-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathep2_27.html
855 lines (682 loc) · 259 KB
/
ep2_27.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>
<title>Abstract</title>
<script type="text/javascript">
window.onload = function() {
var imgs = document.getElementsByTagName('img'), i, img;
for (i = 0; i < imgs.length; i++) {
img = imgs[i];
// center an image if it is the only element of its parent
if (img.parentElement.childElementCount === 1)
img.parentElement.style.textAlign = 'center';
}
};
</script>
<!-- Styles for R syntax highlighter -->
<style type="text/css">
pre .operator,
pre .paren {
color: rgb(104, 118, 135)
}
pre .literal {
color: #990073
}
pre .number {
color: #099;
}
pre .comment {
color: #998;
font-style: italic
}
pre .keyword {
color: #900;
font-weight: bold
}
pre .identifier {
color: rgb(0, 0, 0);
}
pre .string {
color: #d14;
}
</style>
<!-- R syntax highlighter -->
<script type="text/javascript">
var hljs=new function(){function m(p){return p.replace(/&/gm,"&").replace(/</gm,"<")}function f(r,q,p){return RegExp(q,"m"+(r.cI?"i":"")+(p?"g":""))}function b(r){for(var p=0;p<r.childNodes.length;p++){var q=r.childNodes[p];if(q.nodeName=="CODE"){return q}if(!(q.nodeType==3&&q.nodeValue.match(/\s+/))){break}}}function h(t,s){var p="";for(var r=0;r<t.childNodes.length;r++){if(t.childNodes[r].nodeType==3){var q=t.childNodes[r].nodeValue;if(s){q=q.replace(/\n/g,"")}p+=q}else{if(t.childNodes[r].nodeName=="BR"){p+="\n"}else{p+=h(t.childNodes[r])}}}if(/MSIE [678]/.test(navigator.userAgent)){p=p.replace(/\r/g,"\n")}return p}function a(s){var r=s.className.split(/\s+/);r=r.concat(s.parentNode.className.split(/\s+/));for(var q=0;q<r.length;q++){var p=r[q].replace(/^language-/,"");if(e[p]){return p}}}function c(q){var p=[];(function(s,t){for(var r=0;r<s.childNodes.length;r++){if(s.childNodes[r].nodeType==3){t+=s.childNodes[r].nodeValue.length}else{if(s.childNodes[r].nodeName=="BR"){t+=1}else{if(s.childNodes[r].nodeType==1){p.push({event:"start",offset:t,node:s.childNodes[r]});t=arguments.callee(s.childNodes[r],t);p.push({event:"stop",offset:t,node:s.childNodes[r]})}}}}return t})(q,0);return p}function k(y,w,x){var q=0;var z="";var s=[];function u(){if(y.length&&w.length){if(y[0].offset!=w[0].offset){return(y[0].offset<w[0].offset)?y:w}else{return w[0].event=="start"?y:w}}else{return y.length?y:w}}function t(D){var A="<"+D.nodeName.toLowerCase();for(var B=0;B<D.attributes.length;B++){var C=D.attributes[B];A+=" "+C.nodeName.toLowerCase();if(C.value!==undefined&&C.value!==false&&C.value!==null){A+='="'+m(C.value)+'"'}}return A+">"}while(y.length||w.length){var v=u().splice(0,1)[0];z+=m(x.substr(q,v.offset-q));q=v.offset;if(v.event=="start"){z+=t(v.node);s.push(v.node)}else{if(v.event=="stop"){var p,r=s.length;do{r--;p=s[r];z+=("</"+p.nodeName.toLowerCase()+">")}while(p!=v.node);s.splice(r,1);while(r<s.length){z+=t(s[r]);r++}}}}return z+m(x.substr(q))}function j(){function q(x,y,v){if(x.compiled){return}var u;var s=[];if(x.k){x.lR=f(y,x.l||hljs.IR,true);for(var w in x.k){if(!x.k.hasOwnProperty(w)){continue}if(x.k[w] instanceof Object){u=x.k[w]}else{u=x.k;w="keyword"}for(var r in u){if(!u.hasOwnProperty(r)){continue}x.k[r]=[w,u[r]];s.push(r)}}}if(!v){if(x.bWK){x.b="\\b("+s.join("|")+")\\s"}x.bR=f(y,x.b?x.b:"\\B|\\b");if(!x.e&&!x.eW){x.e="\\B|\\b"}if(x.e){x.eR=f(y,x.e)}}if(x.i){x.iR=f(y,x.i)}if(x.r===undefined){x.r=1}if(!x.c){x.c=[]}x.compiled=true;for(var t=0;t<x.c.length;t++){if(x.c[t]=="self"){x.c[t]=x}q(x.c[t],y,false)}if(x.starts){q(x.starts,y,false)}}for(var p in e){if(!e.hasOwnProperty(p)){continue}q(e[p].dM,e[p],true)}}function d(B,C){if(!j.called){j();j.called=true}function q(r,M){for(var L=0;L<M.c.length;L++){if((M.c[L].bR.exec(r)||[null])[0]==r){return M.c[L]}}}function v(L,r){if(D[L].e&&D[L].eR.test(r)){return 1}if(D[L].eW){var M=v(L-1,r);return M?M+1:0}return 0}function w(r,L){return L.i&&L.iR.test(r)}function K(N,O){var M=[];for(var L=0;L<N.c.length;L++){M.push(N.c[L].b)}var r=D.length-1;do{if(D[r].e){M.push(D[r].e)}r--}while(D[r+1].eW);if(N.i){M.push(N.i)}return f(O,M.join("|"),true)}function p(M,L){var N=D[D.length-1];if(!N.t){N.t=K(N,E)}N.t.lastIndex=L;var r=N.t.exec(M);return r?[M.substr(L,r.index-L),r[0],false]:[M.substr(L),"",true]}function z(N,r){var L=E.cI?r[0].toLowerCase():r[0];var M=N.k[L];if(M&&M instanceof Array){return M}return false}function F(L,P){L=m(L);if(!P.k){return L}var r="";var O=0;P.lR.lastIndex=0;var M=P.lR.exec(L);while(M){r+=L.substr(O,M.index-O);var N=z(P,M);if(N){x+=N[1];r+='<span class="'+N[0]+'">'+M[0]+"</span>"}else{r+=M[0]}O=P.lR.lastIndex;M=P.lR.exec(L)}return r+L.substr(O,L.length-O)}function J(L,M){if(M.sL&&e[M.sL]){var r=d(M.sL,L);x+=r.keyword_count;return r.value}else{return F(L,M)}}function I(M,r){var L=M.cN?'