Skip to content

Latest commit

 

History

History
79 lines (65 loc) · 3.98 KB

NEWS.md

File metadata and controls

79 lines (65 loc) · 3.98 KB

sbo 0.5.0

API and UI changes

  • Former kgram_freqs class is now called sbo_kgram_freqs. The constructor kgram_freqs() is still available as an alias to sbo_kgram_freqs().

  • Former sbo_preds class is now substituted by two classes:

      - `sbo_predictor`: for interactive use
      - `sbo_predtable`: for storing text predictors out of memory (e.g. 
      `save()` to file)
    
  • sbo_predictor and sbo_predtable objects are obtained by the homonym constructors, which are now S3 generics accepting character input, as well as sbo_kgram_freqs and sbo_predtable (for the sbo_predictor() constructor) class objects. In particular, these allow to directly train a text predictor without storing the intermediate sbo_dictionary, and kgram_freqs objects.

  • The behaviour of the dict argument in kgram_freqs() and kgram_freqs_fast() has changed, now accepting either a sbo_dictionary, a character or a formula (see also 'New features').

  • The sbo_predictor implementation dramatically improves the speed of predict() (by a factor of x10). A single call to predict() now allocates a few kBs of RAM (whereas it previously allocated few MBs, c.f. issue #10).

  • Metadata of sbo_kgram_freqs and sbo_pred* objects is now stored via attributes (#11).

New features

  • New S3 class sbo_dictionary.
  • New S3 class word_coverage with generic constructors and a preconfigured plot() method.
  • Dictionaries in kgram_freqs() and sbo_pred*() can now be built also with a fixed target coverage fraction of training corpus.
  • Added prune() generic function for reducing -gram order of kgram_freqs and sbo_predtable's.
  • Added summary() methods for sbo_kgram_freqs and sbo_pred* objects; correspondingly, the output of print() has been simplified considerably (#5).
  • The object of class sbo_kgram_freqs, sbo_dictionary, sbo_predictor and sbo_predtable can be constructed either through the homonymous constructors, or through the aliases kgram_freqs(), dictionary(), predictor(), predtable().

Other improvements and patches

  • sbo now has SystemRequirements: C++11, for correct integration with C++11 code (in particular std::unordered_map).

  • Model training (with sbo_predictor()) is now considerably faster, due to optimizations in the algorithm for building Stupid Back-Off prediction tables.

  • The Stupid Back-Off algorithm is now thoroughly tested, and small inconsistencies between the predict.kgram_freqs() and predict.sbo_predictor() methods have been fixed, including:

      - Proper handling of unknown words
      - Consistent handling of ties in prediction probabilities.
    
  • Model evaluation in eval_sbo_predictor() is now carried out by sampling a single sentence from each document in test corpus.

  • Removed unnecessary dependencies from Depends and Imports package fields.

sbo 0.3.2

  • Patch addressing unexpected behaviour of erase argument in preprocess() and kgram_freqs_fast(), c.f. issue #17.

sbo 0.3.1

  • Changed leading to trailing underscore in private variables definition of C++ kgramFreqs class, as per §1.6.4 of the "Writing R extensions" guide.
  • Removed Catch tests infrastructure for C++ code.

sbo 0.3.0

  • Added kgram_freqs_fast() for fast and memory efficient kgram tokenization using the default text preprocessing utility.

sbo 0.2.0

  • The infrastructure of kgram_freqs(), get_word_freqs(), preprocess(), and predict.sbo_preds() has been entirely rewritten in C++.
  • Added tokenize_sentences() function for sentence level tokenization.
  • kgram_freqs() now accepts any user defined single character EOS token, through the EOS argument.

sbo 0.1.2

  • Added preproc argument to kgram_freqs() and get_word_freqs(), for custom training corpus preprocessing.
  • The dict argument of kgram_freqs() now also accepts numeric values, allowing to build a dictionary directly from the training corpus.

sbo 0.1.1

  • Added predict method for sbo_kgram_freqs class.