-
Notifications
You must be signed in to change notification settings - Fork 37
/
Copy pathbatch_engine.py
164 lines (115 loc) · 5.34 KB
/
batch_engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import math
import time
import numpy as np
import torch
from torch.nn.utils import clip_grad_norm_
from tqdm import tqdm
from tools.distributed import reduce_tensor
from tools.utils import AverageMeter, to_scalar, time_str
def logits4pred(criterion, logits_list):
if criterion.__class__.__name__.lower() in ['bceloss']:
logits = logits_list[0]
probs = logits.sigmoid()
else:
assert False, f"{criterion.__class__.__name__.lower()} not exits"
return probs, logits
def batch_trainer(cfg, args, epoch, model, model_ema, train_loader, criterion, optimizer, loss_w=[1, ], scheduler=None):
model.train()
epoch_time = time.time()
loss_meter = AverageMeter()
subloss_meters = [AverageMeter() for i in range(len(loss_w))]
batch_num = len(train_loader)
gt_list = []
preds_probs = []
preds_logits = []
imgname_list = []
loss_mtr_list = []
lr = optimizer.param_groups[1]['lr']
for step, (imgs, gt_label, imgname) in enumerate(train_loader):
iter_num = epoch * len(train_loader) + step
batch_time = time.time()
imgs, gt_label = imgs.cuda(), gt_label.cuda()
train_logits, feat = model(imgs, gt_label)
loss_list, loss_mtr = criterion(train_logits, gt_label)
train_loss = 0
for i, l in enumerate(loss_w):
train_loss += loss_list[i] * l
optimizer.zero_grad()
train_loss.backward()
# for name, param in model.named_parameters():
# if param.grad is None:
# print("NO " + name)
# else:
# print("YES " + name)
if cfg.TRAIN.CLIP_GRAD:
clip_grad_norm_(model.parameters(), max_norm=10.0) # make larger learning rate works
optimizer.step()
if cfg.TRAIN.LR_SCHEDULER.TYPE == 'annealing_cosine' and scheduler is not None:
scheduler.step()
if model_ema is not None:
model_ema.update(model)
torch.cuda.synchronize()
if len(loss_list) > 1:
for i, meter in enumerate(subloss_meters):
meter.update(
to_scalar(reduce_tensor(loss_list[i], args.world_size)
if args.distributed else loss_list[i]))
loss_meter.update(to_scalar(reduce_tensor(train_loss, args.world_size) if args.distributed else train_loss))
train_probs, train_logits = logits4pred(criterion, train_logits)
gt_list.append(gt_label.cpu().numpy())
preds_probs.append(train_probs.detach().cpu().numpy())
preds_logits.append(train_logits.detach().cpu().numpy())
imgname_list.append(imgname)
log_interval = 100
if (step + 1) % log_interval == 0 or (step + 1) % len(train_loader) == 0:
if args.local_rank == 0:
print(f'{time_str()}, '
f'Step {step}/{batch_num} in Ep {epoch}, '
f'LR: [{optimizer.param_groups[0]["lr"]:.1e}, {optimizer.param_groups[1]["lr"]:.1e}] '
f'Time: {time.time() - batch_time:.2f}s , '
f'train_loss: {loss_meter.avg:.4f}, ')
print([f'{meter.avg:.4f}' for meter in subloss_meters])
# break
train_loss = loss_meter.avg
gt_label = np.concatenate(gt_list, axis=0)
preds_probs = np.concatenate(preds_probs, axis=0)
if args.local_rank == 0:
print(f'Epoch {epoch}, LR {lr}, Train_Time {time.time() - epoch_time:.2f}s, Loss: {loss_meter.avg:.4f}')
return train_loss, gt_label, preds_probs, imgname_list, preds_logits, loss_mtr_list
def valid_trainer(cfg, args, epoch, model, valid_loader, criterion, loss_w=[1, ]):
model.eval()
loss_meter = AverageMeter()
subloss_meters = [AverageMeter() for i in range(len(loss_w))]
preds_probs = []
preds_logits = []
gt_list = []
imgname_list = []
loss_mtr_list = []
with torch.no_grad():
for step, (imgs, gt_label, imgname) in enumerate(tqdm(valid_loader)):
imgs = imgs.cuda()
gt_label = gt_label.cuda()
gt_list.append(gt_label.cpu().numpy())
gt_label[gt_label == -1] = 0
valid_logits, feat = model(imgs, gt_label)
loss_list, loss_mtr = criterion(valid_logits, gt_label)
valid_loss = 0
for i, l in enumerate(loss_list):
valid_loss += loss_w[i] * l
valid_probs, valid_logits = logits4pred(criterion, valid_logits)
preds_probs.append(valid_probs.cpu().numpy())
preds_logits.append(valid_logits.cpu().numpy())
if len(loss_list) > 1:
for i, meter in enumerate(subloss_meters):
meter.update(
to_scalar(reduce_tensor(loss_list[i], args.world_size) if args.distributed else loss_list[i]))
loss_meter.update(to_scalar(reduce_tensor(valid_loss, args.world_size) if args.distributed else valid_loss))
torch.cuda.synchronize()
imgname_list.append(imgname)
valid_loss = loss_meter.avg
if args.local_rank == 0:
print([f'{meter.avg:.4f}' for meter in subloss_meters])
gt_label = np.concatenate(gt_list, axis=0)
preds_probs = np.concatenate(preds_probs, axis=0)
preds_logits = np.concatenate(preds_logits, axis=0)
return valid_loss, gt_label, preds_probs, imgname_list, preds_logits, loss_mtr_list