forked from parmes/solfec-1.0
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmrf.c
175 lines (157 loc) · 4.3 KB
/
mrf.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
/*
* mrf.c
* Copyright (C) 2010 Tomasz Koziara (t.koziara AT gmail.com)
* -------------------------------------------------------------------
* constraints satisfaction merit function
*/
/* This file is part of Solfec.
* Solfec is free software: you can redistribute it and/or modify it under
* the terms of the GNU Lesser General Public License as published by the
* Free Software Foundation, either version 3 of the License, or (at your
* option) any later version.
*
* Solfec is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
* License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with Solfec. If not, see <http://www.gnu.org/licenses/>. */
#include <Python.h>
#include <structmember.h>
#include <float.h>
#include "lng.h"
#include "sol.h"
#include "mrf.h"
#include "alg.h"
#include "scf.h"
/* constraint satisfaction merit function approximately indicates the
* amount of spurious momentum due to constraint force inaccuracy;
* update_U != 0 implies that U needs to be computed for current R;
* (it is assumed that all (also external) reactions are updated) */
double MERIT_Function (LOCDYN *ldy, short update_U)
{
double step, up, uplo [2], Q [3], P [3];
SOLVER_KIND solver;
short dynamic;
DIAB *dia;
OFFB *blk;
CON *con;
uplo [0] = 0.0;
uplo [1] = ldy->free_energy < DBL_EPSILON ? 1.0 : ldy->free_energy; /* XXX => avoid division by zero */
dynamic = ldy->dom->dynamic;
step = ldy->dom->step;
solver = ldy->dom->solfec->kind;
for (dia = ldy->dia; dia; dia = dia->n)
{
con = dia->con;
double *W = dia->W,
*A = dia->A,
*B = dia->B,
*V = dia->V,
*U = dia->U,
*R = dia->R;
if (update_U)
{
NVADDMUL (B, W, R, U);
for (blk = dia->adj; blk; blk = blk->n)
{
double *W = blk->W, *R = blk->dia->R;
NVADDMUL (U, W, R, U);
}
#if MPI
for (blk = dia->adjext; blk; blk = blk->n)
{
double *W = blk->W, *R = CON(blk->dia)->R;
NVADDMUL (U, W, R, U);
}
#endif
}
switch (con->kind)
{
case CONTACT:
{
SCF_Linearize (con, U, R, -1, 0, P, NULL, NULL);
NVMUL (A, P, Q);
up = DOT (Q, P);
}
break;
case FIXPNT:
{
if (dynamic) { ADD (U, V, P); }
else { COPY (U, P); }
NVMUL (A, P, Q);
up = DOT (Q, P);
}
break;
case FIXDIR:
{
if (dynamic) { P[2] = U[2] + V[2]; }
else { P[2] = U[2]; }
Q [2] = A[8] * P[2];
up = Q[2] * P[2];
}
break;
case VELODIR:
{
P [2] = VELODIR(con->Z) - U[2];
Q [2] = A[8] * P[2];
up = Q[2] * P[2];
}
break;
case RIGLNK:
{
double h = step * (dynamic ? 0.5 : 1.0);
if (solver == GAUSS_SEIDEL_SOLVER)
{
P[2] = con->gap/h + U[2]; /* XXX: this is rough since dbb.c:riglnk is minimising R[2] under |Z+hU|=d */
}
else
{
double d = RIGLNK_LEN (con->Z),
delta;
delta = d*d - h*h*DOT2(U,U);
if (delta >= 0.0) P [2] = (sqrt (delta) - d)/h - U[2];
else P[2] = -U[2];
}
Q [2] = A[8] * P[2];
up = Q[2] * P[2];
}
break;
case SPRING:
{
double *lim = con->Z, gap = con->gap;
if ((gap < lim[0] && U[2] < 0) || (gap > lim[1] && U[2] > 0))
{
if (dynamic) { P[2] = U[2] + V[2]; }
else { P[2] = U[2]; }
Q [2] = A[8] * P[2]; /* inv(W) * velocity */
up = Q[2] * P[2];
}
else
{
double g = dynamic ? gap + 0.25*step*(U[2]-V[2]) : gap + step*U[2],
v = dynamic ? 0.5*(V[2]+U[2]) : U[2],
R2 = springcallback ((PyObject*)con->tms, g, v);
P [2] = -R[2] + R2;
Q [2] = W[8]*P[2]; /* W * force */
up = Q[2] * P[2];
}
}
break;
}
con->merit = up; /* per-constraint merit numerator */
uplo [0] += up;
}
#if MPI
double inp [2] = {uplo [0], uplo [1]};
MPI_Allreduce (inp, uplo, 2, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD); /* sum up */
#endif
uplo [0] *= 0.5; /* was ommited above: E = 0.5 (AU, U) */
uplo [1] = (uplo [1] == 0 ? 1 : uplo [1]);
for (con = ldy->dom->con; con; con = con->next)
{
con->merit /= uplo [1]; /* per-constraint merit denominator */
}
return uplo [0] / uplo [1];
}