<span class="'+M.cN+'">':"";if(M.rB){y+=L;M.buffer=""}else{if(M.eB){y+=m(r)+L;M.buffer=""}else{y+=L;M.buffer=r}}D.push(M);A+=M.r}function G(N,M,Q){var R=D[D.length-1];if(Q){y+=J(R.buffer+N,R);return false}var P=q(M,R);if(P){y+=J(R.buffer+N,R);I(P,M);return P.rB}var L=v(D.length-1,M);if(L){var O=R.cN?"</span>":"";if(R.rE){y+=J(R.buffer+N,R)+O}else{if(R.eE){y+=J(R.buffer+N,R)+O+m(M)}else{y+=J(R.buffer+N+M,R)+O}}while(L>1){O=D[D.length-2].cN?"</span>":"";y+=O;L--;D.length--}var r=D[D.length-1];D.length--;D[D.length-1].buffer="";if(r.starts){I(r.starts,"")}return R.rE}if(w(M,R)){throw"Illegal"}}var E=e[B];var D=[E.dM];var A=0;var x=0;var y="";try{var s,u=0;E.dM.buffer="";do{s=p(C,u);var t=G(s[0],s[1],s[2]);u+=s[0].length;if(!t){u+=s[1].length}}while(!s[2]);if(D.length>1){throw"Illegal"}return{r:A,keyword_count:x,value:y}}catch(H){if(H=="Illegal"){return{r:0,keyword_count:0,value:m(C)}}else{throw H}}}function g(t){var p={keyword_count:0,r:0,value:m(t)};var r=p;for(var q in e){if(!e.hasOwnProperty(q)){continue}var s=d(q,t);s.language=q;if(s.keyword_count+s.r>r.keyword_count+r.r){r=s}if(s.keyword_count+s.r>p.keyword_count+p.r){r=p;p=s}}if(r.language){p.second_best=r}return p}function i(r,q,p){if(q){r=r.replace(/^((<[^>]+>|\t)+)/gm,function(t,w,v,u){return w.replace(/\t/g,q)})}if(p){r=r.replace(/\n/g,"<br>")}return r}function n(t,w,r){var x=h(t,r);var v=a(t);var y,s;if(v){y=d(v,x)}else{return}var q=c(t);if(q.length){s=document.createElement("pre");s.innerHTML=y.value;y.value=k(q,c(s),x)}y.value=i(y.value,w,r);var u=t.className;if(!u.match("(\\s|^)(language-)?"+v+"(\\s|$)")){u=u?(u+" "+v):v}if(/MSIE [678]/.test(navigator.userAgent)&&t.tagName=="CODE"&&t.parentNode.tagName=="PRE"){s=t.parentNode;var p=document.createElement("div");p.innerHTML="<pre><code>"+y.value+"</code></pre>";t=p.firstChild.firstChild;p.firstChild.cN=s.cN;s.parentNode.replaceChild(p.firstChild,s)}else{t.innerHTML=y.value}t.className=u;t.result={language:v,kw:y.keyword_count,re:y.r};if(y.second_best){t.second_best={language:y.second_best.language,kw:y.second_best.keyword_count,re:y.second_best.r}}}function o(){if(o.called){return}o.called=true;var r=document.getElementsByTagName("pre");for(var p=0;p<r.length;p++){var q=b(r[p]);if(q){n(q,hljs.tabReplace)}}}function l(){if(window.addEventListener){window.addEventListener("DOMContentLoaded",o,false);window.addEventListener("load",o,false)}else{if(window.attachEvent){window.attachEvent("onload",o)}else{window.onload=o}}}var e={};this.LANGUAGES=e;this.highlight=d;this.highlightAuto=g;this.fixMarkup=i;this.highlightBlock=n;this.initHighlighting=o;this.initHighlightingOnLoad=l;this.IR="[a-zA-Z][a-zA-Z0-9_]*";this.UIR="[a-zA-Z_][a-zA-Z0-9_]*";this.NR="\\b\\d+(\\.\\d+)?";this.CNR="\\b(0[xX][a-fA-F0-9]+|(\\d+(\\.\\d*)?|\\.\\d+)([eE][-+]?\\d+)?)";this.BNR="\\b(0b[01]+)";this.RSR="!|!=|!==|%|%=|&|&&|&=|\\*|\\*=|\\+|\\+=|,|\\.|-|-=|/|/=|:|;|<|<<|<<=|<=|=|==|===|>|>=|>>|>>=|>>>|>>>=|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~";this.ER="(?![\\s\\S])";this.BE={b:"\\\\.",r:0};this.ASM={cN:"string",b:"'",e:"'",i:"\\n",c:[this.BE],r:0};this.QSM={cN:"string",b:'"',e:'"',i:"\\n",c:[this.BE],r:0};this.CLCM={cN:"comment",b:"//",e:"$"};this.CBLCLM={cN:"comment",b:"/\\*",e:"\\*/"};this.HCM={cN:"comment",b:"#",e:"$"};this.NM={cN:"number",b:this.NR,r:0};this.CNM={cN:"number",b:this.CNR,r:0};this.BNM={cN:"number",b:this.BNR,r:0};this.inherit=function(r,s){var p={};for(var q in r){p[q]=r[q]}if(s){for(var q in s){p[q]=s[q]}}return p}}();hljs.LANGUAGES.cpp=function(){var a={keyword:{"false":1,"int":1,"float":1,"while":1,"private":1,"char":1,"catch":1,"export":1,virtual:1,operator:2,sizeof:2,dynamic_cast:2,typedef:2,const_cast:2,"const":1,struct:1,"for":1,static_cast:2,union:1,namespace:1,unsigned:1,"long":1,"throw":1,"volatile":2,"static":1,"protected":1,bool:1,template:1,mutable:1,"if":1,"public":1,friend:2,"do":1,"return":1,"goto":1,auto:1,"void":2,"enum":1,"else":1,"break":1,"new":1,extern:1,using:1,"true":1,"class":1,asm:1,"case":1,typeid:1,"short":1,reinterpret_cast:2,"default":1,"double":1,register:1,explicit:1,signed:1,typename:1,"try":1,"this":1,"switch":1,"continue":1,wchar_t:1,inline:1,"delete":1,alignof:1,char16_t:1,char32_t:1,constexpr:1,decltype:1,noexcept:1,nullptr:1,static_assert:1,thread_local:1,restrict:1,_Bool:1,complex:1},built_in:{std:1,string:1,cin:1,cout:1,cerr:1,clog:1,stringstream:1,istringstream:1,ostringstream:1,auto_ptr:1,deque:1,list:1,queue:1,stack:1,vector:1,map:1,set:1,bitset:1,multiset:1,multimap:1,unordered_set:1,unordered_map:1,unordered_multiset:1,unordered_multimap:1,array:1,shared_ptr:1}};return{dM:{k:a,i:"</",c:[hljs.CLCM,hljs.CBLCLM,hljs.QSM,{cN:"string",b:"'\\\\?.",e:"'",i:"."