-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathDPi.agda
263 lines (220 loc) · 9.67 KB
/
DPi.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
-- Dependent Pi; want Σ and Π types
-- Warning: K enabled and used below
module DPi where
open import Data.Empty
open import Data.Unit hiding (_≟_)
open import Data.Sum hiding (map)
open import Data.Product hiding (map)
open import Data.Nat hiding (_≟_)
open import Data.List
open import Relation.Nullary
open import Relation.Nullary.Decidable hiding (map)
open import Relation.Binary
open import Function
open import Relation.Binary.PropositionalEquality
infix 30 _⟷_
infixr 50 _◎_
------------------------------------------------------------------------------
-- The universe of types
data U : Set
El : U → Set
data U where
ZERO : U
ONE : U
PLUS : U → U → U
TIMES : U → U → U
SIGMA : (A : U) → (El A → U) → U
PI : (A : U) → (El A → U) → U
EQ : {A : U} → (a b : El A) → U
El ZERO = ⊥
El ONE = ⊤
El (PLUS A B) = El A ⊎ El B
El (TIMES A B) = El A × El B
El (SIGMA A P) = Σ[ v ∈ El A ] El (P v)
El (PI A P) = (v : El A) → El (P v)
El (EQ a b) = a ≡ b
-- Examples
`𝟚 : U
`𝟚 = PLUS ONE ONE
-- size of `𝟚 is 2 and here are the two values
false true : El `𝟚
false = inj₁ tt
true = inj₂ tt
-- we are relying on K so the size of EQ a b is 1 or 0 depending on whether a ≡
-- b or not
`A : U
`A = SIGMA `𝟚 (λ b → EQ {`𝟚} b false)
-- size of `A is calculated as follows:
-- for every value b in `𝟚, we calculate the size of EQ {`𝟚} b false
-- if b is false, the type false ≡ false has one element (refl)
-- if b is true, the type true ≡ false is empty
-- we sum the sizes; the total size is 1 and here is the value
a : El `A
a = false , refl
`B : U
`B = PI `𝟚 (λ a → SIGMA `𝟚 (λ b → EQ {`𝟚} a b))
-- size of `B is calculated as follows:
-- first we calculate the size of each fiber that takes a particular a in `𝟚
-- a function is defined is all its fibers are defined, if any fiber is empty
-- the function cannot be defined
-- so we multiply the number of fibers to get the total size
-- in our case the fiber false can produce one value in SIGMA `𝟚 (λ b → EQ {`𝟚} false b)
-- the fiber true can produce one value in SIGMA `𝟚 (λ b → EQ {`𝟚} true b)
-- hence there is exactly one function in `B and here it is
f : El `B
f (inj₁ tt) = false , refl
f (inj₂ tt) = true , refl
------------------------------------------------------------------------------
-- Some infrastructure
inj₁lem : {A B : Set} {x y : A} → _≡_ {A = A ⊎ B} (inj₁ x) (inj₁ y) → x ≡ y
inj₁lem refl = refl
inj₂lem : {A B : Set} {x y : B} → _≡_ {A = A ⊎ B} (inj₂ x) (inj₂ y) → x ≡ y
inj₂lem refl = refl
inj₁lem' : {A B : Set} {x : A} {y : B} → _≡_ {A = A ⊎ B} (inj₁ x) (inj₂ y) → ⊥
inj₁lem' ()
inj₂lem' : {A B : Set} {x : B} {y : A} → _≡_ {A = A ⊎ B} (inj₂ x) (inj₁ y) → ⊥
inj₂lem' ()
proj₁lem : {A B : Set} {x y : A} {z w : B} → (x , z) ≡ (y , w) → x ≡ y
proj₁lem refl = refl
proj₂lem : {A B : Set} {x y : A} {z w : B} → (x , z) ≡ (y , w) → z ≡ w
proj₂lem refl = refl
proj₂dlem : {A : Set} {B : A → Set} {x : A} {z w : B x} →
_≡_ {A = Σ A B} (x , z) (x , w) → z ≡ w
proj₂dlem refl = refl
{--
Uses K.
Remark 2.7.1. Note that if we have x : A and u,v : P(x) such that (x,u) = (x,v),
it does not follow that u = v. All we can conclude is that there exists p : x =
x such that p∗(u) = v. This is a well-known source of confusion for newcomers to
type theory, but it makes sense from a topological viewpoint: the existence of a
path (x, u) = (x, v) in the total space of a fibration between two points that
happen to lie in the same fiber does not imply the existence of a path u = v
lying entirely within that fiber.
