-
Notifications
You must be signed in to change notification settings - Fork 0
/
app.py
219 lines (203 loc) · 6.68 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
from select import devpoll
import streamlit as st
import os
import io
from transformers import M2M100Tokenizer, M2M100ForConditionalGeneration
import time
import json
from typing import List
import torch
import random
import logging
from transformers import BertTokenizer, BertModel, BertConfig
if torch.cuda.is_available():
device = torch.device("cuda:0")
else:
device = torch.device("cpu")
logging.warning("GPU not found, using CPU, translation will be very slow.")
st.cache(suppress_st_warning=True, allow_output_mutation=True)
st.set_page_config(page_title="M2M100 Translator")
lang_id = {
"Afrikaans": "af",
"Amharic": "am",
"Arabic": "ar",
"Asturian": "ast",
"Azerbaijani": "az",
"Bashkir": "ba",
"Belarusian": "be",
"Bulgarian": "bg",
"Bengali": "bn",
"Breton": "br",
"Bosnian": "bs",
"Catalan": "ca",
"Cebuano": "ceb",
"Czech": "cs",
"Welsh": "cy",
"Danish": "da",
"German": "de",
"Greeek": "el",
"English": "en",
"Spanish": "es",
"Estonian": "et",
"Persian": "fa",
"Fulah": "ff",
"Finnish": "fi",
"French": "fr",
"Western Frisian": "fy",
"Irish": "ga",
"Gaelic": "gd",
"Galician": "gl",
"Gujarati": "gu",
"Hausa": "ha",
"Hebrew": "he",
"Hindi": "hi",
"Croatian": "hr",
"Haitian": "ht",
"Hungarian": "hu",
"Armenian": "hy",
"Indonesian": "id",
"Igbo": "ig",
"Iloko": "ilo",
"Icelandic": "is",
"Italian": "it",
"Japanese": "ja",
"Javanese": "jv",
"Georgian": "ka",
"Kazakh": "kk",
"Central Khmer": "km",
"Kannada": "kn",
"Korean": "ko",
"Luxembourgish": "lb",
"Ganda": "lg",
"Lingala": "ln",
"Lao": "lo",
"Lithuanian": "lt",
"Latvian": "lv",
"Malagasy": "mg",
"Macedonian": "mk",
"Malayalam": "ml",
"Mongolian": "mn",
"Marathi": "mr",
"Malay": "ms",
"Burmese": "my",
"Nepali": "ne",
"Dutch": "nl",
"Norwegian": "no",
"Northern Sotho": "ns",
"Occitan": "oc",
"Oriya": "or",
"Panjabi": "pa",
"Polish": "pl",
"Pushto": "ps",
"Portuguese": "pt",
"Romanian": "ro",
"Russian": "ru",
"Sindhi": "sd",
"Sinhala": "si",
"Slovak": "sk",
"Slovenian": "sl",
"Somali": "so",
"Albanian": "sq",
"Serbian": "sr",
"Swati": "ss",
"Sundanese": "su",
"Swedish": "sv",
"Swahili": "sw",
"Tamil": "ta",
"Thai": "th",
"Tagalog": "tl",
"Tswana": "tn",
"Turkish": "tr",
"Ukrainian": "uk",
"Urdu": "ur",
"Uzbek": "uz",
"Vietnamese": "vi",
"Wolof": "wo",
"Xhosa": "xh",
"Yiddish": "yi",
"Yoruba": "yo",
"Chinese": "zh",
"Zulu": "zu",
}
@st.cache(suppress_st_warning=True, allow_output_mutation=True)
def load_model(
pretrained_model: str = "facebook/m2m100_1.2B",
cache_dir: str = "models/",
bert: str = "bert-base-multilingual-cased",
):
tokenizer = M2M100Tokenizer.from_pretrained(pretrained_model, cache_dir=cache_dir)
model = M2M100ForConditionalGeneration.from_pretrained(
pretrained_model, cache_dir=cache_dir
).to(device)
config = BertConfig.from_pretrained(bert, output_hidden_states=True)
bert_tokenizer: str = BertTokenizer.from_pretrained(bert, config=config)
bert_model: str = BertModel.from_pretrained(bert).to(device)
model.eval()
bert_model.eval()
return tokenizer, model, bert_tokenizer, bert_model
def find_algnments(
source_text, translated_text, bert_tokenizer, bert_model, threshold=0.001
):
source_tokens = bert_tokenizer(source_text, return_tensors="pt")
target_tokens = bert_tokenizer(translated_text, return_tensors="pt")
bpe_source_map = []
for i in source_text.split():
bpe_source_map += len(bert_tokenizer.tokenize(i)) * [i]
bpe_target_map = []
for i in translated_text.split():
bpe_target_map += len(bert_tokenizer.tokenize(i)) * [i]
source_embedding = bert_model(**source_tokens).hidden_states[8]
target_embedding = bert_model(**target_tokens).hidden_states[8]
target_embedding = target_embedding.transpose(-1, -2)
source_target_mapping = nn.Softmax(dim=-1)(
torch.matmul(source_embedding, target_embedding)
)
target_source_mapping = nn.Softmax(dim=-1)(
torch.matmul(target_embedding, source_embedding)
)
align_matrix = (source_target_mapping > threshold) * (
target_source_mapping > threshold
)
non_zeros = torch.nonzero(align_matrix)
align_words = []
for i, j, k in non_zeros:
if j + 1 < source_tokens_len - 1 and k + 1 < target_tokens_len - 1:
align_words.append([bpe_source_map[j + 1], bpe_target_map[k + 1]])
return align_words
st.title("M2M100 Translator")
st.write(
"M2M100 is a multilingual encoder-decoder (seq-to-seq) model trained for Many-to-Many multilingual translation. It was introduced in this paper https://arxiv.org/abs/2010.11125 and first released in https://github.com/pytorch/fairseq/tree/master/examples/m2m_100 repository. The model that can directly translate between the 9,900 directions of 100 languages.\n"
)
st.write(
"The BERT model was proposed in BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova. It’s a bidirectional transformer pretrained using a combination of masked language modeling objective and next sentence prediction on a large corpus comprising the Toronto Book Corpus and Wikipedia."
)
st.write(
" This demo uses the facebook/m2m100_1.2B model. For local inference see https://github.com/ikergarcia1996/Easy-Translate"
)
st.write("This demo uses bert-base-multilingual-cased ")
user_input: str = st.text_area(
"Input text",
height=200,
max_chars=5120,
)
source_lang = st.selectbox(label="Source language", options=list(lang_id.keys()))
target_lang = st.selectbox(label="Target language", options=list(lang_id.keys()))
if st.button("Run"):
time_start = time.time()
tokenizer, model, bert_tokenizer, bert_model = load_model()
src_lang = lang_id[source_lang]
trg_lang = lang_id[target_lang]
tokenizer.src_lang = src_lang
with torch.no_grad():
encoded_input = tokenizer(user_input, return_tensors="pt").to(device)
generated_tokens = model.generate(
**encoded_input, forced_bos_token_id=tokenizer.get_lang_id(trg_lang)
)
translated_text = tokenizer.batch_decode(
generated_tokens, skip_special_tokens=True
)[0]
time_end = time.time()
alignments = find_algnments(user_input, translated_text, bert_tokenizer, bert_model)
for i, j in alignments:
st.success(f"{i}->{j}")
st.write(f"Computation time: {round((time_end-time_start),3)} sec")