},{cN:"number",b:"\\b(\\d+(\\.\\d*)?|\\.\\d+)(u|U|l|L|ul|UL|f|F)"},hljs.CNM,{cN:"preprocessor",b:"#",e:"$"},{cN:"stl_container",b:"\\b(deque|list|queue|stack|vector|map|set|bitset|multiset|multimap|unordered_map|unordered_set|unordered_multiset|unordered_multimap|array)\\s*<",e:">",k:a,r:10,c:["self"]}]}}}();hljs.LANGUAGES.r={dM:{c:[hljs.HCM,{cN:"number",b:"\\b0[xX][0-9a-fA-F]+[Li]?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+(?:[eE][+\\-]?\\d*)?L\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+\\.(?!\\d)(?:i\\b)?",e:hljs.IMMEDIATE_RE,r:1},{cN:"number",b:"\\b\\d+(?:\\.\\d*)?(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\.\\d+(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"keyword",b:"(?:tryCatch|library|setGeneric|setGroupGeneric)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\.",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\d+(?![\\w.])",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\b(?:function)",e:hljs.IMMEDIATE_RE,r:2},{cN:"keyword",b:"(?:if|in|break|next|repeat|else|for|return|switch|while|try|stop|warning|require|attach|detach|source|setMethod|setClass)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"literal",b:"(?:NA|NA_integer_|NA_real_|NA_character_|NA_complex_)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"literal",b:"(?:NULL|TRUE|FALSE|T|F|Inf|NaN)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"identifier",b:"[a-zA-Z.][a-zA-Z0-9._]*\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"<\\-(?!\\s*\\d)",e:hljs.IMMEDIATE_RE,r:2},{cN:"operator",b:"\\->|<\\-",e:hljs.IMMEDIATE_RE,r:1},{cN:"operator",b:"%%|~",e:hljs.IMMEDIATE_RE},{cN:"operator",b:">=|<=|==|!=|\\|\\||&&|=|\\+|\\-|\\*|/|\\^|>|<|!|&|\\||\\$|:",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"%",e:"%",i:"\\n",r:1},{cN:"identifier",b:"`",e:"`",r:0},{cN:"string",b:'"',e:'"',c:[hljs.BE],r:0},{cN:"string",b:"'",e:"'",c:[hljs.BE],r:0},{cN:"paren",b:"[[({\\])}]",e:hljs.IMMEDIATE_RE,r:0}]}};
hljs.initHighlightingOnLoad();
</script>
<style type="text/css">
body, td {
font-family: sans-serif;
background-color: white;
font-size: 13px;
}
body {
max-width: 800px;
margin: auto;
padding: 1em;
line-height: 20px;
}
tt, code, pre {
font-family: 'DejaVu Sans Mono', 'Droid Sans Mono', 'Lucida Console', Consolas, Monaco, monospace;
}
h1 {
font-size:2.2em;
}
h2 {
font-size:1.8em;
}
h3 {
font-size:1.4em;
}
h4 {
font-size:1.0em;
}
h5 {
font-size:0.9em;
}
h6 {
font-size:0.8em;
}
a:visited {
color: rgb(50%, 0%, 50%);
}
pre, img {
max-width: 100%;
}
pre {
overflow-x: auto;
}
pre code {
display: block; padding: 0.5em;
}
code {
font-size: 92%;
border: 1px solid #ccc;
}
code[class] {
background-color: #F8F8F8;
}
table, td, th {
border: none;
}
blockquote {
color:#666666;
margin:0;
padding-left: 1em;
border-left: 0.5em #EEE solid;
}
hr {
height: 0px;
border-bottom: none;
border-top-width: thin;
border-top-style: dotted;
border-top-color: #999999;
}
@media print {
* {
background: transparent !important;
color: black !important;
filter:none !important;
-ms-filter: none !important;
}
body {
font-size:12pt;
max-width:100%;
}
a, a:visited {
text-decoration: underline;
}
hr {
visibility: hidden;
page-break-before: always;
}
pre, blockquote {
padding-right: 1em;
page-break-inside: avoid;
}
tr, img {
page-break-inside: avoid;
}
img {
max-width: 100% !important;
}
@page :left {
margin: 15mm 20mm 15mm 10mm;
}
@page :right {
margin: 15mm 10mm 15mm 20mm;
}
p, h2, h3 {
orphans: 3; widows: 3;
}
h2, h3 {
page-break-after: avoid;
}
}
</style>
</head>
<body>
<h2>Abstract</h2>
<p>Chromatin segmentation analysis transforms ChIP-seq data into signals over the
genome. The latter represents the observed states in a multivariate Markov model
to predict the chromatin's underlying (hidden) states. <em>ChromHMM</em>, written in
<em>Java</em>, integrates histone modification datasets to learn the chromatin states
de-novo. We developed an <em>R</em> package around this program to leverage the
existing <em>R/Bioconductor</em> tools and data structures in the segmentation analysis
context. <code>segmenter</code> wraps the <em>Java</em> modules to call <em>ChromHMM</em> and captures
the output in an <code>S4</code> object. This allows for iterating with different
parameters, which are given in <em>R</em> syntax. Capturing the output in <em>R</em> makes it
easier to work with the results and to integrate them in downstream analyses.
