyGSyt22yQIWEhOL8+Yt48uQppkz9DkZGctSvXwcA8OXQz7F06UocOHgY0dHP8Ouv63HhwiUxQWnerDGkUim+//5/ePI0GqdPn8V3M+dgxPAh4vpTU1Oz9z0rC0qlUjwWOSdi0Na5cxfw5bCxWL9updpsd0uXrkSv3p/i4qUrePI0GrNmzUdySgrats2+T2/ZslXo0CEAjo4O8PTywNGjx7PvAzt1RkwI89KzR1csXboSR46E42n0MyxavAwq1eseM2trK1So8BEWLPwRT6Of4fjxUzh69LhYb29vB0dHB/Hc3L37b+z9+x8oFAq180IblhYWEAQB6enp4usVhUIhHmOVSoXMjEwkJ6cg7WUynLMeyL7HLme9ubk5vvjiUwwaNBJXrl5DZORjjBj5FSZP1v85V9pikkREREQfnKZNA+DzUVU0bdYOAFCjZiP4fFQVE7/OnhXrwIHDeP48Bg0atoKTcxnxVb1GI7X1SKVSWFhYwNrKSmMbv/yyDI4ODujYKRC+fjUxe85C/LhknviMo3r1amP9+lX46aeVKF+hOkaM+Apz5sxAm9YtAADfzZyLUSO/hImJCUo5O2HkyKFo2KgVli//Bd99N0XrfZ02dSLq1auNdu26oVHzdrCztcHCeT+I9QcOhGH37n1wdfNR29d585aorScwsBtevEhCnz49td52fmvTuiVmz1kAX79a2L/vINavWykmbLVr18SsWd9i1KjxKF+hOn7ftAXbtv4uThgglUrxxx8bcPLUGfj61kTffp9j4MBP1O6zqV6jEZycy2DSpOk4fuKUeCze7PHLy96//0H3Hh9j1cofUfWNGREXLZqDxo0boHv3fvDzq4UTJ09j966tMDMzQ1xcPFb9sk6cfv6zgZ8gOvoZKlWuA3t7O3Tq1E6r7Xfv3hndunVCj54fo1Gj1vAp5w0Lc3O1NosXz8PVq/+iUqXa+OXXdWjSpIFYJ5FIsHbNCqxdsxHlK1THylVrsWb1cuzbdwBTpn6n07Fo1qwx5HI57Ow9xdcrm4NCxGN86dIVjBw1Hk7OZdClSx+N+ti4OHTt2ketHgBmfjcV/v6+aNu2K2rUbISkF8lYu2aFTjHqQyLk90DNIiQ5ORlNmjTBnt0hsLAwz3uB95SVpcC+/eFo1bI+jIx4u5cuDh2INHQIoqbN3Qwdghpdjs2pZ3m3lUKAr3UmriUaQ4W33xzqEHVVo8yj5BWtYykqajm6592oGLJu95WhQygwvJYaliThMswOt0Ra4/0QbCohIyMLUU9i4VLKDiYmBTu8pbhQqQS8SEqGVQlLSKXaPc+osCjS0pF0/wFKeHlCbmaa9wI57N27H9O/nYVTJw8VUHTv1qZNF7Tv0AbDhw02yPaLOw+PCti48Vc0alS/SJ+jBe1d16yUlFS0DeiOsLAwWFq+e0IY/vYhIiIi+g9TKBRQKBTYtOkP9H3HA3iJ/kuKzHC7oUOHQiKRYPHixWLZwYMHUalSJZiamqJy5coICwszWHxERET/BYJFGaTX3wbBooyhQyE9SI2NYOnhDqmx9r1+c+cugoNjaUQ9eYoBn/YrwOiIio8i0ZN07949bN++HVWrVhXLHj16hK5du2LRokXo0KED/vzzT3Tu3Bn//vsvXFy0n6KTiIiIdGBkCZV9/bzbUZEklckg1fEWgylTxmPKlPEFFJH29u4NNXQIxdrDh9cNHcIHpUj0JE2fPh3jxo2DVY6bItesWYO2bdtiwIABsLe3x+eff45WrVphzZo1BoyUiIjowyZJewKjf7+HJO2JoUMhPaiyspD27DlUWVmGDoWoWDN4kvTvv//i8OHDGDZsmFr58ePH0aiR+gwzzZo1w/Hjx0FEREQFJOM5jG7/BGQ8BwC8nEU63x/ISQVDpVAiPTYOKoXuU1oTfQheXask7zlfhcGH202bNg2TJ09Wm18eACIjI+Ho6KhW5uzsjIcPH751XRkZGcjI8aTglJTsOdezshTIyir45z28etDcmw+co7wJgsrQIYgK41zRhS7HRoq8v8S8apNXW0kuD5UTJAa/ZOhMYfi/BRWIonae5ideSw1L+vLLtUKhhEo8zyR49jwRtjaW2Q9P/W9NlpULAQqFEhmZmShqB0OVlQUFJMjIykKW5MO8/pE2iu45WmCE7OtWfEIyXu3zm78rdfndadBvPOfOncPly5exZcsWjbq0tDTIZDKEhYUhICAAu3fvhlwuFx8ulZvZs2djxozXD5eSSqWoWrUqDh46qddTn/V18NCpQtsW5b99++/l3aiI8rXWvm0F6zyGYlh7axRlQbOsqNPtyRfFyP5wQ0dQ4HgtNQwb4S5aAjh56iISJC8AADKZDCVLlsSLF8kvH1D6H/nSladEQwegSakAktMAxTNAVvz+sEX5rQieowVGgCAISE1NQ1xcHP79V7M3NWdnSl4M+tMzZcoUfPvtt5DLNcMwMzODUqmElZUVypcvDysrKyQkJMDMzOyt65s0aRLGjh0rvk9JSUGHDh3QrGmdQnlOkkKhwMFDp9Csae1c94ne7ujhKEOHIGrYuGhNDKLLsTn7/HGebaQQUME6C9cTjd75nCT7p5o3gLrZXtM6lqKiuoOroUMoEFatRho6hALDa6lhSROtgHCgTu0qUFn7i+WCIEClUkGp5LA7hVKBU6cuo3btSpAXsUQk6d59nJ8zF9V++AYlPD/M6x/lrSifowVJJpNAKpW+/GOOppSUVOSYSPudDHbUjh49iqioKPTu3TvXeldXVzx//hzdunXD+fPnAQBnzpyBh4fHW9dpYmKi1mMkfTlcyMhIXqgPJJTLC3d7HwJJERoSUNQ+O12OzbuSntzavqu9oNIc5icRit/wJzmKzlDO/FTUztOCwGupYUjM7aHw6AO5uT0EHv9cZQ/jz4K5mWmRO0cldjYoVbMqrOxsYG6h28Nk6cNRlM9RQ9LlWBjsqB04cAC3b99Wu+8oMTERZ8+exfbt29G4cWMcOXIEQ4YMEesPHjyIunXrGiJcIiKi/wTB3B2ZVRcZOgzSk3kpZ1SdavjpvImKO4MlSWPHjsXnn3+uVtajRw+0adMGQ4cORUZGBipVqoQNGzagXbt22LFjB/bt24eFCxcaKGIiIqL/AGUaJCkPIFh4ArK3D3GnokmZnoGUx1GwcHWBzLTw7scm+tAYbIyTlZUV3Nzc1F4mJiawtraGo6Mj3N3dsXXrVsyfPx8uLi5YvHgxQkND4erK8bVEREQFRZJ0G2aHGkOSdNvQoZAeku4/wMHeA5F0/4GhQyEq1orUIMWwsDC1982aNcPly5cNEwwREREREf0nFZ275YmIiIiIiIqAItWTRERU4A4V/OMACkP644saZaaDqhR6HERERB8i9iQRERFRDhIIUmPwgbHFlEQCqZER8JbnxBCRdtiTRERERCLBxh9pHR4ZOgzSk81H5dAxfJ+hwyAq9tiTRERERERElAOTJCIiIhJJkm7BNKwFJEm3DB0K6SHp3gMc+ngQku5xCnCi98EkiYiIiF5TpkOaeAVQphs6EtKDMiMDiTdvQ5mRYehQiIo1JklEREREREQ5MEkiIiIiIiLKgbPbEVGuKl7R/BuKtVkpA0Tyniw+jOciERERUeFhTxIRERGJBHMPZNT4BYK5h6FDIT2Yu5RCzVnTYe5SDP+oRVSEsCeJiIiIXjO2gdK1o6GjID0ZW5WAa4smhg6DqNhjTxIRERG9lv4M8oifgfRnho6E9JAeG4eI3/9AemycoUMhKtaYJBEREZFIkv4UxtemQ5L+1NChkB7Sn8fg6pIVSH8eY+hQiIo1JklEREREREQ5MEkiIiIiIiLKgUkSERERERFRDkySiIiI6DUjKyicWwFGVoaOhPRgZGkB54b1YGRpYehQiIo1TgFOREREIsHCC5m1fzN0GKQnCzdX1Fnwg6HDICr22JNEREREr6mygIyY7H+p2FEpFMiIT4BKoTB0KETFGpMkIiIiEkleXIf5Xl9IXlw3dCikhxcRd7GndRe8iLhr6FCIijUmSURERERERDkwSSIiIiIiIsqBSRIREREREVEOTJKIiIiIiIhy4BTgREREJBKsfZEaEAHIzQ0dCunBupw32h38C3IzU0OHQlSsMUkiIiKi1yQywKiEoaMgPUlkMj5IligfcLgdERERiSTJd2FyPBCSZE4hXRwlP4zE8RHjkfww0tChEBVrTJKIiIjoNUUyZM/DAEWyoSMhPShSU/Hs1FkoUlMNHQpRscYkiYiIiIiIKAcmSURERERERDkwSSIiIiIiIsqBSRIRERGJBDMXZPrPhmDmYuhQSA9mTo6oNH4kzJwcDR0KUbHGKcCJiIjoNRN7KMoMNHQUpCcTWxuU6dHF0GEQFXvsSSIiIqLXMuMhexQCZMYbOhLSQ2biCzzasx+ZiS8MHQpRscYkiYiIiESS1EcwOT8MktRHhg6F9JD65CnOTZ+F1CdPDR0KUbHGJImIiIiIiCgHJklEREREREQ5MEkiIiIiIiLKgUkSERERvSYzh9K2OiAzN3QkpAeZmSls/SpCZmZq6FCIijVOAU5EREQioURZZDTabegwSE8lPD3QeM0yQ4dBVOyxJ4mIiIiIiCgHJklEREQkkiRchvl2J0gSLhs6FNJDwo1b+LNWUyTcuGXoUIiKNSZJREREREREOTBJIiIiIiIiyoFJEhERERERUQ5MkoiIiIiIiHLgFOBEREQkEkr4IK35SQhmpQwdCumhRGkvtNi6EWaODoYOhahYY5JEREREr8lMIViWNnQUpCeZiTEs3V0NHQZRscfhdkRERCSSpDyA8bkvIUl5YOhQSA8pj5/g7Dc/IOXxE0OHQlSsMUkiIiKi17ISIY/cCmQlGjoS0kNWUhIi9/6DrKQkQ4dCVKwxSSIiIiIiIsqBSRIREREREVEOTJKIiIiIiIhy0CtJWr9+PVJSUvI7FiIiIjIwwdQJWR99BcHUydChkB5M7e3w0ef9YWpvZ+hQiIo1vZKkTZs2wdXVFR9//DH2798PQRDyOy4iIiIyBFMnZJUfDzBJKpZM7e1QYdCnTJKI3pNeSdLff/+N69evo0qVKpg4cSLc3d0xceJEXLt2Lb/jIyIiosKUlQTps0NAFmdHK46yklMQfeI0spI54ofofeh9T1KpUqUwbtw4nD9/Hvv27YNMJkODBg1QvXp1LFmyBM+fP8/POImIiKgQSFLuwfREL0hS7hk6FNJDSuRjnBg1ESmRjw0dClGx9t4TNzx+/Bi7du3Crl27YGNjg9atWyM8PBzlypXDvHnz8iNGIiIiIiKiQiPXZ6Hk5GSEhIRgw4YNuHDhArp06YIlS5agSZMmYptnz57B29sb48ePz69YiYiIiIiICpxeSZKzszPq1q2LAQMG4K+//oK5ublGGxsbG9jb2793gERERERERIVJryTp+vXrcHd3f2cbY2Nj3LvH8cxERETFitQYKgsvQGps6EhID1IjI1i4uUBqZGToUIiKNb2SpLwSJCIiIiqeBKvySG9xytBhkJ6svEuj5bbfDR0GUbGn18QNKpUKK1euVHs+UlxcHKZNm4asrKx8C46IiIiIiKiw6ZUkTZw4Eb///jsSEhLEMplMhkuXLmH06NH5FBoREREVNkniNZjtqQhJIp99WBwl3r6D3a06I/H2HUOHQlSs6ZUkrVu3DmvWrIGtra1YZm1tjcWLFyMoKCjfgiMiIqJCJighyYwFBKWhIyE9CEolMhMSISj5+RG9D72SpMzMTMhkMo1ylUoFhULx3kEREREREREZil5JUpcuXTB27FjExsaKZTExMRg3bhz69OmTb8EREREREREVNr2SpGXLlsHe3h4uLi6wtbWFjY0NXF1d4eTkhCVLluR3jERERERERIVGryTJwsICv/zyC+Li4nD48GEcPnwYMTExWLVqFYyNtX+uQlJSEj777DPY2dnByckJw4cPR2pqqlh/8OBBVKpUCaampqhcuTLCwsL0CZeIiIi0JFh6I73hXxAsvQ0dCunB0sMdjX5dCksPPq6F6H3olSS9YmFhgUqVKqFy5cooUaKEzssPGDAAUVFROH36NI4cOYIzZ85g0qRJAIBHjx6ha9euGDNmDCIjIzFixAh07twZUVFR7xMyERERvYvcAqqSNQG5haEjIT3Izc1QspIv5OZmhg6FqFjT62GyABAdHY0zZ84gLi5Oo+6TTz7Rah1TpkyBp6cnSpYsCSB7avHx48djyZIlWLNmDdq2bYsBAwYAAD7//HPs27cPa9aswdSpU/UNm4iIiN5BkhYF+Z2fofAeAsHMxdDhkI7Sop8jYtMfKNunJ8ycHAwdDlGxpVeSFBwcjP79+8PBwQGOjo5qdRKJROskqWrVqhrLmpqaAgCOHz+Ozp