-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathode.jl
63 lines (58 loc) · 1.58 KB
/
ode.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
# Data used for curve construction from curvature function
mutable struct CurveData
κ_formula::String
# Initial position
x0::Float64
y0::Float64
# Initial orientation
θ0::Float64
# arc-length range
smin::Float64
smax::Float64
end
# Constructor for default values of initial position and orientation
CurveData(κ_formula::String, smin::Float64,smax::Float64) = CurveData(κ_formula,0.0,0.0,0.0,smin,smax)
# evaluate curvature function from string formula
function kappa(s::Float64, formula::String)
ex = quote
s = $s
"formula here"
end
ex.args[4] = Meta.parse(formula::String)
eval(ex)
end
# Second order ODE (as first order ODE) to construct curve from curvature
function kappa_field_from_formula(κ_formula)
function f(q,s)
x = q[1]
y = q[2]
tx = q[3]
ty = q[4]
κ_val = kappa(s,κ_formula)
[tx,ty,-κ_val*ty,κ_val*tx]
end
f
end
# Obtain curve by integrating differential equation using RK4
function curve_from_curvature(cd::CurveData; n = 250)
f = kappa_field_from_formula(cd.κ_formula)
h = (cd.smax-cd.smin)/n # length step
k1 = zeros(4)
k2 = zeros(4)
k3 = zeros(4)
k4 = zeros(4)
# Setting Initial conditions
qs = [zeros(4) for i = 1:(n+1)]
qs[1] = [cd.x0,cd.y0,cos(cd.θ0),sin(cd.θ0)]
s = cd.smin
for i = 2:(n+1)
q = qs[i-1]
k1 = f(q,s)
k2 = f(q + (h/2.0)*k1,s)
k3 = f(q + (h/2.0)*k2,s)
k4 = f(q + h*k3,s)
qs[i] = q + (h/6.0)*(k1 + 2*k2 +2*k3 + k4)
s = s + h
end
qs
end