Skip to content

Report processing and protein quantification for MS-based proteomics

License

Notifications You must be signed in to change notification settings

vdemichev/diann-rpackage

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DiaNN R Package

A package containing a number of convenient functions for dealing with feature quantification data. The package has been developed primarily to support DIA/SWATH-MS data analysis with DIA-NN https://github.com/vdemichev/DiaNN and allow for MaxLFQ-based protein quantification (https://doi.org/10.1074/mcp.M113.031591) after manual precursor-level filtering and batch correction.

DIA-NN: neural networks and interference correction
enable deep proteome coverage in high throughput

Vadim Demichev, Christoph B. Messner, Spyros I. Vernardis, Kathryn S. Lilley, Markus Ralser
https://www.nature.com/articles/s41592-019-0638-x

Installation in R:

install.packages("devtools")
library(devtools)
install_github("https://github.com/vdemichev/diann-rpackage")
library(diann)

Examples:

library(diann)

Load a DIA-NN report (a small sample report is included in this repository)

df <- diann_load("diann_report.tsv")

Precursors x samples matrix filtered at 1% precursor and protein group FDR

precursors <- diann_matrix(df, pg.q = 0.01)

Peptides without modifications - taking the maximum of the respective precursor quantities

peptides <- diann_matrix(df, id.header="Stripped.Sequence", pg.q = 0.01)

Peptides without modifications - using the MaxLFQ algorithm

peptides.maxlfq <- diann_maxlfq(df[df$Q.Value <= 0.01 & df$PG.Q.Value <= 0.01,], group.header="Stripped.Sequence", id.header = "Precursor.Id", quantity.header = "Precursor.Normalised")

Genes identified and quantified using proteotypic peptides

unique.genes <- diann_matrix(df, id.header="Genes", quantity.header="Genes.MaxLFQ.Unique", proteotypic.only = T, pg.q = 0.01)

Protein group quantities using MaxLFQ algorithm

protein.groups <- diann_maxlfq(df[df$Q.Value <= 0.01 & df$PG.Q.Value <= 0.01,], group.header="Protein.Group", id.header = "Precursor.Id", quantity.header = "Precursor.Normalised")

About

Report processing and protein quantification for MS-based proteomics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published