Finally, <code>segmenter</code> provides additional tools to test, select and visualize the
models.</p>
<h3>Keywords</h3>
<p>Chromatin Segmentation, ChromHMM, Histone Modification, ChIP-Seq</p>
<h2>Methods</h2>
<h3>Hidden Markov Models</h3>
<p>Hidden Markov Models (HMM) assumes that a system (process) with unobservable or
hidden states can be modeled with a dependent observable process. In applying
this model to segmentation analysis, the chromatin configurations are the hidden
states and they can be modeled using histone modification markers that are
associated with these configurations [@Ernst2017].</p>
<h3><a href="http://compbio.mit.edu/ChromHMM/">ChromHMM</a></h3>
<p><em>ChromHmm</em> is a Java program to learn chromatin states from multiple sets of
histone modification markers ChIP-seq datasets [@Ernst2012]. The states are
modeled as the combination of markers on the different regions of the genome.
A multi-variate hidden Markov model is used to model the presence or absence of
the markers. In addition, the fold-enrichment of the states over genomic
annotation and locations is calculated. These models can be useful in annotating
genomes by showing where histone markers occur and interpreting this as a given
chromatin configuration. By comparing states between different cells or
condition, one can determine the cell or condition specific changes in the
chromatin and study how they might impact the gene regulation.</p>
<h3>This package!</h3>
<p>The goal of the <code>segmenter</code> package is to</p>
<ul>
<li>Call <em>ChromHMM</em> using R syntax</li>
<li>Capture the output in R objects</li>
<li>Interact with the model output for the purposes of summarizing or visualizing</li>
</ul>
<h2>Findings</h2>
<h3>Segmentation analysis using <code>segmenter</code></h3>
<h4>Inputs</h4>
<p>ChromHMM requires two types of input files. Those are</p>
<ul>
<li>Genomic annotation files.</li>
<li>Binarized signal files from the ChIP-seq data (Check the package vignette to
see how to generate those)</li>
</ul>
<p>ChromHMM contains pre-formatted files for commonly used genomes. We will
be using the human genome (hg18) which is available from the <code>chromhmmData</code>
package.</p>
<pre><code class="r">## load required libraries
library(segmenter)
library(Gviz)
library(ComplexHeatmap)
library(TxDb.Hsapiens.UCSC.hg18.knownGene)
</code></pre>
<pre><code class="r">## coordinates
coordsdir <- system.file('extdata/COORDS',
package = 'chromhmmData')
list.files(file.path(coordsdir, 'hg18'))
</code></pre>
<pre><code>## [1] "CpGIsland.hg18.bed.gz" "laminB1lads.hg18.bed.gz" "RefSeqExon.hg18.bed.gz"
## [4] "RefSeqGene.hg18.bed.gz" "RefSeqTES.hg18.bed.gz" "RefSeqTSS.hg18.bed.gz"
## [7] "RefSeqTSS2kb.hg18.bed.gz"
</code></pre>
<pre><code class="r">## anchors
anchorsdir <- system.file('extdata/ANCHORFILES',
package = 'chromhmmData')
list.files(file.path(anchorsdir, 'hg18'))
</code></pre>
<pre><code>## [1] "RefSeqTES.hg18.txt.gz" "RefSeqTSS.hg18.txt.gz"
</code></pre>
<pre><code class="r">## chromosomes' sizes
chromsizefile <- system.file('extdata/CHROMSIZES',
'hg18.txt',
package = 'chromhmmData')
readLines(chromsizefile, n = 3)
</code></pre>
<pre><code>## [1] "chr1\t247249719" "chr2\t242951149" "chr3\t199501827"
</code></pre>
<pre><code class="r">## locate input and output files
inputdir <- system.file('extdata/SAMPLEDATA_HG18',
package = 'segmenter')
list.files(inputdir)
</code></pre>
<pre><code>## [1] "GM12878_chr11_binary.txt.gz" "K562_chr11_binary.txt.gz"
</code></pre>
<h4>Model learning</h4>
<p>The main function in <code>segmenter</code> is called <code>learn_model</code>. This wraps the the
Java module that learns a chromatin segmentation model of a given number of
states. In addition to the input files explained before, the function takes the
desired number of stats, <code>numstates</code> and the information that were used to
generate the binarized files. Those are the names of the genome <code>assembly</code>, the
type of <code>annotation</code>, the <code>binsize</code> and the names of <code>cells</code> or conditions.</p>
<pre><code class="r">## make an output director
outputdir <- tempdir()
## run command
obj <- learn_model(inputdir = inputdir,
coordsdir = coordsdir,
anchorsdir = anchorsdir,
outputdir = outputdir,
chromsizefile = chromsizefile,
numstates = 3,
assembly = 'hg18',
cells = c('K562', 'GM12878'),
annotation = 'RefSeq',
binsize = 200)
</code></pre>
<p>The return of this function call is the an S4 <code>segmentation</code> object, which we
describe next.</p>
<h3>Output <code>segmentation</code> Object</h3>
<p>The <code>show</code> method prints a summary of the contents of the object. The three main
