-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
244 lines (202 loc) · 7.93 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
# Note: The model and training settings do not follow the reference settings
# from the paper. The settings are chosen such that the example can easily be
# run on a small dataset with a single GPU.
import sys
import torch
import os
import pytorch_lightning as pl
import argparse
import gc
torch.set_float32_matmul_precision("medium")
from lib.model import SimCLR, LinearClassifier, Losses
from lib.data import CIFAR100DataModule
from pytorch_lightning.callbacks import LearningRateMonitor, ModelCheckpoint
from glob import glob
from dataclasses import dataclass
@dataclass
class Config:
num_workers = 8
batch_size = 128
batch_factor = 2
max_epochs = 200
num_classes = 100
finetune_epochs = 200
precision = "bf16-true"
log_every_n_steps = 10
pretrain_checkpoint_dir = "checkpoints/pretrain"
finetune_checkpoint_dir = "checkpoints/finetune"
loss_func = "info_nce"
temperature = 0.07
def __init__(self, args):
for k, v in vars(args).items():
setattr(self, k, v)
print(f"Setting {k} to {v}")
def get_total_steps(dataloader, batch_size, epochs):
return len(dataloader) * epochs
def get_last_checkpoint(checkpoint_dir: str):
checkpoints = glob(f"{checkpoint_dir}/*.ckpt")
if not checkpoints:
return None
# Get the last saved checkpoint based on creation time
return max(checkpoints, key=os.path.getctime)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--num_workers", type=int, default=Config.num_workers)
parser.add_argument("--batch_size", type=int, default=Config.batch_size)
parser.add_argument(
"--log_every_n_steps", type=int, default=Config.log_every_n_steps
)
parser.add_argument("--temperature", type=float, default=Config.temperature)
parser.add_argument(
"--loss_func", type=str, choices=Losses.get_choices(), default=Config.loss_func
)
parser.add_argument(
"--continue_pretrain", action="store_true", help="Continue pretraining"
)
parser.add_argument(
"--continue_finetune", action="store_true", help="Continue finetuning"
)
args = parser.parse_args()
try:
cfg = Config(args)
datamodule = CIFAR100DataModule(
num_workers=cfg.num_workers,
batch_size=cfg.batch_size,
batch_factor=cfg.batch_factor,
)
datamodule.prepare_data()
pretrain_checkpoint_dir = f"{cfg.pretrain_checkpoint_dir}_{cfg.loss_func}"
finetune_checkpoint_dir = f"{cfg.finetune_checkpoint_dir}_{cfg.loss_func}"
# Pre-training phase
if not (
os.path.exists(pretrain_checkpoint_dir)
and get_last_checkpoint(pretrain_checkpoint_dir)
and not args.continue_pretrain
):
datamodule.setup("pretrain")
pretrain_data = datamodule.pretrain_dataloader()
model = SimCLR(
total_steps=get_total_steps(
pretrain_data, cfg.batch_size, cfg.max_epochs
),
temperature=cfg.temperature,
loss_func_name=cfg.loss_func,
)
# Pre-training phase
lr_monitor = LearningRateMonitor(logging_interval="step")
checkpoint_callback_pretrain = ModelCheckpoint(
monitor="epoch_ce_loss",
dirpath=pretrain_checkpoint_dir,
filename="simclr-cifar100-{epoch:02d}-{epoch_ce_loss:.2f}",
save_top_k=2,
mode="min",
verbose=True,
)
trainer = pl.Trainer(
max_epochs=cfg.max_epochs,
accelerator="auto",
strategy="auto",
precision=cfg.precision, # type: ignore
log_every_n_steps=cfg.log_every_n_steps,
callbacks=[lr_monitor, checkpoint_callback_pretrain],
benchmark=False,
deterministic=True,
)
trainer.fit(
model=model,
train_dataloaders=pretrain_data,
ckpt_path=get_last_checkpoint(pretrain_checkpoint_dir),
)
del model
del trainer
torch.cuda.empty_cache()
gc.collect()
# Fine-tuning phase
if not (
os.path.exists(finetune_checkpoint_dir)
and get_last_checkpoint(finetune_checkpoint_dir)
and not args.continue_finetune
):
datamodule.setup(stage="finetune")
# Fine-tuning phase
pretrain_checkpoint = get_last_checkpoint(pretrain_checkpoint_dir)
if pretrain_checkpoint is None:
raise ValueError("No checkpoint found, please pretrain first.")
backbone_model = SimCLR.load_from_checkpoint(
pretrain_checkpoint,
total_steps=0,
temperature=cfg.temperature,
loss_func_name=cfg.loss_func,
)
finetune_data = datamodule.train_dataloader()
finetune_val_data = datamodule.val_dataloader()
num_epochs = cfg.finetune_epochs
batch_size = cfg.batch_size * cfg.batch_factor
finetune_model = LinearClassifier(
backbone_model=backbone_model,
num_classes=cfg.num_classes,
total_steps=get_total_steps(finetune_data, batch_size, num_epochs),
)
lr_monitor = LearningRateMonitor(logging_interval="step")
checkpoint_callback_finetune = ModelCheckpoint(
monitor="val_acc_top_5",
dirpath=finetune_checkpoint_dir,
filename="linear-cifar100-{epoch:02d}-{val_acc_top_5:.2f}",
save_top_k=2,
mode="max",
verbose=True,
)
finetune_trainer = pl.Trainer(
max_epochs=num_epochs,
accelerator="auto",
strategy="auto",
precision=cfg.precision, # type: ignore
log_every_n_steps=cfg.log_every_n_steps,
callbacks=[lr_monitor, checkpoint_callback_finetune],
benchmark=False,
deterministic=True,
)
finetune_trainer.fit(
model=finetune_model,
train_dataloaders=finetune_data,
val_dataloaders=finetune_val_data,
ckpt_path=get_last_checkpoint(finetune_checkpoint_dir),
)
del backbone_model
del finetune_model
del finetune_trainer
torch.cuda.empty_cache()
gc.collect()
# Test phase
if os.path.exists(finetune_checkpoint_dir) and get_last_checkpoint(
finetune_checkpoint_dir
):
datamodule.setup("test")
backbone_model = SimCLR.load_from_checkpoint(
get_last_checkpoint(pretrain_checkpoint_dir), # type: ignore
total_steps=0,
temperature=cfg.temperature,
loss_func_name=cfg.loss_func,
)
finetune_model = LinearClassifier.load_from_checkpoint(
get_last_checkpoint(finetune_checkpoint_dir), # type: ignore
backbone_model=backbone_model,
num_classes=cfg.num_classes,
total_steps=0,
)
finetune_trainer = pl.Trainer(
accelerator="auto",
strategy="auto",
precision=cfg.precision, # type: ignore
log_every_n_steps=cfg.log_every_n_steps,
)
finetune_trainer.test(
model=finetune_model, dataloaders=datamodule.test_dataloader()
)
del backbone_model
del finetune_model
del finetune_trainer
torch.cuda.empty_cache()
gc.collect()
except Exception as e:
sys.exit(f"Exiting from script. Error: {e}")