-
Notifications
You must be signed in to change notification settings - Fork 2
/
data_loader_terabyte.py
368 lines (300 loc) · 12.2 KB
/
data_loader_terabyte.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from __future__ import absolute_import, division, print_function, unicode_literals
import os
import numpy as np
from torch.utils.data import Dataset
import torch
import time
import math
from tqdm import tqdm
import argparse
class DataLoader:
"""
DataLoader dedicated for the Criteo Terabyte Click Logs dataset
"""
def __init__(
self,
data_filename,
data_directory,
days,
batch_size,
max_ind_range=-1,
split="train",
drop_last_batch=False
):
self.data_filename = data_filename
self.data_directory = data_directory
self.days = days
self.batch_size = batch_size
self.max_ind_range = max_ind_range
total_file = os.path.join(
data_directory,
data_filename + "_day_count.npz"
)
with np.load(total_file) as data:
total_per_file = data["total_per_file"][np.array(days)]
self.length = sum(total_per_file)
if split == "test" or split == "val":
self.length = int(np.ceil(self.length / 2.))
self.split = split
self.drop_last_batch = drop_last_batch
def __iter__(self):
return iter(
_batch_generator(
self.data_filename, self.data_directory, self.days,
self.batch_size, self.split, self.drop_last_batch, self.max_ind_range
)
)
def __len__(self):
if self.drop_last_batch:
return self.length // self.batch_size
else:
return math.ceil(self.length / self.batch_size)
def _transform_features(
x_int_batch, x_cat_batch, y_batch, max_ind_range, flag_input_torch_tensor=False
):
if max_ind_range > 0:
x_cat_batch = x_cat_batch % max_ind_range
if flag_input_torch_tensor:
x_int_batch = torch.log(x_int_batch.clone().detach().type(torch.float) + 1)
x_cat_batch = x_cat_batch.clone().detach().type(torch.long)
y_batch = y_batch.clone().detach().type(torch.float32).view(-1, 1)
else:
x_int_batch = torch.log(torch.tensor(x_int_batch, dtype=torch.float) + 1)
x_cat_batch = torch.tensor(x_cat_batch, dtype=torch.long)
y_batch = torch.tensor(y_batch, dtype=torch.float32).view(-1, 1)
batch_size = x_cat_batch.shape[0]
feature_count = x_cat_batch.shape[1]
lS_o = torch.arange(batch_size).reshape(1, -1).repeat(feature_count, 1)
return x_int_batch, lS_o, x_cat_batch.t(), y_batch.view(-1, 1)
def _batch_generator(
data_filename, data_directory, days, batch_size, split, drop_last, max_ind_range
):
previous_file = None
for day in days:
filepath = os.path.join(
data_directory,
data_filename + "_{}_reordered.npz".format(day)
)
# print('Loading file: ', filepath)
with np.load(filepath) as data:
x_int = data["X_int"]
x_cat = data["X_cat"]
y = data["y"]
samples_in_file = y.shape[0]
batch_start_idx = 0
if split == "test" or split == "val":
length = int(np.ceil(samples_in_file / 2.))
if split == "test":
samples_in_file = length
elif split == "val":
batch_start_idx = samples_in_file - length
while batch_start_idx < samples_in_file - batch_size:
missing_samples = batch_size
if previous_file is not None:
missing_samples -= previous_file['y'].shape[0]
current_slice = slice(batch_start_idx, batch_start_idx + missing_samples)
x_int_batch = x_int[current_slice]
x_cat_batch = x_cat[current_slice]
y_batch = y[current_slice]
if previous_file is not None:
x_int_batch = np.concatenate(
[previous_file['x_int'], x_int_batch],
axis=0
)
x_cat_batch = np.concatenate(
[previous_file['x_cat'], x_cat_batch],
axis=0
)
y_batch = np.concatenate([previous_file['y'], y_batch], axis=0)
previous_file = None
if x_int_batch.shape[0] != batch_size:
raise ValueError('should not happen')
yield _transform_features(x_int_batch, x_cat_batch, y_batch, max_ind_range)
batch_start_idx += missing_samples
if batch_start_idx != samples_in_file:
current_slice = slice(batch_start_idx, samples_in_file)
if previous_file is not None:
previous_file = {
'x_int' : np.concatenate(
[previous_file['x_int'], x_int[current_slice]],
axis=0
),
'x_cat' : np.concatenate(
[previous_file['x_cat'], x_cat[current_slice]],
axis=0
),
'y' : np.concatenate([previous_file['y'], y[current_slice]], axis=0)
}
else:
previous_file = {
'x_int' : x_int[current_slice],
'x_cat' : x_cat[current_slice],
'y' : y[current_slice]
}
if not drop_last:
yield _transform_features(
previous_file['x_int'],
previous_file['x_cat'],
previous_file['y'],
max_ind_range
)
def _test():
generator = _batch_generator(
data_filename='day',
data_directory='./input',
days=range(23),
split="train",
batch_size=2048,
drop_last=True,
max_ind_range=-1
)
t1 = time.time()
for x_int, lS_o, x_cat, y in generator:
t2 = time.time()
time_diff = t2 - t1
t1 = t2
print(
"time {} x_int.shape: {} lS_o.shape: {} x_cat.shape: {} y.shape: {}".format(
time_diff, x_int.shape, lS_o.shape, x_cat.shape, y.shape
)
)
class CriteoBinDataset(Dataset):
"""Binary version of criteo dataset."""