variables of the data are the states, marks and cells. The output of the
learning process are saved in slots those are</p>
<ul>
<li><code>model</code>: the initial and final parameters of the models</li>
<li><code>emission</code>: the probabilities of each mark being part of a given state</li>
<li><code>transition</code>: the probabilities of each state transition to/from another</li>
<li><code>overlap</code>: the enrichment of the states at every genomic features</li>
<li><code>TSS</code>: the enrichment of the states around the transcription start sites</li>
<li><code>TES</code>: the enrichment of the states around the transcription end sites</li>
<li><code>segment</code>: the assignment of states to every bin in the genome</li>
<li><code>bins</code>: the binarize inputs</li>
<li><code>counts</code>: the non-binarized counts in every bin</li>
</ul>
<p>The last two slots are empty, unless indicated otherwise in the previous call.
Counts are only loaded when the path to the <code>bam</code> files are provided.</p>
<pre><code class="r">## show the object
show(obj)
</code></pre>
<pre><code>## # An object of class 'segmentation'
## # Contains a chromatin segmentation model:
## ## States: 1 2 3
## ## Marks: H3K27me3 H3K4me3 H3K9ac H3K27ac H3K4me2 WCE H3K4me1 CTCF H4K20me1 H3K36me3
## ## Cells: K562 GM12878
## # Contains nine slots:
## ## model: use 'model(object)' to access
## ## emission: use 'emission(object)' to access
## ## transition: use 'transition(object)' to access
## ## overlap: use 'overlap(object)' to access
## ## TSS: use 'TSS(object)' to access
## ## TES: use 'TES(object)' to access
## ## segment: use 'segment(object)' to access
## ## bins: use 'bins(object)' to access
## ## counts: use 'counts(object)' to access
## # For more info about how to use the object, use ?accessors
</code></pre>
<p>For each slot, an accessor function with the same name is provided to access its
contents. For example, to access the emission probabilities call <code>emission</code> on
the object.</p>
<h4>Emissions & transitions</h4>
<p>Emission is the frequency of a particular histone mark in a given chromatin
state. Transition is the frequency by which a state (rows) transitions to
another (column). These probabilities capture the spatial relationships between
the markers (emission) and the states (transition).</p>
<p>To access these probabilities, we use accessors of the corresponding names. The
output in both cases is a matrix of values between 0 and 1. The emissions matrix
has a row for each state and a columns for each marker. The transition matrix
has a rows (from) and columns (to) for each state.</p>
<pre><code class="r">## access object slots
emission(obj)
</code></pre>
<pre><code>## H3K27me3 H3K4me3 H3K9ac H3K27ac H3K4me2 WCE H3K4me1
## [1,] 0.02210946 0.0007877468 0.0002115838 0.0003912198 0.0003992906 0.0003263765 0.00150328
## [2,] 0.01154739 0.0100515031 0.0093233199 0.0211596897 0.0330031299 0.0034382153 0.21393308
## [3,] 0.05276061 0.6906489856 0.6030276625 0.6487866066 0.8252990950 0.0339041491 0.68908408
## CTCF H4K20me1 H3K36me3
## [1,] 0.004697351 0.004263375 0.00121958
## [2,] 0.052151182 0.048625137 0.24715916
## [3,] 0.157048603 0.107478936 0.14438998
</code></pre>
<pre><code class="r">transition(obj)
</code></pre>
<pre><code>## X1 X2 X3
## [1,] 0.99019055 0.008790184 0.001019266
## [2,] 0.05818283 0.907774152 0.034043020
## [3,] 0.02226795 0.114866997 0.862865050
</code></pre>
<p>The <code>plot_heatmap</code> takes the <code>segmentation</code> object and visualize the slot in
<code>type</code>. By default, this is <code>emission</code>. The output is a <code>Heatmap</code> object from
the <code>ComplexHeatmap</code> package. These objects are very flexible and can be
customized to produce diverse informative figures.</p>
<pre><code class="r">## emission and transition plots
h1 <- plot_heatmap(obj,
row_labels = paste('S', 1:3),
name = 'Emission')
h2 <- plot_heatmap(obj,
type = 'transition',
row_labels = paste('S', 1:3),
column_labels = paste('S', 1:3),
name = 'Transition')
h1 + h2
</code></pre>
<p><img src="" width="576" style="display: block; margin: auto;" /></p>
<p>Here, the <code>emission</code> and <code>transition</code> probabilities are combined in one heatmap.</p>
<h4>Overlap Enrichemnt</h4>
<p>The <code>overlap</code> slots contains the fold enrichment of each state in the genomic
coordinates provided in the main call. The enrichment is calculated by first
dividing the number of bases in a state and an annotation and the number of
bases in an annotation and in the genome. These values can be accessed and
visualized using <code>overlap</code> and <code>plot_heatmap</code>.</p>
<pre><code class="r">## overlap enrichment
