Skip to content

Implementation of Artificial Intelligence models without using any blackbox or libraries ๐Ÿ˜Ž

License

Notifications You must be signed in to change notification settings

victor-iyi/The-Math-of-Intelligence

Folders and files

NameName
Last commit message
Last commit date

Latest commit

ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 

Repository files navigation

The-Math-of-Intelligence

Implementation of Artificial Intelligence models without using any blackbox or libraries ๐Ÿ˜Ž

A high level API that implements common Machine Learning algorithms from scratch with only numpy as dependency.

Available Machine Learning Algorithms include:

  • Linear Regression
  • Logistic Regression
  • Support Vector Machine
  • KMeans
  • Self Organizing Map
  • The Perceptron
  • Multi-Layer Perceptron (n_layers)
  • Convolutional Neural Network

How to use

import numpy as np
from linear_model import LinearRegression

X = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0], [1, 0, 1]])
y = np.array([[0], [0], [1], [1]])

clf = LinearRegression()
clf.fit(X, y)
y_pred = clf.predict(np.array([[1, 1, 0]]))

print('Prediction: {}'.format(y_pred))

Requirements

Installing numpy using the Python Package Manager pip

pip install numpy

Installing matplot using the Python Package Manager pip to visualize data

pip install matplotlib

Credits

Siraj Raval