-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
448 lines (404 loc) · 20.4 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
import subprocess
import os
import shutil
from pathlib import Path
import numpy as np
import imageio
from tqdm import tqdm
def scanner_component_macro(f, component_type, translation, scanner_size, pixel_size):
'''Generates pieces of scanner macro. This function is called by write_scanner_mac.
Scanner macro consists of several similar sections that are generated here.
:param f: Text stream where gate commands will be written
:type f: :class:`_io.TextIOWrapper`
:param component_type: One of the following components ['CTscanner', 'module', 'cluster', 'pixel']
:type component_type: :class:`str`
:param translation: Position of the center of the scanner, 3 coordinates in mm
:type translation: :class:`tuple`
:param scanner_size: Size of the scanner, 3 dimensions in mm
:type scanner_size: :class:`tuple`
:param pixel_size: Pixel size in mm. Pixel are assumed to be square, depth of a pixel is given by scanner size
:type pixel_size: :class:`float`
'''
materials = {'CTscanner' : 'Vacuum', 'module' : 'Vacuum', 'cluster' : 'Vacuum', 'pixel' : 'CsI'}
mother_components = {'CTscanner' : 'world', 'module' : 'CTscanner', 'cluster' : 'module', 'pixel' : 'cluster'}
mother_type = mother_components[component_type]
f.write("/gate/{}/daughters/name {}\n".format(mother_type, component_type))
f.write("/gate/{}/daughters/insert box\n".format(mother_type))
if component_type == 'CTscanner':
f.write("/gate/{}/placement/setTranslation {} {} {} mm\n".format(component_type, *translation))
if component_type != 'pixel':
f.write("/gate/{}/geometry/setXLength {} mm\n".format(component_type, scanner_size[0]))
f.write("/gate/{}/geometry/setYLength {} mm\n".format(component_type, scanner_size[1]))
else:
f.write("/gate/{}/geometry/setXLength {} mm\n".format(component_type, pixel_size))
f.write("/gate/{}/geometry/setYLength {} mm\n".format(component_type, pixel_size))
f.write("/gate/{}/geometry/setZLength {} mm\n".format(component_type, scanner_size[2]))
f.write("/gate/{}/setMaterial {}\n".format(component_type, materials[component_type]))
if component_type != 'pixel':
f.write("/gate/{}/vis/forceWireframe\n".format(component_type))
f.write("/gate/{}/vis/setColor white\n".format(component_type))
else:
f.write("/gate/{}/vis/setColor red\n".format(component_type))
f.write("/gate/{}/vis/setVisible 0\n".format(component_type))
def write_scanner_mac(translation = (0., 0., 100.), scanner_size=(75., 82.5, 10.), pixel_size=0.30):
'''Generates scanner macro CTScanner.mac.
Keep in mind that if the depth of the scanner is too small, a lot of high-energy photons would not be detected.
We set a large depth to get better signal and avoid computing photons that will not be registered.
:param translation: Position of the center of the scanner, 3 coordinates in mm
:type translation: :class:`tuple`
:param scanner_size: Size of the scanner, 3 dimensions in mm
:type scanner_size: :class:`tuple`
:param pixel_size: Pixel size in mm. Pixel are assumed to be square, depth of a pixel is given by scanner size
:type pixel_size: :class:`float`
'''
num_pixels = [int(scanner_size[i] / pixel_size) for i in range(2)]
assert scanner_size[0] == num_pixels[0] * pixel_size
assert scanner_size[1] == num_pixels[1] * pixel_size
with open('macro/CTScanner.mac', 'w') as f:
for component in ('CTscanner', 'module', 'cluster', 'pixel'):
scanner_component_macro(f, component, translation, scanner_size, pixel_size)
f.write("\n")
f.write("/gate/pixel/repeaters/insert cubicArray\n")
f.write("/gate/pixel/cubicArray/setRepeatNumberX 250\n".format(num_pixels[0]))
f.write("/gate/pixel/cubicArray/setRepeatNumberY 275\n".format(num_pixels[1]))
f.write("/gate/pixel/cubicArray/setRepeatNumberZ 1\n")
f.write("/gate/pixel/cubicArray/setRepeatVector {} {} 0.0 mm\n".format(pixel_size, pixel_size))
f.write("/gate/pixel/cubicArray/autoCenter true\n")
f.write("/gate/systems/CTscanner/module/attach module\n")
f.write("/gate/systems/CTscanner/cluster_0/attach cluster\n")
f.write("/gate/systems/CTscanner/pixel_0/attach pixel\n")
f.write("/gate/pixel/attachCrystalSD\n")
def write_phantom_mac(mat = 'Aluminium', radius = 20., height = 50., cavity_size = 0.2, cavity_scale = [1., 1., 1.], cavity_loc = [0., 0., 0.]):
'''Generates phantom macro phantom.mac.
This phantom is a cylinder made of a single material with an ellipsoid cavity inside.
Ellipsoid axes are parameterized as R*a, R*b, R*c, where a, b, c are in the neighbourhood of 1 and define how close the ellipsoid is to a sphere with radius R
:param mat: Material of the phantom.
:type mat: :class:`str`
:param radius: Radius of the cylinder in mm.
:type radius: :class:`float`
:param height: Height of the cylinder in mm.
:type height: :class:`float`
:param cavity_size: Size of the cavity in mm (R from the description).
:type cavity_size: :class:`float`
:param cavity_scale: Ellipsoid axes parameters (a, b and c from the description).
:type cavity_scale: :class:`tuple`
:param cavity_loc: Location of the cavity, 3 coordinates in mm
:type cavity_loc: :class:`tuple`
'''
with open('data/cylinder/phantom.mac', 'w') as f:
f.write("/gate/world/daughters/name phantom\n")
f.write("/gate/world/daughters/insert cylinder\n")
f.write("/gate/phantom/geometry/setRmin 0 mm\n")
f.write("/gate/phantom/geometry/setRmax {} mm\n".format(radius))
f.write("/gate/phantom/geometry/setHeight {} mm\n".format(height))
f.write("/gate/phantom/geometry/setPhiStart 0 deg\n")
f.write("/gate/phantom/geometry/setDeltaPhi 360 deg\n")
f.write("/gate/phantom/setMaterial {}\n".format(mat))
f.write("/gate/phantom/daughters/name cavity\n")
f.write("/gate/phantom/daughters/insert ellipsoid\n")
f.write("/gate/cavity/geometry/setXLength {} mm\n".format(cavity_size * cavity_scale[0]))
f.write("/gate/cavity/geometry/setYLength {} mm\n".format(cavity_size * cavity_scale[1]))
f.write("/gate/cavity/geometry/setZLength {} mm\n".format(cavity_size * cavity_scale[2]))
f.write("/gate/cavity/setMaterial Vacuum\n")
f.write("/gate/phantom/placement/setTranslation 0. 0. 0. mm\n")
f.write("/gate/phantom/placement/setRotationAxis 1 0 0\n")
f.write("/gate/phantom/placement/setRotationAngle 90 deg\n")
f.write("/gate/phantom/attachPhantomSD\n")
f.write("/gate/cavity/placement/setTranslation {} {} {} mm\n".format(*cavity_loc))
f.write("/gate/cavity/attachPhantomSD\n")
def write_source_mac(material_par, total_particles = 10**9, cone_angle = 10., source_loc = [0., 0., -200.]):
'''Generates source macro source.mac.
Cone beam with a small focal spot. Default cone angle covers most of the default scanner size (excluding corners of the image)
:param material_par: Material-specific dictionary that contains path to the spectrum file and kV range.
:type material_par: :class:`dict`
:param total_particles: Total number of photons to generate for a single projection.
:type total_particles: :class:`float`
:param cone_angle: Cone angle, in degrees.