overlap(obj)
</code></pre>
<pre><code>## $K562
## Genome.. CpGIsland.hg18.bed.gz RefSeqExon.hg18.bed.gz RefSeqGene.hg18.bed.gz
## 1 84.12164 0.44121 0.67556 0.89779
## 2 12.25670 0.83856 2.50467 1.61138
## 3 3.62166 14.52551 3.44377 1.30507
## RefSeqTES.hg18.bed.gz RefSeqTSS.hg18.bed.gz RefSeqTSS2kb.hg18.bed.gz laminB1lads.hg18.bed.gz
## 1 0.72611 0.47881 0.63069 1.13940
## 2 2.35117 1.08139 1.36524 0.25741
## 3 2.78906 12.83038 8.34190 0.27527
##
## $GM12878
## Genome.. CpGIsland.hg18.bed.gz RefSeqExon.hg18.bed.gz RefSeqGene.hg18.bed.gz
## 1 84.68675 0.36002 0.66630 0.87837
## 2 11.37758 1.02611 2.69113 1.74670
## 3 3.93567 14.69536 3.29165 1.45856
## RefSeqTES.hg18.bed.gz RefSeqTSS.hg18.bed.gz RefSeqTSS2kb.hg18.bed.gz laminB1lads.hg18.bed.gz
## 1 0.74512 0.47684 0.66201 1.12892
## 2 2.43884 1.06522 1.16491 0.27933
## 3 2.32497 12.06876 7.79610 0.30929
</code></pre>
<p>An important thing to note here is that the enrichment is calculated for each
cell or condition separately and comparing these values between them can be
very useful.</p>
<pre><code class="r">## overlap enrichment plots
plot_heatmap(obj,
type = 'overlap',
column_labels = c('Genome', 'CpG', 'Exon', 'Gene',
'TES', 'TSS', 'TSS2kb', 'laminB1lads'),
show_heatmap_legend = FALSE)
</code></pre>
<p><img src="" width="576" style="display: block; margin: auto;" /></p>
<p>In this example, eight different types of coordinates or annotations were
included in the call. Those are shown in the columns of the heatmap and the fold
enrichment of each state in the rows.</p>
<h4>Genomic locations enrichment</h4>
<p>A similar fold enrichment is calculated for the regions around the transcription
start (TSS) and end (TES) sits which are defined in the <code>anchordir</code> directory.
Accessors of the same name and plotting functions are provided. These values are
also computed for each cell/condition separately.</p>
<pre><code class="r">## genomic locations enrichment
TSS(obj)
</code></pre>
<pre><code>## $K562
## X.2000 X.1800 X.1600 X.1400 X.1200 X.1000 X.800 X.600 X.400 X.200 X0
## [1,] 0.70688 0.68787 0.66703 0.64863 0.61553 0.58733 0.55667 0.52479 0.49843 0.48494 0.47881
## [2,] 2.01130 1.96501 1.85561 1.67047 1.62839 1.49375 1.32123 1.13609 0.98882 1.03090 1.08139
## [3,] 4.38597 4.98405 5.83846 6.89223 7.80360 8.91434 10.21019 11.57724 12.68798 12.85886 12.83038
## X200 X400 X600 X800 X1000 X1200 X1400 X1600 X1800 X2000
## [1,] 0.47513 0.48372 0.50456 0.52295 0.54012 0.55361 0.57752 0.59591 0.60695 0.61982
## [2,] 0.98461 0.92991 0.90466 0.94253 1.03931 1.26232 1.46009 1.69572 1.90190 2.06600
## [3,] 13.24334 13.22910 12.83038 12.27501 11.54876 10.48075 9.25610 8.03145 7.07736 6.22295
##
## $GM12878
## X.2000 X.1800 X.1600 X.1400 X.1200 X.1000 X.800 X.600 X.400 X.200 X0
## [1,] 0.79777 0.77828 0.75331 0.72347 0.69303 0.64613 0.60229 0.55966 0.52373 0.48597 0.47684
## [2,] 1.50944 1.50944 1.46865 1.39612 1.27827 1.22841 1.14228 1.01989 0.77059 1.01989 1.06522
## [3,] 3.87878 4.29810 4.95330 5.80506 6.80096 7.95411 9.14658 10.41766 11.91151 12.00324 12.06876
## X200 X400 X600 X800 X1000 X1200 X1400 X1600 X1800 X2000
## [1,] 0.47379 0.49023 0.50180 0.51764 0.54139 0.55539 0.57914 0.60899 0.62299 0.63700
## [2,] 0.82498 0.87484 0.90204 0.96097 0.99270 1.07429 1.23294 1.38706 1.61370 1.81314
## [3,] 12.82879 12.33084 12.00324 11.49219 10.88940 10.35214 9.38245 8.29482 7.33823 6.46026
</code></pre>
<pre><code class="r">TES(obj)
</code></pre>
<pre><code>## $K562
## X.2000 X.1800 X.1600 X.1400 X.1200 X.1000 X.800 X.600 X.400 X.200 X0
## [1,] 0.71834 0.71481 0.71975 0.71975 0.72328 0.71834 0.71551 0.71128 0.71551 0.71904 0.72611
## [2,] 2.37056 2.41904 2.40934 2.42389 2.39965 2.39480 2.34632 2.36571 2.37056 2.39965 2.35117
## [3,] 2.90390 2.82187 2.73984 2.69062 2.69062 2.82187 3.05156 3.08437 2.96952 2.78906 2.78906
## X200 X400 X600 X800 X1000 X1200 X1400 X1600 X1800 X2000
## [1,] 0.72470 0.72893 0.72823 0.73247 0.74094 0.74235 0.74730 0.74942 0.75012 0.76001
## [2,] 2.30269 2.25422 2.25422 2.24452 2.20089 2.15241 2.14272 2.16211 2.12333 2.05546
## [3,] 2.98593 3.05156 3.06796 3.00234 2.95312 3.08437 3.00234 2.88749 3.00234 3.00234
##
## $GM12878
## X.2000 X.1800 X.1600 X.1400 X.1200 X.1000 X.800 X.600 X.400 X.200 X0
## [1,] 0.72407 0.73038 0.73249 0.73389 0.72968 0.73389 0.73319 0.74161 0.74161 0.74442 0.74512
## [2,] 2.51717 2.48062 2.47017 2.46495 2.48584 2.50151 2.50151 2.42317 2.42317 2.39706 2.43884
## [3,] 2.55143 2.52123 2.50614 2.49104 2.52123 2.38536 2.40046 2.44575 2.44575 2.46085 2.32497
## X200 X400 X600 X800 X1000 X1200 X1400 X1600 X1800 X2000
## [1,] 0.73950 0.74582 0.75284 0.76757 0.77038 0.77459 0.77669 0.79353 0.79283 0.79563
## [2,] 2.41795 2.37095 2.31350 2.16728 2.12550 2.10983 2.12028 2.06805 2.04194 2.00538
## [3,] 2.50614 2.50614 2.52123 2.62692 2.68730 2.64201 2.56653 2.35517 2.44575 2.49104
</code></pre>