--}
-- Decidable equqlity, enumeration
_≟_ : {A : U} → Decidable {A = El A} _≡_
_≟∀_ : {A : U} {P : El A → U} {as : List (El A)} →
Decidable {A = (v : El A) → El (P v)} _≡_
enum : (A : U) → List (El A)
_≟_ {ZERO} ()
_≟_ {ONE} tt tt = yes refl
_≟_ {PLUS A B} (inj₁ x) (inj₁ y) with _≟_ {A} x y
_≟_ {PLUS A B} (inj₁ x) (inj₁ .x) | yes refl = yes refl
... | no ¬p = no (¬p ∘ inj₁lem)
_≟_ {PLUS A B} (inj₁ x) (inj₂ y) = no inj₁lem'
_≟_ {PLUS A B} (inj₂ x) (inj₁ y) = no inj₂lem'
_≟_ {PLUS A B} (inj₂ x) (inj₂ y) with _≟_ {B} x y
_≟_ {PLUS A B} (inj₂ x) (inj₂ .x) | yes refl = yes refl
... | no ¬p = no (¬p ∘ inj₂lem)
_≟_ {TIMES A B} (x , y) (z , w) with _≟_ {A} x z | _≟_ {B} y w
_≟_ {TIMES A B} (x , y) (.x , .y) | yes refl | yes refl = yes refl
_≟_ {TIMES A B} (x , y) (z , w) | no ¬p | _ = no (¬p ∘ proj₁lem)
_≟_ {TIMES A B} (x , y) (z , w) | _ | no ¬p = no (¬p ∘ proj₂lem)
_≟_ {SIGMA A P} (x , y) (z , w) with _≟_ {A} x z
_≟_ {SIGMA A P} (x , y) (z , w) | no ¬p = no (¬p ∘ cong proj₁)
_≟_ {SIGMA A P} (x , y) (.x , w) | yes refl with _≟_ {P x} y w
_≟_ {SIGMA A P} (x , y) (.x , .y) | yes refl | yes refl = yes refl
_≟_ {SIGMA A P} (x , y) (.x , w) | yes refl | no ¬p = no (¬p ∘ proj₂dlem)
_≟_ {PI A P} f g = _≟∀_ {A} {P} {enum A} f g
_≟_ {EQ a .a} refl refl = yes refl -- uses K
postulate
-- only invoked when enum A reaches []
funext : {A : U} {P : El A → U} → (f g : (v : El A) → El (P v)) → f ≡ g
_≟∀_ {A} {P} {[]} f g = yes (funext {A} {P} f g)
_≟∀_ {A} {P} {a ∷ as} f g with _≟_ {P a} (f a) (g a)
... | yes p = _≟∀_ {A} {P} {as} f g
... | no ¬p = no (¬p ∘ λ q → cong (λ h → h a) q)
-- Generate functions
-- Not quite right but general idea
Fun : (A : U) (P : El A → U) → Set
Fun A P = List (Σ[ a ∈ El A ] El (P a))
makeFuns : {A : U} {P : El A → U} → List (Fun A P)
makeFuns {A} {P} =
concat (map (λ a → map (λ pa → (a , pa) ∷ []) (enum (P a))) (enum A))
gg = makeFuns {`𝟚} {λ a → SIGMA `𝟚 (λ b → EQ {`𝟚} a b)}
-- Enum: can tighten to a Vector later or use size-enum lemma
enum ZERO = []
enum ONE = tt ∷ []
enum (PLUS A B) = map inj₁ (enum A) ++ map inj₂ (enum B)
enum (TIMES A B) = concat (map (λ a → map (λ b → (a , b)) (enum B)) (enum A))
enum (SIGMA A P) = concat (map (λ a → map (λ pa → a , pa) (enum (P a))) (enum A))
enum (PI A P) = {!!} -- makeFuns {A} {P} (enum A)
enum (EQ {A} a b) with _≟_ {A} a b
enum (EQ a .a) | yes refl = refl ∷ []
... | no _ = []
-- Size
∣_∣ : U → ℕ
∣ ZERO ∣ = 0
∣ ONE ∣ = 1
∣ PLUS A B ∣ = ∣ A ∣ + ∣ B ∣
∣ TIMES A B ∣ = ∣ A ∣ * ∣ B ∣
∣ SIGMA A P ∣ = sum (map (λ a → ∣ P a ∣) (enum A))