:type cone_angle: :class:`float`
:param source_loc: Location of the source, 3 coordinates in mm
:type source_loc: :class:`float`
'''
spectrum = np.loadtxt(material_par['spectrum_fname'], delimiter=',', skiprows=1)
with open('macro/source.mac', 'w') as f:
f.write("/gate/source/addSource xraygun\n")
f.write("/gate/source/verbose 0\n")
f.write("/gate/source/xraygun/setActivity {:d}. becquerel\n".format(total_particles))
f.write("/gate/source/xraygun/gps/verbose 0\n")
f.write("/gate/source/xraygun/gps/particle gamma\n")
f.write("/gate/source/xraygun/gps/energytype Arb\n")
f.write("/gate/source/xraygun/gps/histname arb\n")
f.write("/gate/source/xraygun/gps/emin {} keV\n".format(material_par['kv_start']))
f.write("/gate/source/xraygun/gps/emax {} keV\n".format(material_par['kv_end']))
for i in range(material_par['kv_start'],material_par['kv_end']):
f.write("/gate/source/xraygun/gps/histpoint {:.3f} {:d}\n".format(0.001 * spectrum[i,0], int(spectrum[i,1])))
f.write(" /gate/source/xraygun/gps/arbint Lin\n")
f.write("/gate/source/xraygun/gps/type Plane\n")
f.write("/gate/source/xraygun/gps/shape Rectangle\n")
f.write("/gate/source/xraygun/gps/halfx 5. um\n")
f.write("/gate/source/xraygun/gps/halfy 5. um\n")
f.write("/gate/source/xraygun/gps/mintheta 0 deg\n")
f.write("/gate/source/xraygun/gps/maxtheta {} deg\n".format(cone_angle))
#f.write("/gate/source/xraygun/gps/maxtheta 0.0001 deg\n")
f.write("/gate/source/xraygun/gps/centre {} {} {} mm\n".format(*source_loc))
f.write("/gate/source/xraygun/gps/angtype iso\n")
f.write("/gate/source/list\n")
def check_coords(p_x, p_y, dim_x, dim_y):
'''Checks if pixel positions stay inside the expected range
:param p_x: Pixel position along x axis
:type p_x: :class:`int`
:param p_y: Pixel position along y axis
:type p_y: :class:`int`
:param dim_x: Number of pixels along x axis
:type dim_x: :class:`int`
:param dim_y: Number of pixels along y axis
:type dim_y: :class:`int`
'''
if p_x >= dim_x:
print("Overflow: px = {}".format(p_x))
p_x = dim_x - 1
if p_x < 0:
print("Underflow: px = {}".format(p_x))
p_x = 0
if p_y >= dim_y:
print("Overflow: py = {}".format(p_y))
p_y = dim_y - 1
if p_y < 0:
print("Underflow: py = {}".format(p_y))
p_y = 0
return p_x, p_y
def analyze_numpy(out_folder, num, pixel_dim, scanner_xy):
'''Reads the file with raw data and makes an image with 2D distributions of registered photons and only scatterd photons
:param out_folder: Folder containing raw data files
:type out_folder: :class:`pathlib.PosixPath`
:param num: Number of the file to read (multiple processes produce multiple files)
:type num: :class:`int`
:param pixel_dim: Number of pixels along x and y axes.
:type pixel_dim: :class:`Tuple`
:param scanner_xy: Width and height of the scanner in mm
:type scanner_xy: :class:`Tuple`
'''
data = np.load(out_folder / "res{}.Singles.npy".format(num))
dim_x = 250
size_x = 75.
c_x = 0.
dim_y = 275
size_y = 82.5
c_y = 0.0
proj = np.zeros((dim_y, dim_x), dtype=np.int32)
proj_scat = np.zeros((dim_y, dim_x), dtype=np.int32)
proj_r = np.zeros((dim_y, dim_x), dtype=np.int32)
num_total = 0
num_scat = 0
# Physical position of every registered photon should be converted to a pixel number.
# Image is created by summing all photons in every pixel
print(data.dtype)
p_x = np.floor((data['globalPosX'] - c_x + size_x/2) / size_x * dim_x)
p_y = np.floor((data['globalPosY'] - c_y + size_y/2) / size_y * dim_y)
p_id = p_y*dim_x + p_x
p_id = p_id.astype(int)
values, counts = np.unique(p_id, return_counts=True)
for i in range(len(values)):
y = values[i] // dim_x
x = values[i] % dim_x
x, y = check_coords(x, y, dim_x, dim_y)
proj[y,x] = counts[i]
num_total = proj.sum()
# The same process repeats for photons that are marked with scattering flag
values, counts = np.unique(p_id[data['comptonPhantom'] > 0], return_counts=True)
for i in range(len(values)):
y = values[i] // dim_x
x = values[i] % dim_x
x, y = check_coords(x, y, dim_x, dim_y)
proj_scat[y,x] = counts[i]
num_scat = proj_scat.sum()
values, counts = np.unique(p_id[data['RayleighPhantom'] > 0], return_counts=True)
for i in range(len(values)):
y = values[i] // dim_x
x = values[i] % dim_x
x, y = check_coords(x, y, dim_x, dim_y)
proj_r[y,x] = counts[i]
num_r = proj_r.sum()
