-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathderivatives.py
135 lines (100 loc) · 4.45 KB
/
derivatives.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import torch
import torch.nn.functional as F
import math
import get_param
params = get_param.params()
def toCuda(x):
if type(x) is tuple:
return [xi.cuda() if params.cuda else xi for xi in x]
return x.cuda() if params.cuda else x
def toCpu(x):
if type(x) is tuple:
return [xi.detach().cpu() for xi in x]
return x.detach().cpu()
# First order derivatives (d/dx)
dx_kernel = toCuda(torch.Tensor([-0.5,0,0.5]).unsqueeze(0).unsqueeze(1).unsqueeze(2))
def dx(v):
return F.conv2d(v,dx_kernel,padding=(0,1))
dx_left_kernel = toCuda(torch.Tensor([-1,1,0]).unsqueeze(0).unsqueeze(1).unsqueeze(2))
def dx_left(v):
return F.conv2d(v,dx_left_kernel,padding=(0,1))
dx_right_kernel = toCuda(torch.Tensor([0,-1,1]).unsqueeze(0).unsqueeze(1).unsqueeze(2))
def dx_right(v):
return F.conv2d(v,dx_right_kernel,padding=(0,1))
# First order derivatives (d/dy)
dy_kernel = toCuda(torch.Tensor([-0.5,0,0.5]).unsqueeze(0).unsqueeze(1).unsqueeze(3))
def dy(v):
return F.conv2d(v,dy_kernel,padding=(1,0))
dy_top_kernel = toCuda(torch.Tensor([-1,1,0]).unsqueeze(0).unsqueeze(1).unsqueeze(3))
def dy_top(v):
return F.conv2d(v,dy_top_kernel,padding=(1,0))
dy_bottom_kernel = toCuda(torch.Tensor([0,-1,1]).unsqueeze(0).unsqueeze(1).unsqueeze(3))
def dy_bottom(v):
return F.conv2d(v,dy_bottom_kernel,padding=(1,0))
# Curl operator
def rot_mac(a):
return torch.cat([-dx_right(a),dy_bottom(a)],dim=1)
# Laplace operator
#laplace_kernel = toCuda(torch.Tensor([[0,1,0],[1,-4,1],[0,1,0]]).unsqueeze(0).unsqueeze(1)) # 5 point stencil
#laplace_kernel = toCuda(torch.Tensor([[1,1,1],[1,-8,1],[1,1,1]]).unsqueeze(0).unsqueeze(1)) # 9 point stencil
laplace_kernel = toCuda(0.25*torch.Tensor([[1,2,1],[2,-12,2],[1,2,1]]).unsqueeze(0).unsqueeze(1)) # isotropic 9 point stencil
def laplace(v):
return F.conv2d(v,laplace_kernel,padding=(1,1))
# mapping operators
map_vx2vy_kernel = 0.25*toCuda(torch.Tensor([[0,1,1],[0,1,1],[0,0,0]]).unsqueeze(0).unsqueeze(1))
def map_vx2vy(v):
return F.conv2d(v,map_vx2vy_kernel,padding=(1,1))
map_vx2vy_left_kernel = 0.5*toCuda(torch.Tensor([[0,1,0],[0,1,0],[0,0,0]]).unsqueeze(0).unsqueeze(1))
def map_vx2vy_left(v):
return F.conv2d(v,map_vx2vy_left_kernel,padding=(1,1))
map_vx2vy_right_kernel = 0.5*toCuda(torch.Tensor([[0,0,1],[0,0,1],[0,0,0]]).unsqueeze(0).unsqueeze(1))
def map_vx2vy_right(v):
return F.conv2d(v,map_vx2vy_right_kernel,padding=(1,1))
map_vy2vx_kernel = 0.25*toCuda(torch.Tensor([[0,0,0],[1,1,0],[1,1,0]]).unsqueeze(0).unsqueeze(1))
def map_vy2vx(v):
return F.conv2d(v,map_vy2vx_kernel,padding=(1,1))
map_vy2vx_top_kernel = 0.5*toCuda(torch.Tensor([[0,0,0],[1,1,0],[0,0,0]]).unsqueeze(0).unsqueeze(1))
def map_vy2vx_top(v):
return F.conv2d(v,map_vy2vx_top_kernel,padding=(1,1))
map_vy2vx_bottom_kernel = 0.5*toCuda(torch.Tensor([[0,0,0],[0,0,0],[1,1,0]]).unsqueeze(0).unsqueeze(1))
def map_vy2vx_bottom(v):
return F.conv2d(v,map_vy2vx_bottom_kernel,padding=(1,1))
mean_left_kernel = 0.5*toCuda(torch.Tensor([1,1,0]).unsqueeze(0).unsqueeze(1).unsqueeze(2))
def mean_left(v):
return F.conv2d(v,mean_left_kernel,padding=(0,1))
mean_top_kernel = 0.5*toCuda(torch.Tensor([1,1,0]).unsqueeze(0).unsqueeze(1).unsqueeze(3))
def mean_top(v):
return F.conv2d(v,mean_top_kernel,padding=(1,0))
mean_right_kernel = 0.5*toCuda(torch.Tensor([0,1,1]).unsqueeze(0).unsqueeze(1).unsqueeze(2))
def mean_right(v):
return F.conv2d(v,mean_right_kernel,padding=(0,1))
mean_bottom_kernel = 0.5*toCuda(torch.Tensor([0,1,1]).unsqueeze(0).unsqueeze(1).unsqueeze(3))
def mean_bottom(v):
return F.conv2d(v,mean_bottom_kernel,padding=(1,0))
def staggered2normal(v):
v[:,0:1] = mean_left(v[:,0:1])
v[:,1:2] = mean_top(v[:,1:2])
return v
def normal2staggered(v):#CODO: double-check that! -> seems correct
v[:,0:1] = mean_right(v[:,0:1])
v[:,1:2] = mean_bottom(v[:,1:2])
return v
def vector2HSV(vector,plot_sqrt=False):
"""
transform vector field into hsv color wheel
:vector: vector field (size: 2 x height x width)
:return: hsv (hue: direction of vector; saturation: 1; value: abs value of vector)
"""
values = torch.sqrt(torch.sum(torch.pow(vector,2),dim=0)).unsqueeze(0)
saturation = torch.ones(values.shape).cuda()
norm = vector/(values+0.000001)
angles = torch.asin(norm[0])+math.pi/2
angles[norm[1]<0] = 2*math.pi-angles[norm[1]<0]
hue = angles.unsqueeze(0)/(2*math.pi)
hue = (hue*360+100)%360
#values = norm*torch.log(values+1)
values = values/torch.max(values)
if plot_sqrt:
values = torch.sqrt(values)
hsv = torch.cat([hue,saturation,values])
return hsv.permute(1,2,0).cpu().numpy()