-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathatx.cpp
161 lines (137 loc) · 4.84 KB
/
atx.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
/**
* CS61064 - High Perfomance Parallel Programming
* OpenMP/MPI - Assignment 1
* Parallel Image morphing by affine transformations
*
* Author: Utkarsh Patel (18EC35034)
*
* Implementation for affine transformation
*/
#include <vector>
#include <cassert>
#include <algorithm>
#include <opencv2/core/core.hpp>
#include <opencv2/imgcodecs.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp>
#include "atx.hpp"
constexpr double EPS = 1e-6;
/**
* @brief Multiply two matrices
*
* @details This function is not parallelized as it is only used for
* multiplying 3x3 matrices and 3x1 vectors.
*/
std::vector<std::vector<double>>
atx::core::matrix_multiply(const std::vector<std::vector<double>>& matrix_1,
const std::vector<std::vector<double>>& matrix_2)
{
std::size_t n = matrix_1.size();
std::size_t k = matrix_1[0].size();
std::size_t k_ = matrix_2.size();
std::size_t m = matrix_2[0].size();
assert(k == k_);
std::vector<std::vector<double>> res(n, std::vector<double>(m));
for (std::size_t i = 0; i < n; i++) {
for (std::size_t j = 0; j < m; j++) {
double sum = 0;
for (std::size_t p = 0; p < k; p++) {
sum += matrix_1[i][p] * matrix_2[p][j];
}
res[i][j] = sum;
}
}
return res;
}
/**
* @brief Get inverse of a non-singular matrix
*/
std::vector<std::vector<double>>
atx::core::get_matrix_inverse(const std::vector<std::vector<double>>& matrix)
{
std::size_t n = matrix.size(); assert(n == 3);
std::size_t m = matrix[0].size(); assert(m == 3);
double determinant = 0;
for (int i = 0; i < 3; i++) {
determinant += matrix[0][i] * (matrix[1][(i+1)%3] * matrix[2][(i+2)%3] \
- matrix[1][(i+2)%3] * matrix[2][(i+1)%3]);
}
assert(determinant != 0);
std::vector<std::vector<double>> inverse(n, std::vector<double>(m));
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
inverse[i][j] = ((matrix[(j+1)%3][(i+1)%3] * matrix[(j+2)%3][(i+2)%3]) \
- (matrix[(j+1)%3][(i+2)%3] * matrix[(j+2)%3][(i+1)%3])) \
/ determinant;
}
}
return inverse;
}
/**
* @brief Get the affine transform for the triangle pair
*
* @param source_triangle Source triangle
* @param dest_triangle Destination triangle
* @return std::vector<std::vector<double>>
*/
std::vector<std::vector<double>>
atx::core::get_affine_transform(const cv::Vec6f& source_triangle,
const cv::Vec6f& dest_triangle)
{
std::vector<std::vector<double>> V(3, std::vector<double>(3, 1)),
W(3, std::vector<double>(3, 1));
for (int i = 0; i < 3; i++) {
V[0][i] = source_triangle[i * 2];
V[1][i] = source_triangle[i * 2 + 1];
W[0][i] = dest_triangle[i * 2];
W[1][i] = dest_triangle[i * 2 + 1];
}
auto V_inv = get_matrix_inverse(V);
return matrix_multiply(W, V_inv);
}
/**
* @brief Get ((x_min, x_max), (y_min, y_max)) for given triangle
*/
std::pair<std::pair<int, int>, std::pair<int, int>>
atx::core::get_triangle_bounds(const cv::Vec6f& triangle)
{
int x_max = INT_MIN, x_min = INT_MAX, y_max = INT_MIN, y_min = INT_MAX;
for (int i = 0; i < 3; i++) {
x_max = std::max(x_max, static_cast<int>(triangle[i * 2]));
x_min = std::min(x_min, static_cast<int>(triangle[i * 2]));
y_max = std::max(y_max, static_cast<int>(triangle[i * 2 + 1]));
y_min = std::min(y_min, static_cast<int>(triangle[i * 2 + 1]));
}
return std::make_pair(std::make_pair(x_min, x_max), std::make_pair(y_min, y_max));
}
double atx::core::triangle_area(const cv::Vec6f& triangle) {
double signed_area = triangle[0] * (triangle[3] - triangle[5]) \
+ triangle[2] * (triangle[5] - triangle[1]) \
+ triangle[4] * (triangle[1] - triangle[3]);
return std::abs(signed_area);
}
/**
* @brief Check whether a point (x, y) is inside a triangle
*
* @param x Point's x-coordinate
* @param y Point's y-coordinate
* @param triangle triangle in the check
*/
bool atx::core::is_inside_triangle(int x, int y, const cv::Vec6f& triangle)
{
auto triangle1 = cv::Vec6f(triangle);
auto triangle2 = cv::Vec6f(triangle);
auto triangle3 = cv::Vec6f(triangle);
triangle1[0] = static_cast<float>(x);
triangle1[1] = static_cast<float>(y);
triangle2[2] = static_cast<float>(x);
triangle2[3] = static_cast<float>(y);
triangle3[4] = static_cast<float>(x);
triangle3[5] = static_cast<float>(y);
auto area = triangle_area(triangle);
auto area1 = triangle_area(triangle1);
auto area2 = triangle_area(triangle2);
auto area3 = triangle_area(triangle3);
auto delta = std::abs(area1 + area2 + area3 - area);
return delta < EPS;
}