07q9U3a9YMO3bs0CdkIiIi0kZGDIzurITCrTvAJKnYyYiPx53NIXBv25JJEtF70CtJmjhxIhYsWIChQ4fmWyAxMTFYuHAhhg8fDgCIjIzUSMCcnZ3x8OHDt64jIyMDGRkZ4vuUlBQAQFaWAllZBT81+avpzzkNuu4EQWXoEESFca7oQpdjI4WgdZu82gpyiUaZSq459X9Rp5C916jiIksm0fz8itq5qy9eSw1Lqsh+vo5CoYTqAzmn8ltRPkcVOT6/D+WaQLoryueoIenyM6FXkpSYmIgePXros6iGPXv2oF+/foiPj8ewYcPExCstLQ0ymQxhYWEICAjA7t27IZfLkZaW9tZ1zZ49GzNmzBDfS6VSVK1aFQcPnYSJiUm+xKuNg4dOFdq2KP/t23/P0CHozdda+7YVrLPeWR/ftYxmGTTLiroHhg6gwLzQLNofXvhhFCBeSw3DRriLlgBOnrqIBEku5xmJiuI5Kry8d/vkyYuQPHxm4GjI0IriOWpIOTtT8qJXkvT1119j9+7dWg+re5emTZvi0qVLePLkCaZOnYqJEydi7ty5MDMzg1KphJWVFcqXLw8rKyskJCTAzOztNyJOmjQJY8eOFd+npKSgQ4cOaNa0DiwszN871rwoFAocPHQKzZrWhlyu9+1e/0lHD+s+IcfZ548LIJIPnxQCKlhn4XqiEVTQ7C16pcGBGxplVmYxBRlagShlrvukMsWBSdnammWf+hsgkvzHa6lhSROtgHCgTu0qUFl/GOdUfivK52jizds4tgqoU6cKrD8qZ+hwyECK8jlqSCkpqVi8WLu2eh21TZs24dGjR5gzZ454D1FO58+f13pdpqamcHNzg5ubG1asWAEfHx/MmDEDrq6ueP78Obp16yau78yZM/Dw8HjrukxMTNR6jKTS7GE2RkZyGBkV3gkilxfu9j4EEonuQ6Le9QWf8qaC5J3HUKLQHM71ahhOcSJXFp2hnPlJLmh+dh/adYfXUsOQmDsgy2sA5OYOEHj836konqPm9iVRunsnmNuXLHKxUeEriueoIelyLPQ6aqNHj9ZnMQ03b97ERx99JL6XyWRQKpVISUlBvXr1cOTIEQwZMkSsP3jwIOrWrZsv2yYiIiJNgrkbsirPMXQYpCdzZydUnjDa0GEQFXt6JUn9+/d/7w1HRkaiRo0amD17Nnr27InExESMHz8eHTp0gJ2dHT777DNUqlQJGzZsQLt27bBjxw7s27cPCxcufO9tExER0VsoUiFJjoBgWRaQF/xQdcpfivR0JN9/CEsvD8hzGe1DRNp5r2mfFAoFbt68CaVS9yE4bm5u2LdvH4KDg1GmTBk0btwYjo6OWL9+PQDA3d0dW7duxfz58+Hi4oLFixcjNDQUrq6u7xMyERERvYMkOQJmh1tCkhxh6FBID8n3HyLsk8FIvv/22YCJKG969SRlZmZizJgx+OWXX6BSqfDw4UPExsZi/Pjx2LRpk/hw2LzUrVsXhw8ffmt9s2bNcPnyZX1CJCIiIiIi0otePUmTJk3C06dPERkZCVtbWwCAr68v3NzcMGzYsHwNkIiIiIiIqDDp1ZO0du1anD9/Xu1hr1KpFNOnT4e/P6cLJSIiIiKi4kvve5Jye4JvQkICZDLZewVEREREBiSRQpBbAno8moGKAKkUcgtzQMrPj+h96PUT1Lt3b4wePRrx8fGQSCSQSCS4f/8+hg0bhr59++Z3jERERFRIBGs/pLW7A8Haz9ChkB5sfMqi/aFdsPEpa+hQiIo1vZKkRYsWoVy5cnB1dUVsbCzKlSuHChUqoGbNmpg/f35+x0hERERERFRo9EqSjI2NsWjRIsTGxuLixYs4ceIE4uLisGDBAhgbG+d3jERERFRIJC9uwvRgI0he3DR0KKSHF3fv40Dgp3hx976hQyEq1vSauOEVMzMzTtRARET0IVFlQJp0E1BlGDoS0oMqMxNJ9x5AlZlp6FCIijW9kqTvvvvunfXffPONXsEQEREREREZml5J0pUrVzTK0tLScOXKFdSuXfu9gyIiIiIiIjIUvZKk4ODgXMv/+usvhIWFvU88REREREREBvVe9yS9qXbt2ujXrx9nuCsmDh2INHQIRERUxAgWnsiotR6ChaehQyE9mLu6oPb872Hu6mLoUIiKtXxLkrKysvDTTz+hVKlS+bVKIiIiKmxG1lCWamPoKEhPxiUsUapRfUOHQVTs6ZUk2draQiKRqJUlJSXB3t4emzZtypfAiIiIyADSn0H+cDMUHr0BU0dDR0M6So+Jw8O/9sCjfVuY2pc0dDhExZZeSdKff/6pUWZra4uPPvoIJiYm7xsTERERGYgk/SmMr8+C0rEpBCZJxU56TAz+Xf4rHOvUZJJE9B70SpIaN26c33EQEREREREVCXolSQ8fPtS6rYeHhz6bICIiIiIiMgi9kiQvLy9IJBIIgqBW/uo+pVflEokESqXyPUMkIiIiIiIqPFJ9Fvr7778xYcIEPH36FElJSUhKSsKTJ08wYcIE/P3332LZixcv8jteIiIiKkhGVlC4dACMrAwdCenBqIQlXJo1hlEJS0OHQlSs6dWTNGrUKPzzzz9wdHx9Q6eFhQWGDx+OFi1a4Pr16/kWIFFx4RB11dAhaEUilQLW3rB/eh2CSvWOlpp/Q0lMKzo3cVubPTN0CEQfJMHCC5k1fzV0GKQnC1cX1JrzraHDICr29OpJevDgAZ490/yCEh0drdP9SkRERFTEqDIhSYsCVJmGjoT0oMrKQlr0c6iysgwdClGxpleS1LVrV/Tt2xfbtm3DxYsXcfHiRYSEhKBfv37o2rVrfsdIREREhUTy4gbM9lWF5MUNQ4dCenhx5x7+7tATL+7cM3QoRMWaXsPtVq9ejUWLFmHGjBm4f/8+AMDT0xOffPIJxowZk5/xERERERERFSq9kiRjY2NMnDgREydOzO94iIiIiIiIDEqv4XY5paen50ccRERERERERYLeSdL8+fPh5eUFS0tLREVF4e7duxgyZAgyMjLyMz4iIiIiIqJCpVeSNHv2bOzYsQPBwcGwtrYGADg6OiIqKor3JBERERVjgrUfUts/hGDtZ+hQSA/WPmXR4djfsPYpa+hQiIo1ve5JWrJkCQ4ePIiKFStCKs3OsywtLbFw4ULUqVMHy5cvz9cgiYgob+mrLho6hHyhkAiAK5Cx