-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcontroller.py
493 lines (394 loc) · 18.7 KB
/
controller.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
import numpy as np
from pydrake.all import *
DEBUG = True
class Controller(LeafSystem):
"""
Implementing the MPC and swing leg controller for the trunk model.
Based on the paper:
Dynamic Locomotion in the MIT Cheetah 3 Through Convex Model-Predictive Control.
https://dspace.mit.edu/bitstream/handle/1721.1/138000/convex_mpc_2fix.pdf
The controller has one input port and one output port:
- Quadruped state: Input port to receive the state of the quadruped model
Output port:
- Quadruped torques: The torques to be applied to the quadruped model
"""
def __init__(
self,
plant,
dt,
mpc_horizon_length, # In number of discrete steps
gravity_value, # Gravity value
mu, # Friction coefficient
):
LeafSystem.__init__(self)
self.plant = plant
self.plant_context = plant.CreateDefaultContext()
self.dt = dt
self.mpc_horizon_length = mpc_horizon_length
self.gravity_value = gravity_value
self.mu = mu
self.world_frame = plant.world_frame()
# Get the mass and inertia of the trunk
self.mass = plant.CalcTotalMass(self.plant_context)
I_moment = plant.GetBodyByName('body').CalcSpatialInertiaInBodyFrame(self.plant_context).CalcRotationalInertia().CopyToFullMatrix3()
print("I_moment: \n", I_moment)
print("mass: ", self.mass)
self.I_moment_inv = np.linalg.inv(I_moment)
# Get the actuation matrix
self.B = plant.MakeActuationMatrix()
# Linearized dynamics
# States are: (for trunk rigid body only)
# 1. 3D angular position
# 2. 3D linear position
# 3. 3D angular velocity
# 4. 3D linear velocity
# 5. Extra gravity term (1D)
# This makes the state 13 dimensional
self.mpc_state_dim = 13
# Control inputs are:
# 3D forces on each foot - 12 dimensional
self.mpc_control_dim = 12
# Q and R matrices for the cost function
# r, p, y, x, y, z, omega_x, omega_y, omega_z, v_x, v_y, v_z, g
self.Q = np.diag([5., 5., 50., 10., 50., 50., 1, 1, .1, 0.5, .1, .1, .0])
self.R = 1e-6 * np.eye(self.mpc_control_dim)
# Quadruped state and trunk trajectory input ports
self.input_ports = {
"quadruped_state": self.DeclareVectorInputPort(
"quadruped_state",
BasicVector(self.plant.num_positions() + self.plant.num_velocities())
).get_index(),
"trunk_input": self.DeclareAbstractInputPort(
"trunk_input",
AbstractValue.Make([])
).get_index(),
"contact_results": self.DeclareAbstractInputPort(
"contact_results",
AbstractValue.Make(ContactResults())
).get_index()
}
# Quadruped torques output port
self.output_ports = {
"quadruped_torques": self.DeclareVectorOutputPort(
"quadruped_torques",
BasicVector(self.plant.num_actuators()),
self.CalcQuadrupedTorques
).get_index()
}
# Store current state
self.x_curr = np.zeros(self.mpc_state_dim)
# Store current foot positions and velocities in world frame
self.foot_positions = []
self.foot_velocities = []
# Kp, Kd for the swing controller
self.Kp_swing = 200.0 * np.eye(3)
self.Kd_swing = 20.0 * np.eye(3)
# Store the contact results
self.contact_results = ContactResults()
# Store the torques
self.torques = np.zeros(self.plant.num_actuators())
def get_output_port_by_name(self, name):
"""
Get the output port object by name
"""
return self.get_output_port(self.output_ports[name])
def get_input_port_by_name(self, name):
"""
Get the input port object by name
"""
return self.get_input_port(self.input_ports[name])
def UpdateStoredContextAndState(self, context):
"""
Update the stored context with the current context
"""
state = self.EvalVectorInput(context, self.input_ports["quadruped_state"]).get_value()
self.plant.SetPositionsAndVelocities(self.plant_context, state)
# Get the contact results
self.contact_results = self.EvalAbstractInput(context, self.input_ports["contact_results"]).get_value()