<pre><code class="r">## genomic locations enrichment plots
h1 <- plot_heatmap(obj,
type = 'TSS',
show_heatmap_legend = FALSE)
h2 <- plot_heatmap(obj,
type = 'TES',
show_heatmap_legend = FALSE)
h1 + h2
</code></pre>
<p><img src="" width="672" style="display: block; margin: auto;" /></p>
<h4>Segments</h4>
<p>The last model output is called <code>segment</code> and contains the assignment of the
states to the genome. This is also provided for each cell/condition in the form
of a <code>GRanges</code> object with the chromosome name, start and end sites in the
ranges part of the object and the name of the state in a metadata columns.</p>
<pre><code class="r">## get segments
segment(obj)
</code></pre>
<pre><code>## $K562
## GRanges object with 16280 ranges and 1 metadata column:
## seqnames ranges strand | state
## <Rle> <IRanges> <Rle> | <character>
## [1] chr11 0-50800 * | E1
## [2] chr11 50800-52400 * | E2
## [3] chr11 52400-57800 * | E1
## [4] chr11 57800-58000 * | E2
## [5] chr11 58000-58200 * | E3
## ... ... ... ... . ...
## [16276] chr11 134227400-134243000 * | E1
## [16277] chr11 134243000-134244200 * | E2
## [16278] chr11 134244200-134450800 * | E1
## [16279] chr11 134450800-134451600 * | E2
## [16280] chr11 134451600-134452200 * | E3
## -------
## seqinfo: 1 sequence from an unspecified genome; no seqlengths
##
## $GM12878
## GRanges object with 14009 ranges and 1 metadata column:
## seqnames ranges strand | state
## <Rle> <IRanges> <Rle> | <character>
## [1] chr11 0-66800 * | E1
## [2] chr11 66800-67600 * | E2
## [3] chr11 67600-116200 * | E1
## [4] chr11 116200-116400 * | E3
## [5] chr11 116400-117000 * | E2
## ... ... ... ... . ...
## [14005] chr11 133963800-134243400 * | E1
## [14006] chr11 134243400-134244200 * | E2
## [14007] chr11 134244200-134450800 * | E1
## [14008] chr11 134450800-134451600 * | E2
## [14009] chr11 134451600-134452200 * | E3
## -------
## seqinfo: 1 sequence from an unspecified genome; no seqlengths
</code></pre>
<p>To visualize these segments, we can take advantage of Bioconductor annotation
and visualization tools to subset and render a visual representation of the
segments on a given genomic region.</p>
<p>As an example, we extracted the genomic coordinates of the gene 'ACAT1' on
chromosome 11 and resized it to 10kb around the transcription start site. We
then used <code>Gviz</code>'s <code>AnnotationTrack</code> to render the ranges as tracks grouped by
the <code>state</code> column in the <code>GRanges</code> object for each of the cell lines. </p>
<pre><code class="r">## gene gene coordinates
gen <- genes(TxDb.Hsapiens.UCSC.hg18.knownGene,
filter = list(gene_id = 38))
## extend genomic region
prom <- promoters(gen,
upstream = 10000,
downstream = 10000)
## annotation track
segs1 <- segment(obj, 'K562')
atrack1 <- AnnotationTrack(segs1$K562,
group = segs1$K562$state,
name = 'K562')
segs2 <- segment(obj, 'GM12878')
atrack2 <- AnnotationTrack(segs2$GM12878,
group = segs2$GM12878$state,
name = 'GM12878')
## plot the track
plotTracks(atrack1, from = start(prom), to = end(prom))
</code></pre>
<p><img src="" width="288" style="display: block; margin: auto;" /></p>
<pre><code class="r">plotTracks(atrack2, from = start(prom), to = end(prom))
</code></pre>
<p><img src="" width="288" style="display: block; margin: auto;" /></p>
<p>Other tracks can be added to the plot to make it more informative. Here, we used</p>
<ul>
<li><code>IdeogramTrack</code> to show a graphic representation of chromosome 11</li>
<li><code>GenomeAxisTrack</code> to show a scale of the exact location on the chromosome</li>
<li><code>GeneRegionTrack</code> to show the exon, intron and transcripts of the target gene</li>
</ul>
<p>Those can be put together in one plot using <code>plotTracks</code></p>
<pre><code class="r">## ideogram track
itrack <- IdeogramTrack(genome = 'hg18', chromosome = 11)
## genome axis track
gtrack <- GenomeAxisTrack()
## gene region track
data("geneModels")
grtrack <- GeneRegionTrack(geneModels,
genom = 'hg18',
chromosome = 11,
name = 'ACAT1')
## put all tracks together
plotTracks(list(itrack, gtrack, grtrack, atrack1, atrack2),
from = min(start(prom)),
to = max(end(gen)),
groupAnnotation = 'group')
</code></pre>
<p><img src="" width="384" style="display: block; margin: auto;" /></p>
<p>Moreover, we can summarize the segmentation output in different ways to either
show how the combination of chromatin markers are arranged or to compare
different cells and condition.</p>
<p>One simple summary, is to count the occurrence of states across the genome.