def __init__(self, data_file, counts_file,
batch_size=1, max_ind_range=-1, bytes_per_feature=4):
# dataset
self.tar_fea = 1 # single target
self.den_fea = 13 # 13 dense features
self.spa_fea = 26 # 26 sparse features
self.tad_fea = self.tar_fea + self.den_fea
self.tot_fea = self.tad_fea + self.spa_fea
self.batch_size = batch_size
self.max_ind_range = max_ind_range
self.bytes_per_entry = (bytes_per_feature * self.tot_fea * batch_size)
self.num_entries = math.ceil(os.path.getsize(data_file) / self.bytes_per_entry)
print('data file:', data_file, 'number of batches:', self.num_entries)
self.file = open(data_file, 'rb')
with np.load(counts_file) as data:
self.counts = data["counts"]
# hardcoded for now
self.m_den = 13
def __len__(self):
return self.num_entries
def __getitem__(self, idx):
self.file.seek(idx * self.bytes_per_entry, 0)
raw_data = self.file.read(self.bytes_per_entry)
array = np.frombuffer(raw_data, dtype=np.int32)
tensor = torch.from_numpy(array).view((-1, self.tot_fea))
return _transform_features(x_int_batch=tensor[:, 1:14],
x_cat_batch=tensor[:, 14:],
y_batch=tensor[:, 0],
max_ind_range=self.max_ind_range,
flag_input_torch_tensor=True)
def __del__(self):
self.file.close()
def numpy_to_binary(input_files, output_file_path, split='train'):
"""Convert the data to a binary format to be read with CriteoBinDataset."""
# WARNING - both categorical and numerical data must fit into int32 for
# the following code to work correctly
with open(output_file_path, 'wb') as output_file:
if split == 'train':
for input_file in input_files:
print('Processing file: ', input_file)
np_data = np.load(input_file)
np_data = np.concatenate([np_data['y'].reshape(-1, 1),
np_data['X_int'],
np_data['X_cat']], axis=1)
np_data = np_data.astype(np.int32)
output_file.write(np_data.tobytes())
else:
assert len(input_files) == 1
np_data = np.load(input_files[0])
np_data = np.concatenate([np_data['y'].reshape(-1, 1),
np_data['X_int'],
np_data['X_cat']], axis=1)
np_data = np_data.astype(np.int32)
samples_in_file = np_data.shape[0]
midpoint = int(np.ceil(samples_in_file / 2.))
if split == "test":
begin = 0
end = midpoint
elif split == "val":
begin = midpoint
end = samples_in_file
else:
raise ValueError('Unknown split value: ', split)
output_file.write(np_data[begin:end].tobytes())
def _preprocess(args):
train_files = ['{}_{}_reordered.npz'.format(args.input_data_prefix, day) for
day in range(0, 23)]
test_valid_file = args.input_data_prefix + '_23_reordered.npz'
os.makedirs(args.output_directory, exist_ok=True)
for split in ['train', 'val', 'test']:
print('Running preprocessing for split =', split)
output_file = os.path.join(args.output_directory,
'{}_data.bin'.format(split))
input_files = train_files if split == 'train' else [test_valid_file]
numpy_to_binary(input_files=input_files,
output_file_path=output_file,
split=split)
def _test_bin():
parser = argparse.ArgumentParser()
parser.add_argument('--output_directory', required=True)
parser.add_argument('--input_data_prefix', required=True)
parser.add_argument('--split', choices=['train', 'test', 'val'],
required=True)
args = parser.parse_args()
_preprocess(args)
binary_data_file = os.path.join(args.output_directory,
'{}_data.bin'.format(args.split))
counts_file = os.path.join(args.output_directory, 'day_fea_count.npz')
dataset_binary = CriteoBinDataset(data_file=binary_data_file,
counts_file=counts_file,
batch_size=2048,)
from dlrm_data_pytorch import CriteoDataset
from dlrm_data_pytorch import collate_wrapper_criteo_offset as collate_wrapper_criteo
binary_loader = torch.utils.data.DataLoader(
dataset_binary,
batch_size=None,
shuffle=False,
num_workers=0,
collate_fn=None,
pin_memory=False,
drop_last=False,
)
original_dataset = CriteoDataset(
dataset='terabyte',
max_ind_range=10 * 1000 * 1000,
sub_sample_rate=1,
randomize=True,
split=args.split,
raw_path=args.input_data_prefix,
pro_data='dummy_string',
memory_map=True
)
original_loader = torch.utils.data.DataLoader(
original_dataset,
batch_size=2048,
shuffle=False,
num_workers=0,
collate_fn=collate_wrapper_criteo,
pin_memory=False,
drop_last=False,
)
assert len(dataset_binary) == len(original_loader)
for i, (old_batch, new_batch) in tqdm(enumerate(zip(original_loader,
binary_loader)),
total=len(dataset_binary)):
for j in range(len(new_batch)):
if not np.array_equal(old_batch[j], new_batch[j]):
raise ValueError('FAILED: Datasets not equal')
if i > len(dataset_binary):
break
print('PASSED')
if __name__ == '__main__':
_test()
_test_bin()