# Get the current state
curr_pose = self.plant.GetBodyByName("body").EvalPoseInWorld(self.plant_context)
curr_vel = self.plant.GetBodyByName("body").EvalSpatialVelocityInWorld(self.plant_context)
self.x_curr[0:3] = curr_pose.rotation().ToRollPitchYaw().vector()
self.x_curr[3:6] = curr_pose.translation()
self.x_curr[6:9] = curr_vel.rotational()
self.x_curr[9:12] = curr_vel.translational()
self.x_curr[12] = self.gravity_value
if DEBUG:
print("Current state: \n", np.round(self.x_curr, 2))
# Get the foot positions
self.foot_positions = [
self.plant.GetBodyByName("LF_FOOT").EvalPoseInWorld(self.plant_context).translation(),
self.plant.GetBodyByName("RF_FOOT").EvalPoseInWorld(self.plant_context).translation(),
self.plant.GetBodyByName("LH_FOOT").EvalPoseInWorld(self.plant_context).translation(),
self.plant.GetBodyByName("RH_FOOT").EvalPoseInWorld(self.plant_context).translation()
]
# Get the foot velocities
self.foot_velocities = [
self.plant.GetBodyByName("LF_FOOT").EvalSpatialVelocityInWorld(self.plant_context).translational(),
self.plant.GetBodyByName("RF_FOOT").EvalSpatialVelocityInWorld(self.plant_context).translational(),
self.plant.GetBodyByName("LH_FOOT").EvalSpatialVelocityInWorld(self.plant_context).translational(),
self.plant.GetBodyByName("RH_FOOT").EvalSpatialVelocityInWorld(self.plant_context).translational()
]
def CalcQuadrupedTorques(self, context, output):
"""
Calculate the torques to be applied to the quadruped model
"""
# Update the stored context and state
self.UpdateStoredContextAndState(context)
# Get the trunk trajectory
trunk_trajectory = self.EvalAbstractInput(context, self.input_ports["trunk_input"]).get_value()
# Calculate the torques
self.torques = self.ControlLaw(trunk_trajectory)
# Set the torques
output.SetFromVector(self.torques)
def ControlLaw(self, trunk_trajectory):
"""
Implement the control law
"""
# Calculate contact forces for each foot in body frame
forces = self.CalcForcesMPC(trunk_trajectory)
if DEBUG:
print("Forces: \n", np.round(forces, 2))
# Get the contact states
contact_states = trunk_trajectory[0]["contact_states"]
# Calculate the torques because of the forces
foot_Js = self.CalcFootTranslationJacobians()
u = np.zeros(self.mpc_control_dim)
for i in range(4):
if contact_states[i]:
u[i*3:i*3+3] = -foot_Js[i].T @ forces[i]
else:
u[i*3:i*3+3] = self.CalculateTorquesSwingController(trunk_trajectory)[i*3:i*3+3]
# Use actuation matrix to get the torques
torques = u
return torques
def CalcForcesMPC(self, trunk_trajectory):
"""
Calculate the contact forces for each foot using Model Predictive Control
"""
# Initialize mathematical program and decalre decision variables
prog = MathematicalProgram()
x = np.zeros((self.mpc_horizon_length, self.mpc_state_dim), dtype=Variable)
for i in range(self.mpc_horizon_length):
x[i] = prog.NewContinuousVariables(self.mpc_state_dim, "x_" + str(i))
f = np.zeros((self.mpc_horizon_length-1, self.mpc_control_dim), dtype=Variable)
for i in range(self.mpc_horizon_length-1):
f[i] = prog.NewContinuousVariables(self.mpc_control_dim, "f_" + str(i))
# Create x_i_ref for all time steps
def GetReferenceState(trunk_trajectory, i, x_curr):
"""
Get the reference state at time i
# TODO: use i to get the reference state
"""
x_ref = np.zeros(self.mpc_state_dim)
x_ref[0:3] = trunk_trajectory[i]["rpy"]
x_ref[3:6] = trunk_trajectory[i]["p_com"]
x_ref[9:12] = trunk_trajectory[i]["v_com"]
x_ref[12] = self.gravity_value
# Convert from rpy_dot to omega
rot_matrix = RollPitchYaw(x_ref[0:3]).ToRotationMatrix().inverse()
x_ref[6:9] = rot_matrix @ trunk_trajectory[i]["rpy_dot"]
# Compensation for pitch and roll drift
x_ref[0] = 0.0 - x_curr[0]
x_ref[1] = 0.0 - x_curr[1]
