-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.py
102 lines (84 loc) · 2.47 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import random
import torch
import gym
from easydict import EasyDict
from ding.config import compile_config
from ding.worker import (
BaseLearner,
SampleSerialCollector,
InteractionSerialEvaluator,
AdvancedReplayBuffer,
)
from ding.envs import BaseEnvManager, DingEnvWrapper
from ding.policy import PPOPolicy
from ding.model import VAC
from ding.utils import set_pkg_seed
from dizoo.box2d.lunarlander.config.lunarlander_ppo_config import (
main_config,
create_config,
)
def register_custom_env():
from gym.envs.registration import register
register(
id="LunarLander-v3",
entry_point="lunar_lander_custom:LunarLander",
max_episode_steps=1000,
reward_threshold=200,
)
def windy_lunarlander_env():
env = gym.make(
"LunarLander-v3",
continuous=False,
gravity=-10.0,
enable_wind=True,
wind_power=15.0,
turbulence_power=1.5,
)
return env
def wrapped_lunarlander_env():
return DingEnvWrapper(
windy_lunarlander_env(),
EasyDict(env_wrapper="default"),
)
def main(main_cfg, create_cfg):
seed = random.randint(0, 2**16 - 1)
main_cfg["exp_name"] = "lunarlander_ppo_eval"
main_config["env"]["evaluator_env_num"] = 3
main_config["env"]["n_evaluator_episode"] = 3
cfg = compile_config(
main_cfg,
BaseEnvManager,
PPOPolicy,
BaseLearner,
SampleSerialCollector,
InteractionSerialEvaluator,
AdvancedReplayBuffer,
create_cfg=create_cfg,
save_cfg=False,
)
num_evs = 1
# Create main components: env, policy
evaluator_env = BaseEnvManager(
env_fn=[wrapped_lunarlander_env for _ in range(num_evs)],
cfg=cfg.env.manager,
)
evaluator_env.enable_save_replay("video") # switch save replay interface
# Set random seed for all package and instance
evaluator_env.seed(seed, dynamic_seed=True)
set_pkg_seed(seed, use_cuda=cfg.policy.cuda)
# Set up RL Policy
model = VAC(**cfg.policy.model)
policy = PPOPolicy(cfg.policy, model=model)
policy.eval_mode.load_state_dict(
torch.load("lunarlander_ppo_seed0/ckpt/final.pth.tar", map_location="cpu")
)
evaluator = InteractionSerialEvaluator(
cfg.policy.eval.evaluator,
evaluator_env,
policy.eval_mode,
exp_name=cfg.exp_name,
)
evaluator.eval()
if __name__ == "__main__":
register_custom_env()
main(main_config, create_config)