<code>get_frequency</code> does that and returns the output in tabular or graphic formats.</p>
<pre><code class="r">## get segment frequency
get_frequency(segment(obj), tidy = TRUE)
</code></pre>
<pre><code>## state frequency cell
## 1 E1 5150 K562
## 2 E2 7489 K562
## 3 E3 3641 K562
## 4 E1 4371 GM12878
## 5 E2 6359 GM12878
## 6 E3 3279 GM12878
</code></pre>
<p>The frequency of the states in each cell can also be normalized by the total
number of states to make comparing across cell and condition easier.</p>
<pre><code class="r">## frequency plots
par(mfrow=c(1, 2))
get_frequency(segment(obj),
plot = TRUE,
ylab = 'Segment Frequency')
get_frequency(segment(obj),
normalize = TRUE,
plot = TRUE,
ylab = 'Segment Fraction')
</code></pre>
<p><img src="" width="672" style="display: block; margin: auto;" /></p>
<h3>Comparing models</h3>
<p>To choose a model that fits the data well, one can learn multiple models with
different parameters, for example the number of states and compare them. In this
example, we will be calling <code>learn_model</code> several times using <code>lapply</code> with the
same inputs except the number of states (<code>numstates</code>). The output would be a
list of <code>segmentation</code> objects. <code>segmenter</code> contain functions to do basic
comparison between the models.</p>
<pre><code class="r">## relearn the models with 3 to 8 states
objs <- lapply(3:8,
function(x) {
learn_model(inputdir = inputdir,
coordsdir = coordsdir,
anchorsdir = anchorsdir,
chromsizefile = chromsizefile,
numstates = x,
assembly = 'hg18',
cells = c('K562', 'GM12878'),
annotation = 'RefSeq',
binsize = 200)
})
</code></pre>
<ul>
<li><code>compare_models</code> takes a list of <code>segmentation</code> objects and returns a vector
with the same length. The default is to compare the correlation between the
emission parameters of the states in the different models. Only the correlations
of the states that has the maximum correlation with one of the states in the
biggest model is returned.</li>
</ul>
<pre><code class="r">## compare the models max correlation between the states
compare_models(objs)
</code></pre>
<pre><code>## [1] 0.6992815 0.9911192 0.9935068 0.9925634 0.9936017 1.0000000
</code></pre>
<ul>
<li>The other value to compare is the likelihood of the models which can be
indicated through the <code>type</code> argument.</li>
</ul>
<pre><code class="r">## compare the models likelihood
compare_models(objs, type = 'likelihood')
</code></pre>
<pre><code>## [1] -889198.8 -834128.3 -806108.9 -790283.4 -773662.1 -766802.5
</code></pre>
<p>Setting <code>plot = TRUE</code> returns a plot with data points corresponding to the
models in the list. </p>
<pre><code class="r">## compare models plots
par(mfrow = c(1, 2))
compare_models(objs,
plot = TRUE,
xlab = 'Model', ylab = 'State Correlation')
compare_models(objs, type = 'likelihood',
plot = TRUE,
xlab = 'Model', ylab = 'Likelihood')
</code></pre>
<p><img src="" width="672" style="display: block; margin: auto;" /></p>
<p>As the number of states increases, one of the states in the smaller model would
be split into more than one and its emission probabilities would have higher
correlations with the states in the larger model.</p>
<h2>Concluding remarks</h2>
<p>To conclude, the chromatin states models </p>
<ul>
<li>Emissions and transition probabilities show the frequency with which histone
marker or their combination occur across the genome (states). The meaning of
these states depends on the biological significance of the markers. Some markers
associate with particular regions or (e.g. promoters, enhancers, etc) or
configurations (e.g. active, repressed, etc).</li>
<li>Fold-enrichment can be useful in defining the regions in which certain states
occur or how they change in frequency between cells or conditions.</li>
<li>The segmentation of the genome on which these probabilities are defined can be
used to visualize or integrate this information in other analyses such as
over-representation or investigating the regulation of specific regions of
interest.</li>
</ul>
<h3><strong>Availability of supporting source code and requirements</strong></h3>
<p>List the following:</p>
<ul>
<li> Project name: segmenter</li>
<li> Project home page: <a href="https://github.com/MahShaaban/segmenter">https://github.com/MahShaaban/segmenter</a></li>
<li> Operating system(s): Platform independent</li>
<li> Programming language: R</li>
<li> Other requirements: R 4.1 or higher</li>
<li> License: GPL-3</li>
</ul>
<h3>Declarations</h3>
<h4>Competing interests</h4>
<p>The authors declare no conflict of interest.</p>
<h4>Funding</h4>
<p>This work was supported by the National Research Foundation of Korea (NRF) grant
funded by the Ministry of Science and ICT (MSIT) of the Korea government
[2015R1A5A2008833 and 2020R1A2C2011416].</p>
<h4>Author contributions</h4>
<p>Mahmoud Ahmed developed and maintains the package. Deok Ryong Kim supervised
the project.</p>
<h3>References</h3>
</body>
</html>