return x_ref
x_ref = np.zeros((self.mpc_horizon_length, self.mpc_state_dim))
for i in range(self.mpc_horizon_length):
x_ref[i] = GetReferenceState(trunk_trajectory, i, self.x_curr)
######### Add the dynamics constraints #########
for i in range(self.mpc_horizon_length-1):
A_i, B_i = self.DiscreteTimeLinearizedDynamics(trunk_trajectory, i)
prog.AddLinearEqualityConstraint(x[i+1] - A_i @ x[i] - B_i @ f[i], np.zeros(self.mpc_state_dim))
######### Add the force constraints on non-contact feet #########
# For creating a constraint D_i @ f_i = 0, to zero out the
# forces when the foot is not in contact
for i in range(self.mpc_horizon_length-1):
D_i = np.zeros((self.mpc_control_dim, self.mpc_control_dim))
contact_states = trunk_trajectory[i]["contact_states"]
for j in range(4):
if not contact_states[j]:
D_i[j*3:j*3+3, j*3:j*3+3] = np.eye(3)
prog.AddLinearEqualityConstraint(D_i @ f[i], np.zeros(self.mpc_control_dim))
######### Add the force limits on contact feet #########
# force_z is within f_min and f_max, and the force_x and force_y
# are within the friction cone
f_min = 0
f_max = 200
for i in range(self.mpc_horizon_length-1):
contact_states = trunk_trajectory[i]["contact_states"]
for j in range(4):
if contact_states[j]:
# f_z is within f_min and f_max
prog.AddBoundingBoxConstraint(f_min, f_max, f[i][j*3+2])
# f_x within the friction cone
prog.AddLinearConstraint(f[i][j*3] <= self.mu * f[i][j*3+2])
prog.AddLinearConstraint(-self.mu * f[i][j*3+2] <= f[i][j*3])
# f_y within the friction cone
prog.AddLinearConstraint(f[i][j*3+1] <= self.mu * f[i][j*3+2])
prog.AddLinearConstraint(-self.mu * f[i][j*3+2] <= f[i][j*3+1])
######### Add the initial state constraint #########
# derived from the current state of the robot
prog.AddLinearEqualityConstraint(x[0] - self.x_curr, np.zeros(self.mpc_state_dim))
######### Add the cost function #########
for i in range(self.mpc_horizon_length):
prog.AddQuadraticCost((x[i] - x_ref[i]).T @ self.Q @ (x[i] - x_ref[i]))
if i < self.mpc_horizon_length-1:
prog.AddQuadraticCost(f[i].T @ self.R @ f[i])
######### Solve the optimization problem #########
solver = OsqpSolver()
prog.SetSolverOption(solver.id(), "max_iter", 1000)
result = solver.Solve(prog)
forces = np.zeros(self.mpc_control_dim)
if not result.is_success():
raise RuntimeError("MPC failed to find a solution")
else:
forces = result.GetSolution(f[0])
return forces.reshape((4, 3))
"""
The swing controller computes and follows a trajectory
for the foot in the world coordinate system. The controller
for tracking the trajectory uses the sum of a feedback and
feedforward term to compute joint torques.
The control law used to compute joint torques for leg i is
τi = Ji.T @ Kp @ (pi,ref_body_frame - pi_body_frame) + Kd(vi,ref_body_frame - vi_body_frame)] + τi,ff
Where Ji is the Jacobian of the foot i in the body frame,
pi,ref_body_frame is the desired position of the foot i in the body frame,
pi_body_frame is the current position of the foot i in the body frame,
vi,ref_body_frame is the desired velocity of the foot i in the body frame,
vi_body_frame is the current velocity of the foot i in the body frame,
Kp is the proportional gain positive definite diagonal matrix,
Kd is the derivative gain positive definite diagonal matrix,
τi,ff is the feedforward torque.
The feedforward torque is computed as follows:
τi,ff = Ji.T @ Λi(ai,ref_body_frame - Ji' @ qi') + Ci @ qi' + Gi
Where Λi is the opertational space inertia matrix of the foot i in the body frame,
ai,ref_body_frame is the desired acceleration of the foot i in the body frame,
qi' is the 3d joint velocity of the foot i,
Ci is the coriolis and centrifugal forces matrix for the foot i,
Gi is the gravity forces matrix for the foot i.