7gqUggQAYDqoimGD+i+RSAGZiaGjID1JpFLIjI0NHQZRsadXT1JKSgqsrDSfxC0IAjIz+VwFIiKi4kqSfAcmx7pAknzH0KGQHpIfPMLRIaOR/OCRoUMhKtb0SpI6dOiA6dOnQ6VSAQAkEglSUlLw9ddfo2PHjvkaIBERERUiRQpksccBRYqhIyE9KNLSEHv+EhRpaYYOhahY0ytJWr58OeLj4+Hk5ISEhAQ0a9YMpUqVAgAsW7YsXwMkIiIiIiIqTHrdk2RjY4Nt27bh7t27uHbtGgCgYsWK8Pb2ztfgiIiIiIiICpteSdL58+dRrVo1lClTBmXKlMnvmIiIiIiIiAxGr+F2NWvWRGpqqkZ5VlYWvvvuu/cOioiIiAxDMHNFRpUFEMxcDR0K6cHM2QlVJn8FM2cnQ4dCVKzplSSVKVMGcXFxGuWZmZmYMWPGewdFREREBmJiB6VnP8DEztCRkB5MbKzh1bkdTGysDR0KUbGm13C7pUuX4scff8Ts2bMhk8nU6gRByJfAPkSHDkQaOgSi/5zHKS8MHUKBiHmm//S+tRzd8zES+uBkxEL2dA+Uzm2ZKBVDGQmJeBJ2DKWaNGCiRPQe9EqS5s6di9TUVHh4eKBcuXLiA2UVCgUkEkm+BkhERESFR5L2GCYXxyGtcSUITJKKnbSn0bg4az5sypdjkkT0HvRKksLCwrBgwQIYv/FE54yMDISHh+dLYERERERERIagV5IEAIMHD4a5ublaWUpKCr766qv3DoqIiIiIiMhQ9Jq4Yfr06Rq9SABgbGyM6dOnv3dQREREREREhqJ1krRhwwaoVCoA2UmSXK7ZCWVkZMQkiYiIqDiTW0BpVw+QWxg6EtKD3MwMdtUqQ25mZuhQiIo1rZOkAQMGID09Xa2sTJkyePr0ab4HRURERIYhWHojo0EoBEtvQ4dCerD0dEfDnxfD0pOzWBK9D62TpNym9k5KShJ7l4iIiOgDIKgAZUb2v1TsCCoVlJmZEPj9jOi9aD1xA6f2JtJU83iM+H/zJL1u8St0glyC+I+A8tckkCiKR8xEVHgkiVdhdrgl0hrvh2BTydDhkI4Sb0Ug7JPBaLJhJWzK+xg6HKJii9+QiIiIiIiIctC6J0kQBKxYsQJGRkZiWXp6OlavXg1ra/WHlY0cOTL/IiQiIiIiIipEWidJjRo1wl9//aVWVqNGDRw8eFCtTCKRMEkiIiIiIqJiS+skKSwsrADDICL6f3v3Hh1VfbB7/NlzyWRyI8QQQsJVVKJoQG0rUF9UqoAolYptRX3lVbGtrSCgPa1VC/a4ZLVvbSntar0cEaXa1yNqbQ/YYgWKyEUUlYqiqFwSwiWE3OaSSWZmnz+o24kQLpPLb4Z8P2uxwuy5PZm9szNPfnt+GwAAIDUcd0kCAAAnPzuvTOGxb8v2FZqOgiTkDR6kcX/9v/IV5JuOAqQ1ShIAAPicK0O2v8R0CiTJ5fXK37uX6RhA2mN2OwAA4LCCO5SxcZqs4A7TUZCE4O4qvfHjuQrurjIdBUhrjCQBAFJe06PvmI7QaTK/M9x0hNZaGuSp+qtaTmcSpnTU0hhQ1Yp/6oz/us50FCCtMZIEAAAAAAkoSQAAAACQgJIEAAAAAAkoSQAAwGFnFqv5zJ/Iziw2HQVJyCws1Fnfn6bMQqZwB9qDiRsAAMDnMosUPeMO0ymQpMzCAp3xX9ebjgGkPUaSAADA51rq5d7zN6ml3nQSJKG5MaA9q19Xc2PAdBQgrVGSAACAwwrulO+NqbKCO01HQRJCu6u04a57FeI8SUC7cLhdmohsW2c6QofynT7SdAQAwFH8zyfvap+P0YhEM84eZToCgC7CSBIAAAAAJKAkAQAAAEACShIAAPicy6d47hBFrQzTSZAEV0aGcgcNkCuD9Qe0B59JAgAADjtviJrGrFbNe2tNR0ES8k4dqK89u8h0DCDtMZIEAAAAAAkoSQAAwGHVvyf/0sEqimw3HQVJqPvoY/2/S65Q3Ucfm44CpDVKEgAA+JwdlxUNyFLcdBIkIx5XNBiS4qw/oD0oSQAAAACQgJIEAAAAAAkoSQAAAACQgJIEAAAcds5pCl/0imq8fU1HQRJyBvbXxU89opyB/U1HAdKa0ZIUCoU0ffp0lZSUqKioSNOmTVNjY6Nz/YoVK1ReXq7MzEwNGzZMq1atMhcWAIDuwJMlO79cUZfPdBIkwZOZqfyyM+TJzDQdBUhrRkvSjBkztHnzZq1cuVIbNmzQzp07NXPmTElSRUWFrr76as2aNUuVlZWaPn26Jk2apKqqKpORAQA4qVmhSnnf/bHyWqpNR0ESQnv36d1fzFdo7z7TUYC0ZqwkxeNx7dmzRwsXLtSQIUM0aNAg/exnP9Nzzz0nSVq4cKEuv/xy3XTTTSosLNS0adM0duxYLVy40FRkAABOfs0H5d3xhPzxBtNJkITmunptX/KSmuvqTUcB0pqxkuRyubR06VINHjzYWdazZ0+FQiG1tLRo7dq1Gj16dKv7jBkzRmvXru3qqAAAAAC6EY/pAIlWr16tYcOGyev1qrKyUkVFRa2uLy4u1q5du9q8fyQSUSQScS4Hg0FJUktLVC0t0c4JnSAajbb6+kW2nfyJ3WzLSvq+qag9r8VnXLI7IEn72J7E/6fHOvosZ7rkbUvc4zYdwSi7HX/iilrmf3aO5rN8qZ6zo3TF76cT4YrGJElW3JYV7x7r4Hh9tq6O9fvepOi/1180Gku5bQtdJ5W3UZNO5GciZUpSdXW15syZo1/96leSpHA4LLfbrVWrVmnChAlatmyZPB6PwuFwm48xb9483X///c5ll8ulc889VytWrpfP13UfQF2xckPHP2i/Xh3/mAaFm7e3+zGG9uiAIO0UuSz38/8r9yi3TD11Xx9kOkK71OpU0xHS1j+VHodRvV7SeOwbnQxeed10glby7U91maTS/TFlW7zBSrS8svW66pTf9+1k//uz2+vXvyNr137DaWBaKm6jJiUOphxLSpSkQCCgq666SmPHjtWUKVMkSX6/X7FYTHl5eSorK1NeXp7q6urk9/vbfJy7775bs2fPdi4Hg0FNnDhRYy4ZoezsrE7/PqLRqFas3KAxl1wgj+fwl/a1f7Y96UTxyqOXhljt7nbnM6VyWMZhy3yDv9Lux32z2vxrct4bNc7/sxrT40POtsdS3dcHKf8v22VF0/evxHn+A6YjGFXTpyzp+57fK7Wndo5atl4vadRXq3LlsdN7xPN4+P7rHNMRWrHCgxTZfqu2xQrUeITfZd3Z9868QNKxf9+bFN5fre31NRp0+cXyF51cf2DF8UvlbdSkYDCk+fOP77bGX7VQKKQrr7xSffr00eOPP+4sLy0tVXV1tSZPnqxNmzZJkjZu3Kj+/due99/n87UaMXK5Dh2P4vV65PV23bfq8Rz5+Syr7eNjXLGjvxGw0/jNrGUfnv1or8Xxisv8m6fEP7KmW+GwonbaZU702SFB3ZXVjiNW06V4eGwrbbK2R1f+fjou3v6KDXtADe/xGeAv+uK6auv3vUne0j4aduftpmMgRaTiNmrSibwWRqcAD4fDmjhxonr16qVnn322VdMdNWqUVq9e3er2K1as0MiRI7s6JgAA3Uc0KNfBjfLG2z68HakrGgrr4OYtioZYf0B7GC1JkyZNUnZ2th577DE1NTUpEAgoEAioublZt9xyi15++WU99dRTqqmp0RNPPKHly5fr5ptvNhkZAICTmhX4RJmvXamCFs5LmI4Cuyq0etrtCuyqMB0FSGtGx9+WL18u6dDU34nmzJmjuXPn6vnnn9fMmTN16623qqysTC+++KJKS0tNRAUAAADQTRgtSfYRPquSaMyYMdq8eXMXpQEAAAAAw4fbAQAAAECqYbqLNNHQfPzzuqea3cHDPzxavb/SQBIAkvTG/tT+rILtklSap7eqK9s1i9+J+EpRvw5/zMhHxzc7XGTpPzr8udvDY+9XhvwauOUfKoi96Sz/4MvfNpgKx8tyu5WR30OWu3ufcBtoL0oSAABwRK0i7ffcroZYapdpHFmP0wdrwvI/m44BpD0OtwMAAACABJQkAADg8NgH1Cv6mHLd9aajIAkNn2zXK1dfr4ZPtpuOAqQ1ShIAAEgQk0d1cilmOgiSEG9pUbCySvGWFtNRgLRGSQIAAACABJQkAAAAAEhASQIAAACABEwBDgDo9jrj3FGFwYbjut3u/Xs6/Lnbw6MW9fRepGAs13QUJCG7b6lG/ubnyu5bajoKkNYoSQAAwBGVV9UtfUzHQJK8OdnqPfIrpmMAaY/D7QAAgMNnhTXE/y/5rLDpKEhC04EaffDoIjUdqDEdBUhrlCQAAODIdIVV5t+iTBclKR01HajRh//nSUoS0E6UJAAAAABIQEkCAAAAgASUJAAAAABIQEkCAACOFjtDFZEBarEzTEdBEry5ueo7/lJ5c5nCHWgPpgAHgDRUuHuL6QidJu5xKzD8Kzplz1a5ojHTcbqdUDxHm4IjTcdAkrJL++hLP7vHdAwg7TGSBAAAHC7FlO1qlEsU1HQUizQrULFbsUiz6ShAWqMkAQAAR667XpfmL1Wuu950FCShcfsO/WPyDWrcvsN0FCCtUZIAAAAAIAElCQAAAAASUJIAAAAAIAElCQAAAAASMAU4AABw1McK9NLBa03HQJLyy87QpDdWmo4BpD1GkgAAAAAgASUJAAA4clwN+o+8V5TjajAdBUlo3LlL/7z5B2rcuct0FCCtUZIAAIDDbUVV4KmR24qajoIkxMJNqn3vfcXCTaajAGmNkgQAAAAACShJAAAAAJCAkgQAAAAACShJAADAEYpn663ACIXi2aajIAlZfYp1/v0/UVafYtNRgLTGeZIAAICjxfapsnmg6RhIUkaPPPW7/DLTMYC0x0gSAABwZFhNGuTbpgyL2dHSUaS2Tp8+96IitXWmowBpjZEkAAAMKn2jj+kIrWTl7dNZo96S590hCjX0dpb7dtec0OO8M+mUjo6G4xDet1+b/3uBCs4ZKl/PfNNxgLTFSBIAAAAAJKAkAQAAAEACShIAAAAAJKAkAQAARyyaofoDAxSLZpiOgiR4srJUdMGX5MnKMh0FSGtM3AAAAByRUE9te/Nq0zGQpJz+fTXqt/9tOgaQ9hhJAgAACeJyuSOS4qaDIAl2LKaWQFB2LGY6CpDWKEkAAMCRlVet8y77vbLyqk1HQRLqt32ipWOuVP22T0xHAdIah9sBAIAON/zPJ3ZepXSw+s9/lSS9+/UCnSrp4Q82yHZZZkN9gXfnbvWR9KdP3lVL9ECnP9+Ms0d1+nMAJjCSBAAAAAAJKEkAAAAAkICSBAAAAAAJ+EwSAABwhBsL9c6r31Us6jMdBUloKS1W5fyfKJ6VaToKkNYoSQAAwGHbbkVbOBFp2vK4Fc/LNp0CSHscbgcAABw+f51OO+8l+fx1pqMgCZ79NSpcsFie/Sff7IJAV6IkAQAAh9sbUX7Rp3J7I6ajIAlWuElZ72yVFW4yHQVIaxxuh0531r+O0MX/9X7XBwEAAACOAyNJAAAAAJCAkgQAAAAACShJAADA0dyUo4qto9XclGM6CpIQy++h2m9frlh+D9NRgLTGZ5IAAIAj2pytfTvONx0DSYr3yFHjuAtNxwDSHiNJAADA4fY0qWfvj+T2MDtaOrKCYfk3/ktWMGw6CpDWKEkAAMDhy6rX4HOXypdVbzoKkuA5cFC9/vA/8hw4aDoKkNYoSQAAAACQgJIEAAAAAAkoSQAAAACQgJIEAAAc8ZhHwfoixWNMgJuObK9Xzf37yPZ6TUcB0hp7QAAA4GgKnqIP1l1vOgaSFC0p0t65t5uOAaQ9RpIAAAAAIAElCQAAOPy5+3Xe2AXy5+43HQVJ8O6sUr/v/FTenVWmowBpjZIEAAAclmXL5YrJsmzTUZAUW1Y0Jon1B7QHJQkAAAAAEjBxAwAAAJKy4L21piOknBlnjzIdAR2AkSQAAAAASMBIEgAAcIQDp+i9Nf+pSCjfdBQkIdqnSHv+9wxFexWYjgKkNeMjSStWrJDf75dlWaqrqzvsuvLycmVmZmrYsGFatWqVkYwAAHQXdtyjpkCh7Dh/R01HdoZXLaW9ZWdwMlmgPYyWpDfeeEOTJ0/WvHnzDruuoqJCV199tWbNmqXKykpNnz5dkyZNUlUVU1oCANBZMjIbNGDoK8rIbDAdBUlwH6hVwRMvyH2g1nQUIK0ZK0m7d+/WFVdcofnz52vSpEmHXb9w4UJdfvnluummm1RYWKhp06Zp7NixWrhwYdeHBQCgm/BkhNWr33vyZIRNR0ESXMGQcl57S65gyHQUIK0ZK0klJSVavHixpk6desTr165dq9GjR7daNmbMGK1dyywqAAAAADqPsQOOLcvS+PHj27y+srJSRUVFrZYVFxdr165dbd4nEokoEok4l4PBoCSppSWqlpZoOxMfWzQabfX1i2w73uZ94+6jn/TN9ljJBwMSfLYtpfs2Ffe4TUdAJ4l7XK2+omvF3W7na+LPmc3qcFhxu9XXVGLFP/+aivm6g654z3ksx3pP2l2dyLpJ2U9lhsNhud1urVq1ShMmTNCyZcvk8XgUDrc9/D9v3jzdf//9zmWXy6Vzzz1XK1aul8/n64rYkqQVKzec8H22f/VYtzg1qSxAW+q+Psh0hHap5WfipFdx2ZdMR+iW8u1PdXZU2vPVoaqz+Dk7kkFVsVZfU4m9L6qopL77orLcvEE2YXnl66YjOJJ5T3oySxxMOZaULUl+v1+xWEx5eXkqKytTXl6e6urq5Pf727zP3XffrdmzZzuXg8GgJk6cqDGXjFB2dlanZ45Go1qxcoPGXHKBPJ7DX9rX/tn2pBPFK7cf9bHr9n3a7nyAdGgEqe7rg5T/l+2youn7V8Y8/wHTEdBJ4h6XKi77kvq98qZc0bZH4NE5vL5GVfX9igort6tH5POfs5o+ZQZTpZZ/TeipQVUxbS9xy3al1qi8OztfOZePVuD0fMV6puzbvJPa9868wHSEY74n7a6CwZDmzz++26bsq1ZaWqrq6mpNnjxZmzZtkiRt3LhR/fv3b/M+Pp+v1YiRy3Xo2ACv1yOvt+u+VY/nyM9nWW0fq+CKHX0nm85vZpGarKid1tuVK5p6f8FFx3JF46xnA2LRLFV9eOjwBpc+f/0t+qrjs2Jku6yUK0nRU3qo7pvjTMfo1rryPeextPWetLs6kdciZY8wHjVqlFavXt1q2YoVKzRy5EhDiQAAOPm53M3KLaiQy91sOgqSYIUj8m39VFb4+A8rAnA4oyVp7969qqys1N69eyVJVVVVqqysVG1trW655Ra9/PLLeuqpp1RTU6MnnnhCy5cv180332wyMgAAJ7XM7FoN+coSZWZznp105Nl/QL1/8bg8+zkkGWgPo+NvI0aM0M6dO53LQ4cOlSRNnTpVixYt0vPPP6+ZM2fq1ltvVVlZmV588UWVlpaaigsAAACgGzBaknbs2HHU68eMGaPNmzd3TRgAAAAAUAp/JgkAAAAATGC6CwAA4LDjbjU35ciOtz5hc+HuLYYSdY4DpUNNR+gcbreiPfMkNyfcBtqDkgQAABzhQKE2r7rVdAwkqaVvsaoe+pHpGEDa43A7AAAAAEhASQIAAA5/zgGVX/yY/DlMIZ2OvJV7VXLnz+Wt3Gs6CpDWKEkAAMBhuWLKyAzIcsVMR0EyYjF5ahukGOsPaA9KEgAAAAAkoCQBAAAAQAJKEgAAAAAkoCQBAABHU7CnPnzjGjUFe5qOgiREiwq173/domhRoekoQFrjPEkAAMARj2Wo8WA/0zGQJNvvU6TsVNMxgLTHSBIAAHB4fQGVnrFGXl/AdBQkwV1brx5L/i53bb3pKEBaoyQBAACH1xdUn1M3yusLmo6CJLgaAuqxbLVcDZRcoD0oSQAAAACQgJIEAAAAAAkoSQAAAACQgJIEAAAc0Wa/qivOVrTZbzoKkhDPzlLgP85XPDvLdBQgrTEFOAAAcDQ35WnnlstMx0CSYoU9dfCmq03HANIeI0kAAMBhuaLKzDkgyxU1HQVJsJpb5N29T1Zzi+koQFqjJAEAAIc/p0ZnX7hY/pwa01GQBM+e/epz3wJ59uw3HQVIa5QkAAAAAEhASQIAAACABJQkAAAAAEhASQIAAA7bthSPu2XblukoSIol2+OWxPoD2oMpwAEAgCPcWKRNy2eYjoEktQwoUcWjPzMdA0h7jCQBAAAAQAJKEgAAcGRm1+jMkU8rM5spwNORp2q/iuf+Tp4qpgAH2oOSBAAAHC53VNk99svl5mSy6chqaVHGrj2yWjiZLNAelCQAAAAASEBJAgAAAIAElCQAAAAASEBJAgAAjkiohz55+wpFQj1MR0ESooUFqr7tWkULC0xHAdIa50kCAACOWDRTtfvOMB0DSbKz/Qp/+RzTMYC0x0gSAABweDKC6j3wLXkygqajIAmu+oBy/75GrvqA6ShAWmMkCQAAODIyA+pXtlqNB/sq2pxtOk6nKdy9Jen7DtlUrZair2vIphdk2akxVfoHX/62JMldV6+ez76sprJBivfIMZwKSF+MJAEAAABAAkoSAAAAACSgJAEAAABAAkoSAABwxFp8qtt/qmItPtNRkATbn6nQ8DLZ/kzTUYC0xsQNAADAEQnn6+NNV5mOgSRFi07RgRn/aToGkPYYSQIAAA7LisnjDcmyYqajIBnRmFwNQSnK+gPag5IEAAAc/twDGv61R+TPPWA6CpLg3b1XfWc+KO/uvaajAGmNw+0AAABOQMlbxdp5+aGvrhQZsfHtrpEkRevq1SBpyMp6efJP/HNJ70w6pYOTdT8L3ltrOoKsuK1TJT38wQbZLst0HM04e5TpCCeMkSQAAAAASEBJAgAAAIAElCQAAAAASMBnkgAAgCPU0EubXvm+4jGv6ShIgrtHL/W8/AeSh/UHtAclCQAAJHApHuNEsunKslySl/UHtBeH2wEAAIcvq1anf+kF+bJqTUdBEmKBWjWse16xAOsPaA9KEgAAcLg9zepRuFNuT7PpKEiCHW1WtHqn7CjrD2gPDrcDkJbqw0WmI7TSw7/fdAQAANBBGEkCAAAAgASUJAAAAABIQEkCAACO5nCudr5/iZrDuaajIAkuf66yzhkjl5/1B7QHn0kCAACOaEuWqncNNx0DSXL5spQ5aLjpGEDaYyQJAAA43N4mFfT5QG5vk+koSEK8OaxIxfuKN4dNRwHSGiUJAAA4fP56nTrsb/L5601HQRLioQYF3/6b4qEG01GAtEZJAgAAAIAElCQAAAAASEBJAgAAAIAElCQAAOCIxbwK1PVRLOY1HQVJsDxeuXv2keVh/QHtwRTgAADAEQkWaOv6a03HQJLcOQXq8R9TTMcA0h4jSQAAAACQgJIEAAAcWXn79KXxv1ZW3j7TUZCEaN0+HfzLrxStY/0B7UFJAgAAAIAElCQAAAAASEBJAgAAAIAEzG4HACeZ+nCR6QjtYnssSVJDuFBW1O7Qx+7h39+hjwcAODlRkgAAgCMcOEX/Wn2TmptyTEdBEty5p6jHmJvk8ueajgKkNUoSAABw