∣ PI A P ∣ = product (map (λ a → ∣ P a ∣) (enum A))
∣ EQ {A} a b ∣ with _≟_ {A} a b
... | yes _ = 1
... | no _ = 0
-- coherence
size-enum : ∀ (u : U) → ∣ u ∣ ≡ length (enum u)
size-enum ZERO = refl
size-enum ONE = refl
size-enum (PLUS u v) = {!!}
size-enum (TIMES u v) = {!!}
size-enum (SIGMA u P) = {!!}
size-enum (PI u P) = {!!}
size-enum (EQ {A} a b) with _≟_ {A} a b
size-enum (EQ a .a) | yes refl = refl
size-enum (EQ a b) | no ¬p = refl
-- University algebra (Altenkirch)
-- Lose TIMES but first make sure that all isomorphisms involving TIMES can be
-- expressed with SIGMA
data _⟷_ : U → U → Set where
-- All isomorphisms between finite types
unite₊l : {t : U} → PLUS ZERO t ⟷ t
uniti₊l : {t : U} → t ⟷ PLUS ZERO t
unite₊r : {t : U} → PLUS t ZERO ⟷ t
uniti₊r : {t : U} → t ⟷ PLUS t ZERO
swap₊ : {t₁ t₂ : U} → PLUS t₁ t₂ ⟷ PLUS t₂ t₁
assocl₊ : {t₁ t₂ t₃ : U} → PLUS t₁ (PLUS t₂ t₃) ⟷ PLUS (PLUS t₁ t₂) t₃
assocr₊ : {t₁ t₂ t₃ : U} → PLUS (PLUS t₁ t₂) t₃ ⟷ PLUS t₁ (PLUS t₂ t₃)
unite⋆l : {t : U} → TIMES ONE t ⟷ t
uniti⋆l : {t : U} → t ⟷ TIMES ONE t
unite⋆r : {t : U} → TIMES t ONE ⟷ t
uniti⋆r : {t : U} → t ⟷ TIMES t ONE
swap⋆ : {t₁ t₂ : U} → TIMES t₁ t₂ ⟷ TIMES t₂ t₁
assocl⋆ : {t₁ t₂ t₃ : U} → TIMES t₁ (TIMES t₂ t₃) ⟷ TIMES (TIMES t₁ t₂) t₃
assocr⋆ : {t₁ t₂ t₃ : U} → TIMES (TIMES t₁ t₂) t₃ ⟷ TIMES t₁ (TIMES t₂ t₃)
absorbr : {t : U} → TIMES ZERO t ⟷ ZERO
absorbl : {t : U} → TIMES t ZERO ⟷ ZERO
factorzr : {t : U} → ZERO ⟷ TIMES t ZERO
factorzl : {t : U} → ZERO ⟷ TIMES ZERO t
dist : {t₁ t₂ t₃ : U} →
TIMES (PLUS t₁ t₂) t₃ ⟷ PLUS (TIMES t₁ t₃) (TIMES t₂ t₃)
factor : {t₁ t₂ t₃ : U} →
PLUS (TIMES t₁ t₃) (TIMES t₂ t₃) ⟷ TIMES (PLUS t₁ t₂) t₃
distl : {t₁ t₂ t₃ : U } →
TIMES t₁ (PLUS t₂ t₃) ⟷ PLUS (TIMES t₁ t₂) (TIMES t₁ t₃)
factorl : {t₁ t₂ t₃ : U } →
PLUS (TIMES t₁ t₂) (TIMES t₁ t₃) ⟷ TIMES t₁ (PLUS t₂ t₃)
id⟷ : {t : U} → t ⟷ t
_◎_ : {t₁ t₂ t₃ : U} → (t₁ ⟷ t₂) → (t₂ ⟷ t₃) → (t₁ ⟷ t₃)
_⊕_ : {t₁ t₂ t₃ t₄ : U} →
(t₁ ⟷ t₃) → (t₂ ⟷ t₄) → (PLUS t₁ t₂ ⟷ PLUS t₃ t₄)
_⊗_ : {t₁ t₂ t₃ t₄ : U} →
(t₁ ⟷ t₃) → (t₂ ⟷ t₄) → (TIMES t₁ t₂ ⟷ TIMES t₃ t₄)
-- New isomorphisms
PI1 : {P : ⊤ → U} → PI ONE P ⟷ P tt
SIGMA1 : {P : ⊤ → U} → SIGMA ONE P ⟷ P tt
PIPLUS : {A B : U} {P : El A ⊎ El B → U} →
PI (PLUS A B) P ⟷ TIMES (PI A (λ a → P (inj₁ a)))
(PI B (λ b → (P (inj₂ b))))
------------------------------------------------------------------------------
{--
data U where
ZERO : U
ONE : U
PLUS : U → U → U
TIMES : U → U → U
SIGMA : (A : U) → (El A → U) → U
PI : (A : U) → (El A → U) → U
EQ : {A : U} → (a b : El A) → U
--}