diff --git a/doc/case_studies/numpy-tooltip-images.rst b/doc/case_studies/numpy-tooltip-images.rst index 786a4c8e8..ee04eb3b6 100644 --- a/doc/case_studies/numpy-tooltip-images.rst +++ b/doc/case_studies/numpy-tooltip-images.rst @@ -8,9 +8,11 @@ you’ll learn how to display images stored as Numpy arrays in tooltips with any Altair chart. First, -we create some example image arrays with blobs of different sizes. +we create some example image arrays with blobs (objects) +of different sizes and shapes (circular and square). We measure the area of the blobs -in order to have a quantitative measurement to plot. +in order to have a quantitative measurement +to compare them with in our charts. .. altair-plot:: :output: repr @@ -40,7 +42,7 @@ in order to have a quantitative measurement to plot. 'group': rng.choice(['a', 'b', 'c'], size=n_rows) }) # Compute the area as the proportion of pixels above a threshold - df[['image1_area', 'image2_area']] = df[['image1', 'image2']].applymap(lambda x: (x > 0.4).mean()) + df[['image1_area', 'image2_area']] = df[['image1', 'image2']].map(lambda x: (x > 0.4).mean()) df Next, we define the function @@ -87,7 +89,7 @@ is in the form of an image and render it appropriately. return f"data:image/png;base64,{img_str}" # The column with the base64 image string must be called "image" in order for it to trigger the image rendering in the tooltip - df['image'] = df[['image1', 'image2']].apply(create_tooltip_image, axis=1) + df['image'] = df[['image1', 'image2']].map(create_tooltip_image, axis=1) # Dropping the image arrays since they are large an no longer needed df_plot = df.drop(columns=['image1', 'image2']) @@ -150,7 +152,7 @@ instead of both the images concatenated together. return f"data:image/png;base64,{img_str}" # The column with the base64 image string must be called "image" in order for it to trigger the image rendering in the tooltip - df[['image1_base64', 'image2_base64']] = df[['image1', 'image2']].applymap(create_tooltip_image) + df[['image1_base64', 'image2_base64']] = df[['image1', 'image2']].map(create_tooltip_image) # Dropping the image arrays since they are large an no longer needed # Also drop the previous tooltip image for clarity df_plot = df.drop(columns=['image1', 'image2', 'image'])