2HGPIqF80zGQJMvtkTunp+kYQNpL+c8k2bate++9V0VFRcrJydG1116r2tpa07EAADgpZfjrNaj8ZWX4601HQRJiwXoF3lqmWJD1B7RHypek+fPna8mSJXr11Ve1detWNTU1adq0aaZjAQBwUvJ4m3RKyVZ5vE2moyAJdkuTmndvld3C+gPaI+UPt1uwYIEefvhhnXPOOZKkRYsWqbi4WBUVFerXr5/hdAAAAABONik9krRnzx7t2LFDo0ePdpbl5+dr+PDhWrduncFkAAAAAE5WKT2SVFlZqZycHPn9/lbLi4uLtWvXrsNuH4lEFIlEnMuBQECSVF/foJaWaOeGlRSNRhWJRFRf3yCP5/CXNtwUbPO+Qfvow+Jhq/Pzo3uwLUuRSERhKyrL6tjplbszTwq9lum+v+jMbTSV1lOqsm0pEHEpaEshXq8jiltxRSIRBa24XCnyGoXjzZKkWLxFEUlN8Ra5/73sRESDHKZ3MrBsW5FITNFQVLZlmY6juroG0xEkSaFQSNKhOQ+OJaVLUjgcltvtliRNmzZNq1at0scffyyPx6NwOHzY7efNm6f777/fuezxeDRs2DBdO+XmLsssSfPnd+nTASfuI9MBgGNgGzVrw7mSPvz3PxzRu/80naC1La99/n+/X3rrr8k9zqsdEwdI9GfTAb4gFAopN/fo0+SndEny+/2KxWKSpP79+6usrEzSoRGbL44uSdLdd9+t2bNnO5fj8bgaGxuVn58vqwtadGNjo/r27avKyspjvvCAKWynSHVso0h1bKNIdWyjR2bbtkKhkHr16nXM26Z0SSotLVUgEFBTU5N++tOfOsv37dun/v37H3Z7n88nn8/Xall+fn5nx3TE43HF43FlZ2crJ4eT8CE1sZ0i1bGNItWxjSLVsY227XhLY0pP3FBSUqIBAwZo9erVzrK6ujq9/fbbGjFihMFkAAAAAE5WKV2SJOmOO+7QzJkztWXLFu3evVu33HKLJkyYcMSRJAAAAABor5Q+3E46VJJqamp0ySWXKBQK6corr9Qf/vAH07GOyOfzac6cOYcd8gekErZTpDq2UaQ6tlGkOrbR9rPs45kDDwAAAAC6iZQ/3A4AAAAAuhIlCQAAAAASUJIAAAAAIAElqYPYtq17771XRUVFysnJ0bXXXqva2lrTsQBJ0ty5c2VZ1mH/ANNWrFghv98vy7JUV1d32HXl5eXKzMzUsGHDtGrVKiMZ0b21tY3u2LHjiPvVRYsWGcuK7ikUCmn69OkqKSlRUVGRpk2bpsbGRud69qXJoSR1kPnz52vJkiV69dVXtXXrVjU1NWnatGmmYwGOW265RY2Nja3+ASa98cYbmjx5subNm3fYdRUVFbr66qs1a9YsVVZWavr06Zo0aZKqqqoMJEV3dbRtVJIyMzMP26/ecMMNXZwS3d2MGTO0efNmrVy5Uhs2bNDOnTs1c+ZMSexL24PZ7TrIoEGD9PDDD2vcuHGSDp30tri4WNu2bVO/fv0Mp0N3N3fuXDU3N+vBBx80HQWQJO3evVvDhw/XL3/5S1100UUaNGiQamtrlZ+fL0m6//77tXXrVv3pT39y7vOtb31L5eXluvfeew2lRndyrG10x44dGjVqFG82YVQ8HtfEiRO1YMECDR48WJK0bt06jRs3Tg0NDexL24GRpA6wZ88e7dixQ6NHj3aW5efna/jw4Vq3bp3BZMDnevbsaToC4CgpKdHixYs1derUI16/du3aVvtUSRozZozWrl3bFfGAY26jEvtVmOdyubR06VKnIEmHtstQKKSWlhb2pe1ASeoAlZWVysnJkd/vb7W8uLhYu3btMpQKaM22bV1xxRUaMGCAJk+erJ07d5qOhG7MsiyNHz++zesrKytVVFTUahn7VHSlY22jklRQUKCf//znGjhwoC644AItWbKki9IBbVu9erWGDRsmr9fLvrQdKEkdIBwOy+12S5KmTZum0047TZLk8XgUDodNRgMkSX6/X0888YR++MMfaunSpcrOztaECRMUjUZNRwOO6LP96qpVq5SVlaVVq1axT0VK8Xg8eu+99+R2u/XKK6/otttu04033qjXX3/ddDR0Y9XV1ZozZ47uuusuSexL28NjOsDJwO/3KxaLSZL69++vsrIySVI0Gj1sdAkw4Uc/+pF++MMfyuU69HeRRx99VL1799aGDRv01a9+1XA64HCf7Vfz8vJUVlamvLw81dXVsU9Fyujbt69qamqc/erpp5+udevWadGiRexXYUQgENBVV12lsWPHasqUKZLYl7YHJakDlJaWKhAIqKmpST/96U+d5fv27VP//v0NJgM+99kvcunQjEz9+/fnA8dIWaWlpaqurtbkyZO1adMmSdLGjRvZpyKlJO5XJemMM87QihUrDKVBdxYKhXTllVeqT58+evzxx53l7EuTx+F2HaCkpEQDBgzQ6tWrnWV1dXV6++23NWLECIPJgEPWr1+vYDDoXG5ublZlZaUGDhxoLhRwFKNGjWq1T5UOnetj5MiRhhIBrTU0NGjjxo2tln366afsV9HlwuGwJk6cqF69eunZZ5+Vx/P5GAj70uQxBXgH+fWvf63HHntMzz33nPLz8zVjxgzZtq0XXnjBdDRAY8eOldfr1UMPPaTs7Gw98MADeuedd7R+/XpOKgtj9u7dq2g0qsrKSo0cOVJbtmxRXl6esrOzFQgEVF5ert/85je64oor9Je//EWzZ8/We++9p9LSUtPR0U0cbRt9+eWXdccdd+jJJ5/Ul7/8Za1evVo33XST1qxZo/LyctPR0Y2MGzdOPp9PTz31VKuClJGRoX379rEvTZaNDhGLxex77rnH7tWrl52dnW1/+9vftg8ePGg6FmDbtm3X19fb3/nOd+xevXrZWVlZ9jXXXGPv3bvXdCx0cwMGDLAlHfZv6tSptm3b9quvvmqfc845dkZGhl1eXm6vXLnSaF50P8faRp988kn7zDPPtH0+nz106FD773//u9nA6JaOtI1KsufMmWPbNvvSZDGSBAAAAAAJ+EwSAAAAACSgJAEAAABAAkoSAAAAACSgJAEAAABAAkoSAAAAACSgJAEAAABAAkoSAAAAACSgJAEAAABAAkoSAAAAACSgJAEAAABAAkoSAKBb+eSTT5Sbm6tnnnnmhO87cOBAWZYly7J08cUXH/P2O3bskGVZqqurO/GgAABjKEkAgC711ltv6dprr1VJSYkyMzN12mmn6YYbbtCWLVu65Pn9fr+GDBmiU0455YTv+/7776uxsVEPPfRQJyQDAKQKShIAoMs89thjuuCCC9SjRw+98MIL+vDDD/XII4+osbExqZGdZJSUlOjNN9/UuHHjTvi+WVlZysnJUUZGRickAwCkCkoSAKBLrFmzRt/73vf029/+Vo888ohGjBihAQMG6Gtf+5peeukl3XnnnUk/9q5du5Sdna2GhoZWy8eOHasnnnhCkjR37lznUDnLsrRq1arDHse2bc2ZM0e9e/dWTk6ObrzxxhM6VK6urk5XXXWV/H6/hg4dqo0bNyb9PQEAzKEkAQC6xOzZs3XRRRfptttuO+L1BQUFST92//79NWLECC1ZssRZVlVVpfXr1+uaa66RJP3kJz9RY2OjGhsb2zzUbsGCBVq2bJn+9re/aevWrcrOztZ111133DnuueceVVdX680339SyZcu0YsWKpL8nAIA5lCQAQKf74IMPtHHjRv3gBz9o8zYVFRW6+OKLddZZZ6m8vFzPPffcCT3H1KlTtXjxYufyM888o4kTJyo3N1eSlJGRoZycHOXk5LT5GL/85S/16KOP6txzz1Xfvn31u9/9Tq+99pq2b99+XBn++Mc/av78+Ro6dKgGDBigu+6664S+BwBAaqAkAQA63aZNmyRJ559/fpu38Xg8mj9/vt5//30tX75cM2fOVDAYPO7nmDx5sjZt2qSKigpJ0tNPP60bb7zxuO/f0NCgyspKXXrppSosLFRhYaF69+6tUCikrVu3HvP+Bw8eVENDg0477TRnWXZ29nE/PwAgdXhMBwAAnPxCoZAkHXUUp0+fPurTp48kqbi4WIWFhTp48OBxF43s7Gx94xvf0DPPPKMrr7xS+/bt06WXXnrCWVeuXHnYoX+FhYUn/DgAgPTFSBIAoNOdffbZkqTXXnvtiNeHw+FWl9966y3FYjH169fvhJ5n6tSpevrpp/XHP/5R119/vdxu93HfNy8vT3379tWBAwfUt29f5191dbUyMzOPef+CggLl5eVp27ZtzrITGQkDAKQOShIAoNONHDlSY8eO1fe//30tXrxYH3/8sT766CM9/fTTuvDCC1t95ufgwYO68cYb9eijj57w81x88cVqaGjQ73//+8MOtWtublYgEFAgEJB0qJgFAgFFIhHnNnfddZduv/12rVu3Tnv37tV9992nKVOmyLZtSYdGxAKBgJqbmxWLxZzHi8VikqTrr79es2bN0vvvv6+dO3dqwYIFJ/w9AADMoyQBALrESy+9pBkzZugXv/iFhg0bppEjR2rBggUaP368ysrKJEmRSESTJk3Sj3/8Y40aNeqEn8OyLE2ZMkWnnnqqzjnnnFbXPfjgg8rNzVVubq5qamo0YcIE5ebm6rvf/a5zm+nTp+tb3/qWvvGNb2jw4MHauHGjli1bJsuyJElnnXWWcnNzdeedd2rNmjXO4302QvbAAw+ooKBA5513nq644gqNHz8+2ZcLAGCQZX/25zEAAAyybVvXXXedhgwZorlz5yb9ON/85jc1atQozZo1q+PCAQC6FUoSACAlrFmzRqNHj1Z5ebmzbPHixYeNCLUlEomovr5ep512mrZt26bevXt3VlQAwEmO2e0AACnhwgsvVDweT/r+Q4YMUXV1te677z4KEgCgXRhJAgAAAIAETNwAAAAAAAkoSQAAAACQgJIEAAAAAAkoSQAAAACQgJIEAAAAAAkoSQAAAACQgJIEAAAAAAkoSQAAAACQgJIEAAAAAAkoSQAAAACQ4P8DxnISIwB098kAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "import pandas as pd\n", + "\n", + "# Assuming df is your original DataFrame\n", + "# Filter and convert react_temp to float\n", + "filtered_df = filtered_df[pd.to_numeric(filtered_df['react_temp'], errors='coerce').notnull()]\n", + "filtered_df['react_temp'] = filtered_df['react_temp'].astype(float)\n", + "\n", + "# Define the DataFrame and label pairs\n", + "dfs_labels = [\n", + " (filtered_df, 'Mn-Na2WO4/SiO2'),\n", + " (df[df['name'] == \"Mn-MgWO4/SiO2\"], 'Mn-MgWO4/SiO2'),\n", + " (df[df['name'] == \"Mn-SrWO4/SiO2\"], 'Mn-SrWO4/SiO2'),\n", + " (df[df['name'] == \"Mn-K2MoO4/SiO2\"], 'Mn-K2MoO4/SiO2')\n", + "]\n", + "\n", + "# Plot histograms on the same plot\n", + "plt.figure(figsize=(10, 6))\n", + "\n", + "for df, label in dfs_labels:\n", + " plt.hist(df['C2y'], alpha=0.5, label=label)\n", + "\n", + "# Add vertical lines at specified C2y values\n", + "plt.axvline(x=16.17, color='brown', linestyle='--', linewidth=1, label='16.17% C2y - pool 99% quantile')\n", + "plt.axvline(x=12.85, color='orange', linestyle='--', linewidth=1, label='12.85% C2y - pool 95% quantile')\n", + "\n", + "plt.xlabel('$C_{2}$ yield')\n", + "plt.ylabel('Frequency')\n", + "plt.title('$C_{2}$ Yield Distribution for Different Catalysts')\n", + "plt.legend()\n", + "plt.grid(True)\n", + "plt.show()\n" ] }, {