# Raw data also have the number of scattering interactions every photon participated in.
# Thus, we can divide a signal into primary (photons that never scattered) and a series of N scatterings.
signal_terms = np.zeros((5,))
signal_terms[0] = num_total - num_scat - num_r
compt = data['comptonPhantom']
compt = compt[compt > 0]
values, counts = np.unique(compt, return_counts=True)
for i in range(1,min(5, len(counts)+1)):
signal_terms[i] += counts[i-1]
ray = data['RayleighPhantom']
ray = ray[ray > 0]
values, counts = np.unique(ray, return_counts=True)
for i in range(1,min(5, len(counts)+1)):
signal_terms[i] += counts[i-1]
print("Total particles = {}, scattered = {}, Rayleigh = {}".format(num_total, num_scat, num_r))
print("Scattering fraction = {:0.3f}".format(num_scat / num_total))
print("Rayleigh fraction = {:0.3f}".format(num_r / num_total))
signal_terms /= num_total
print("Signal series = ")
print(",".join(["{:.2%}".format(val) for val in signal_terms]))
imageio.imwrite(out_folder / "proj_{}.tiff".format(num), np.flip(proj, axis=0))
imageio.imwrite(out_folder / "proj_scat_{}.tiff".format(num), np.flip(proj_scat, axis=0))
imageio.imwrite(out_folder / "proj_r_{}.tiff".format(num), np.flip(proj_r, axis=0))
def run_simulation(out_folder, num_proc):
'''Starts processes to perform simulations.
Gate is a single-thread application, so we create multiple processes to split the computations and use multiple cores.
:param out_folder: Folder to write raw data
:type out_folder: :class:`pathlib.PosixPath`
:param num_proc: Number of processes to create. gjs does not seem to work for small num_proc (<5).
:type num_proc: :class:`int`
'''
my_env = os.environ.copy()
my_env["GC_DOT_GATE_DIR"] = "."
split_folder = Path(".Gate")
shutil.rmtree(split_folder, ignore_errors=True)
out_folder.mkdir(exist_ok=True)
subprocess.Popen(["gjs", "-numberofsplits", str(num_proc), "-clusterplatform", "openmosix", "main.mac"], env=my_env)
proc_it = 1
procs = []
proc_ids = []
for i in range(num_proc):
p = subprocess.Popen(["Gate", "-a", "[ResName,{}/res{}.npy]".format(out_folder.as_posix(), proc_it), ".Gate/main/main{:d}.mac".format(proc_it)])
procs.append(p)
proc_ids.append(proc_it)
proc_it += 1
for p in procs:
p.wait()
return proc_ids
def write_intermediary_images(out_folder, proc_ids, pixel_dim, scanner_xy):
'''Makes projection images based on the data from every process.
:param out_folder: Folder to write raw data
:type out_folder: :class:`pathlib.PosixPath`
:param proc_ids: List containing ids of processes. Numbers from this list will be used to read files with raw data.
:type proc_ids: :class:`list`
:param pixel_dim: Number of pixels along x and y axes.
:type pixel_dim: :class:`Tuple`
:param scanner_xy: Width and height of the scanner in mm
:type scanner_xy: :class:`Tuple`
'''
for i in tqdm(proc_ids):
analyze_numpy(out_folder, i, pixel_dim, scanner_xy)
def make_final_image(out_folder, proc_ids, pixel_dim):
'''Makes projection images based on the data from all processes.
Creates 4 files: all photons, photons that had Compton scattering, photons that had Rayleigh scattering, and scattered photons in general (Compton or Rayleigh)
:param out_folder: Folder to write raw data
:type out_folder: :class:`pathlib.PosixPath`
:param proc_ids: List containing ids of processes. Numbers from this list will be used to read files with raw data.
:type proc_ids: :class:`list`
:param pixel_dim: Number of pixels along x and y axes.