"""
def CalculateTorquesSwingController(self, trunk_trajectory):
"""
Calculate the torques because of the swing controller
"""
# Get the contact states
contact_states = trunk_trajectory[0]["contact_states"]
# Initialize the torques
torques = np.zeros(self.mpc_control_dim)
# Foot names
foot_names = ["LF_FOOT", "RF_FOOT", "LH_FOOT", "RH_FOOT"]
short_names = ["lf", "rf", "lh", "rh"]
# Calculate the torques for each foot
for i in range(4):
curr_foot = foot_names[i]
if contact_states[i]:
continue
# Caclulate the desired position, velocity and acceleration
p_des_world = trunk_trajectory[0]["p_" + short_names[i]]
v_des_world = trunk_trajectory[0]["v_" + short_names[i]]
a_des_world = trunk_trajectory[0]["a_" + short_names[i]]
p_curr_world = self.foot_positions[i]
v_curr_world = self.foot_velocities[i]
# Calculate the Jacobian
J = self.plant.CalcJacobianTranslationalVelocity(
self.plant_context,
JacobianWrtVariable.kV,
self.plant.GetFrameByName(curr_foot),
np.zeros(3),
self.plant.world_frame(),
self.plant.world_frame()
)
J_leg = J[:, 6 + i*3:6 + i*3 + 3]
# tau_fb
tau_fb = self.Kp_swing @ (p_des_world - p_curr_world) + \
self.Kd_swing @ (v_des_world - v_curr_world)
tau_fb = J_leg.T @ tau_fb
# Calculate J.T @ Operational Space Inertia Matrix
M = self.plant.CalcMassMatrixViaInverseDynamics(self.plant_context)[6 + i*3:6 + i*3 + 3, 6 + i*3:6 + i*3 + 3]
J_T_Delta_i = M @ np.linalg.inv(J_leg)
# Calculate the coriolis and gravity terms only for the current leg
Cv_i = self.plant.CalcBiasTerm(self.plant_context)[6 + i*3:6 + i*3 + 3]
Gv_i = -self.plant.CalcGravityGeneralizedForces(self.plant_context)[6 + i*3:6 + i*3 + 3]
# Jdot_qi_dot
Jdot_qi_dot = self.plant.CalcBiasTranslationalAcceleration(
self.plant_context,
JacobianWrtVariable.kV,
self.plant.GetFrameByName(curr_foot),
np.zeros(3),
self.plant.world_frame(),
self.plant.world_frame()
).squeeze()
# tau_ff
tau_ff = np.zeros(3)
tau_ff = J_T_Delta_i @ (a_des_world - Jdot_qi_dot) + Cv_i + Gv_i
# Set the desired torque
torques[i*3:i*3+3] = tau_fb + tau_ff
return torques
def CalcFootTranslationJacobians(self):
"""
Calculate the foot translation Jacobians
"""
# Get the foot positions
foot_names = ["LF_FOOT", "RF_FOOT", "LH_FOOT", "RH_FOOT"]
# Calculate the foot translation Jacobians
J = []
i = 0
for foot in foot_names:
# Calculate the Jacobian
curr_J = self.plant.CalcJacobianTranslationalVelocity(
self.plant_context,
JacobianWrtVariable.kV,
self.plant.GetFrameByName(foot),
np.zeros(3),
self.world_frame,
self.world_frame
)
curr_J = curr_J[:, 6 + i*3:6 + i*3 + 3]
J.append(curr_J)
i += 1
return J
def ContinuosTimeLinearizedDynamics(self, trunk_trajectory, horizon_idx):
"""
Calculate the continuous time linearized dynamics at horizon_idx of the trajectory
"""
A = np.zeros((self.mpc_state_dim, self.mpc_state_dim))
B = np.zeros((self.mpc_state_dim, self.mpc_control_dim))
######### Fill in the A matrix #########
# Linear Velocity Dynamics
A[3:6, self.mpc_state_dim-4:self.mpc_state_dim-1] = np.eye(3)
# Linear Acceleration Dynamics - just gravity
A[9:12, self.mpc_state_dim-1] = np.array([0, 0, -1])
# Angular Velocity Dynamics
R = RollPitchYaw(self.x_curr[0:3]).ToRotationMatrix().matrix()
A[0:3, 6:9] = R.T
######### Fill in the A matrix #########
######### Fill in the B matrix #########
# Linear Acceleration Dynamics
B[9:12, :] = np.hstack([np.eye(3), np.eye(3), np.eye(3), np.eye(3)]) / self.mass
# Angular Acceleration Dynamics
# Calculate moment of inertia in world frame
I_moment_world_inv = R @ self.I_moment_inv @ R.T
# TODO: Use horizon_idx to get the positions here
# diff_com = self.x_curr[3:6] - trunk_trajectory[0]["p_com"]
# com = trunk_trajectory[horizon_idx]["p_com"] + diff_com
com = self.x_curr[3:6]
for i in range(4):
r = self.foot_positions[i] - com
r_cross = np.array([
[0, -r[2], r[1]],
[r[2], 0, -r[0]],
[-r[1], r[0], 0]
])
B[6:9, i*3:i*3+3] = I_moment_world_inv @ r_cross
######### Fill in the B matrix #########
return A, B
def DiscreteTimeLinearizedDynamics(self, trunk_trajectory, horizon_idx):
"""
Calculate the discrete time linearized dynamics at horizon_idx of the trajectory
"""
Ac, Bc = self.ContinuosTimeLinearizedDynamics(trunk_trajectory, horizon_idx)
dt = self.dt
# Euler integration
A = np.eye(Ac.shape[0]) + dt * Ac
B = dt * Bc
return A, B