-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathppo_flan_sentiments_robust.py
151 lines (127 loc) · 5.1 KB
/
ppo_flan_sentiments_robust.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import os
import pathlib
from typing import List
import torch
import yaml
from datasets import load_dataset
from transformers import pipeline
import trlx
from trlx.data.configs import TRLConfig
import numpy as np
from transformers import T5ForConditionalGeneration, T5Tokenizer
config_path = pathlib.Path(__file__).parent.joinpath(
"./configs/ppo_flan_sentiments.yml"
)
with config_path.open() as f:
default_config = yaml.safe_load(f)
class ZeroShotRewardModel:
def __init__(self) -> None:
if torch.cuda.is_available():
self.device = int(os.environ.get("LOCAL_RANK", 0))
self.tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-large")
self.model = T5ForConditionalGeneration.from_pretrained(
"google/flan-t5-large"
).to(self.device)
self.sentiment_fn = pipeline(
"sentiment-analysis",
"lvwerra/distilbert-imdb",
top_k=2,
truncation=True,
batch_size=256,
device=self.device,
function_to_apply="none",
)
self.yes_token_id = 2163 # this is for Flan-T5, change it accordingly
self.no_token_id = 465 # this is for Flan-T5, change it accordingly
def reward_fn(self, samples: List[str], **kwargs) -> List[float]:
scores = []
for sample in samples:
score_prompt = []
for prompt, cl in [
(
f"Review: {sample}\n\nIs this movie review from FilmAffinity? Response:",
"yes",
),
(f"Review: {sample}\n\nIs this text too repetitive? Response:", "no"),
]:
x = self.tokenizer([prompt], return_tensors="pt").input_ids.to(
self.device
)
outputs = self.model.generate(
x,
return_dict_in_generate=True,
output_scores=True,
max_new_tokens=1,
)
v_yes_exp = (
torch.exp(outputs.scores[0][:, self.yes_token_id]).cpu().numpy()[0]
)
v_no_exp = (
torch.exp(outputs.scores[0][:, self.no_token_id]).cpu().numpy()[0]
)
if cl == "yes":
score = v_yes_exp / (v_yes_exp + v_no_exp)
else:
score = v_no_exp / (v_yes_exp + v_no_exp)
score_prompt.append(score)
scores.append(
(np.mean(score_prompt) - 0.5) * 10
) # we do some rescaling to improve PPO.
return scores
def metric_fn(self, samples: List[str], **kwargs) -> List[float]:
"""Similar to reward_fn, but without rescaling, to make it interpretable in the logs."""
scores = []
scores_positive = []
for sample in samples:
score_prompt = []
for prompt, cl in [
(
f"Review: {sample}\n\nIs this movie review from FilmAffinity? Response:",
"yes",
),
(f"Review: {sample}\n\nIs this text too repetitive? Response:", "no"),
]:
x = self.tokenizer([prompt], return_tensors="pt").input_ids.to(
self.device
)
outputs = self.model.generate(
x,
return_dict_in_generate=True,
output_scores=True,
max_new_tokens=1,
)
v_yes_exp = (
torch.exp(outputs.scores[0][:, self.yes_token_id]).cpu().numpy()[0]
)
v_no_exp = (
torch.exp(outputs.scores[0][:, self.no_token_id]).cpu().numpy()[0]
)
if cl == "yes":
score = v_yes_exp / (v_yes_exp + v_no_exp)
else:
score = v_no_exp / (v_yes_exp + v_no_exp)
score_prompt.append(score)
scores.append(np.mean(score_prompt))
scores_positive.append(score_prompt[0])
return {"prob_ensemble": scores, "prob_positive": scores_positive}
def reward_fn_classifier(self, samples: List[str], **kwargs) -> List[float]:
sentiments = list(map(get_positive_score, self.sentiment_fn(samples)))
return sentiments
def get_positive_score(scores):
"Extract value associated with a positive sentiment from pipeline's output"
return dict(map(lambda x: tuple(x.values()), scores))["POSITIVE"]
def main(hparams={}):
config = TRLConfig.update(default_config, hparams)
# Load the reward model
reward_model = ZeroShotRewardModel()
# Take few words off of movies reviews as prompts
imdb = load_dataset("imdb", split="train+test")
trlx.train(
reward_fn=reward_model.reward_fn,
prompts=[" ".join(review.split()[:4]) for review in imdb["text"][:-64]],
metric_fn=reward_model.metric_fn,
eval_prompts=[" ".join(review.split()[:4]) for review in imdb["text"][-64:]],
config=config,
)
if __name__ == "__main__":
main()