:type pixel_dim: :class:`Tuple`
'''
dim_x, dim_y = pixel_dim
proj = np.zeros((dim_y, dim_x), dtype=np.int32)
proj_scat = np.zeros((dim_y, dim_x), dtype=np.int32)
proj_r = np.zeros((dim_y, dim_x), dtype=np.int32)
for i in proc_ids:
tmp = imageio.imread(out_folder / 'proj_{}.tiff'.format(i))
tmp_scat = imageio.imread(out_folder / 'proj_scat_{}.tiff'.format(i))
tmp_r = imageio.imread(out_folder / 'proj_r_{}.tiff'.format(i))
proj += tmp
proj_scat += tmp_scat
proj_r += tmp_r
imageio.imwrite(out_folder / "proj.tiff", proj)
imageio.imwrite(out_folder / "proj_c.tiff", proj_scat)
imageio.imwrite(out_folder / "proj_r.tiff", proj_r)
imageio.imwrite(out_folder / "proj_scat.tiff", proj_scat+proj_r)
# Phantom materials and the corresponding source spectra
material_spec = {
'Iron450': {
'material' : 'Iron',
'kv_start' : 10,
'kv_end' : 450,
'spectrum_fname' : 'data/spectra/spectrum_450kv.csv'
},
'Iron300': {
'material' : 'Iron',
'kv_start' : 10,
'kv_end' : 300,
'spectrum_fname' : 'data/spectra/spectrum_300kv.csv'
},
'Aluminium90': {
'material' : 'Aluminium',
'kv_start' : 10,
'kv_end' : 90,
'spectrum_fname' : 'data/spectra/spectrum_90kv.csv'
},
'Aluminium150': {
'material' : 'Aluminium',
'kv_start' : 10,
'kv_end' : 150,
'spectrum_fname' : 'data/spectra/spectrum_150kv.csv'
},
'Aluminium300': {
'material' : 'Aluminium',
'kv_start' : 10,
'kv_end' : 300,
'spectrum_fname' : 'data/spectra/spectrum_300kv.csv'
},
'PMMA90': {
'material' : 'PMMA',
'kv_start' : 10,
'kv_end' : 90,
'spectrum_fname' : 'data/spectra/spectrum_90kv.csv'
},
'PMMA150': {
'material' : 'PMMA',
'kv_start' : 10,
'kv_end' : 150,
'spectrum_fname' : 'data/spectra/spectrum_150kv.csv'
},
'PMMA40': {
'material' : 'PMMA',
'kv_start' : 10,
'kv_end' : 40,
'spectrum_fname' : 'data/spectra/spectrum_40kv.csv'
}
}
if __name__ == "__main__":
# Only compute samples in this range (this way you can stop and resume computations)
start_sample = 0
end_sample = 50
# Create this number of processes to use multiple CPU cores
num_proc = 60
# Generate volume properties using gen_volume_properties.py
data_spec = np.loadtxt('data/data_spec_train.csv', delimiter=',')
mat_par = material_spec['Aluminium150']
total_particles = 10**9
tmp_folder = Path('/export/scratch2/vladysla/GateSimOutput/')
out_folder = Path('/export/scratch2/vladysla/al150_train_0_500/')
# Default simulation settings
scanner_loc = (0., 0., 100.)
scanner_size = (75., 82.5, 10.)
pixel_size = 0.30
pixel_dim = (250, 275)
# Smaller air gap
#scanner_loc = (0., 0., 50.)
#scanner_size = (62.5, 68.75, 10.)
#pixel_size = 0.25
#pixel_dim = (250, 275)
out_folder.mkdir(exist_ok=True)
(out_folder / 'proj').mkdir(exist_ok=True)
(out_folder / 'compt').mkdir(exist_ok=True)
(out_folder / 'rayleigh').mkdir(exist_ok=True)
(out_folder / 'scat').mkdir(exist_ok=True)
with open(out_folder / 'stats.csv', 'w') as f:
f.write("proj_num,size,cyl_r,cyl_h,cav_r,cav_z,el_x,el_y,el_z\n")
i = start_sample
for comb in data_spec[start_sample:end_sample]:
cav_sc = [0., 0., 0.]
proj_num, size, cyl_r, cyl_h, cav_r, cav_z, cav_sc[0], cav_sc[1], cav_sc[2] = comb
print(cyl_r, cyl_h, cav_z, cav_r, size, cav_sc)
with open(out_folder / 'stats.csv', 'a') as f:
f.write("{},{},{},{},{},{},{},{},{}\n".format(i, size, cyl_r, cyl_h, cav_r, cav_z, *cav_sc))
write_scanner_mac(scanner_loc, scanner_size, pixel_size)
write_phantom_mac(mat_par['material'], cyl_r, cyl_h, size, cavity_scale = cav_sc, cavity_loc = [cav_r, 0., cav_z])
write_source_mac(mat_par, total_particles)
proc_ids = run_simulation(tmp_folder, num_proc)
write_intermediary_images(tmp_folder, proc_ids, pixel_dim, (scanner_size[0], scanner_size[1]))
make_final_image(tmp_folder, proc_ids, pixel_dim)
shutil.copy(tmp_folder / 'proj.tiff', out_folder / 'proj' / '{:04d}.tiff'.format(i))
shutil.copy(tmp_folder / 'proj_c.tiff', out_folder / 'compt' / '{:04d}.tiff'.format(i))
shutil.copy(tmp_folder / 'proj_r.tiff', out_folder / 'rayleigh' / '{:04d}.tiff'.format(i))
shutil.copy(tmp_folder / 'proj_scat.tiff', out_folder / 'scat' / '{:04d}.tiff'.format(i))
i += 1