-
Notifications
You must be signed in to change notification settings - Fork 17
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
24a1318
commit 159e89d
Showing
14 changed files
with
3,380 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,126 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"#Bidirectional GRU" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"from __future__ import print_function\n", | ||
"from sklearn.cross_validation import train_test_split\n", | ||
"import pandas as pd\n", | ||
"import numpy as np\n", | ||
"np.random.seed(1337) # for reproducibility\n", | ||
"from keras.preprocessing import sequence\n", | ||
"from keras.utils import np_utils\n", | ||
"from keras.models import Sequential\n", | ||
"from keras.layers import Dense, Dropout, Activation, Embedding\n", | ||
"from keras.layers import Dense, Dropout, Embedding, LSTM, Input, Bidirectional\n", | ||
"from keras.datasets import imdb\n", | ||
"from keras.utils.np_utils import to_categorical\n", | ||
"from sklearn.metrics import (precision_score, recall_score,\n", | ||
" f1_score, accuracy_score,mean_squared_error,mean_absolute_error)\n", | ||
"from sklearn import metrics\n", | ||
"from sklearn.preprocessing import Normalizer\n", | ||
"import h5py\n", | ||
"from keras import callbacks" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"dataset = np.loadtxt(\"pima-indians-diabetes.csv\", delimiter=\",\")\n", | ||
"# split into input (X) and output (Y) variables\n", | ||
"X = dataset[:,0:8]\n", | ||
"Y = dataset[:,8]\n", | ||
"\n", | ||
"#normalize the data\n", | ||
"scaler = Normalizer().fit(X)\n", | ||
"X = scaler.transform(X)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.33, random_state=42)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# reshape input to be [samples, time steps, features]\n", | ||
"X_train = np.reshape(trainX, (trainX.shape[0], 1, trainX.shape[1]))\n", | ||
"X_test = np.reshape(testT, (testT.shape[0], 1, testT.shape[1]))" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# 1. define the network\n", | ||
"model = Sequential()\n", | ||
"model.add(Bidirectional(GRU(4),input_shape=(1, 8)))\n", | ||
"model.add(Dropout(0.1))\n", | ||
"model.add(Dense(1))\n", | ||
"model.add(Activation('sigmoid'))" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# try using different optimizers and different optimizer configs\n", | ||
"model.compile(loss='binary_crossentropy',optimizer='adam',metrics=['accuracy'])\n", | ||
"checkpointer = callbacks.ModelCheckpoint(filepath=\"logs/bidirectioanl-gru/checkpoint-{epoch:02d}.hdf5\", verbose=1, save_best_only=True, monitor='val_acc',mode='max')\n", | ||
"model.fit(X_train, y_train, batch_size=batch_size, nb_epoch=1000, validation_data=(X_test, y_test),callbacks=[checkpointer])\n", | ||
"model.save(\"logs/bidirectioanl-gru/lstm1layer_model.hdf5\")\n", | ||
"\n", | ||
"loss, accuracy = model.evaluate(X_test, y_test)\n", | ||
"print(\"\\nLoss: %.2f, Accuracy: %.2f%%\" % (loss, accuracy*100))" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "securetensor", | ||
"language": "python", | ||
"name": "securetensor" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 2 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython2", | ||
"version": "2.7.12" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,126 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"#Bidirectional LSTM" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"from __future__ import print_function\n", | ||
"from sklearn.cross_validation import train_test_split\n", | ||
"import pandas as pd\n", | ||
"import numpy as np\n", | ||
"np.random.seed(1337) # for reproducibility\n", | ||
"from keras.preprocessing import sequence\n", | ||
"from keras.utils import np_utils\n", | ||
"from keras.models import Sequential\n", | ||
"from keras.layers import Dense, Dropout, Activation, Embedding\n", | ||
"from keras.layers import Dense, Dropout, Embedding, LSTM, Input, Bidirectional\n", | ||
"from keras.datasets import imdb\n", | ||
"from keras.utils.np_utils import to_categorical\n", | ||
"from sklearn.metrics import (precision_score, recall_score,\n", | ||
" f1_score, accuracy_score,mean_squared_error,mean_absolute_error)\n", | ||
"from sklearn import metrics\n", | ||
"from sklearn.preprocessing import Normalizer\n", | ||
"import h5py\n", | ||
"from keras import callbacks" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"dataset = np.loadtxt(\"pima-indians-diabetes.csv\", delimiter=\",\")\n", | ||
"# split into input (X) and output (Y) variables\n", | ||
"X = dataset[:,0:8]\n", | ||
"Y = dataset[:,8]\n", | ||
"\n", | ||
"#normalize the data\n", | ||
"scaler = Normalizer().fit(X)\n", | ||
"X = scaler.transform(X)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.33, random_state=42)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# reshape input to be [samples, time steps, features]\n", | ||
"X_train = np.reshape(trainX, (trainX.shape[0], 1, trainX.shape[1]))\n", | ||
"X_test = np.reshape(testT, (testT.shape[0], 1, testT.shape[1]))" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# 1. define the network\n", | ||
"model = Sequential()\n", | ||
"model.add(Bidirectional(LSTM(4),input_shape=(1, 8)))\n", | ||
"model.add(Dropout(0.1))\n", | ||
"model.add(Dense(1))\n", | ||
"model.add(Activation('sigmoid'))" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# try using different optimizers and different optimizer configs\n", | ||
"model.compile(loss='binary_crossentropy',optimizer='adam',metrics=['accuracy'])\n", | ||
"checkpointer = callbacks.ModelCheckpoint(filepath=\"logs/bidirectioanl-lstm/checkpoint-{epoch:02d}.hdf5\", verbose=1, save_best_only=True, monitor='val_acc',mode='max')\n", | ||
"model.fit(X_train, y_train, batch_size=batch_size, nb_epoch=1000, validation_data=(X_test, y_test),callbacks=[checkpointer])\n", | ||
"model.save(\"logs/bidirectioanl-lstm/lstm1layer_model.hdf5\")\n", | ||
"\n", | ||
"loss, accuracy = model.evaluate(X_test, y_test)\n", | ||
"print(\"\\nLoss: %.2f, Accuracy: %.2f%%\" % (loss, accuracy*100))" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "securetensor", | ||
"language": "python", | ||
"name": "securetensor" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 2 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython2", | ||
"version": "2.7.12" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,126 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"#Bidirectioanl RNN" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"from __future__ import print_function\n", | ||
"from sklearn.cross_validation import train_test_split\n", | ||
"import pandas as pd\n", | ||
"import numpy as np\n", | ||
"np.random.seed(1337) # for reproducibility\n", | ||
"from keras.preprocessing import sequence\n", | ||
"from keras.utils import np_utils\n", | ||
"from keras.models import Sequential\n", | ||
"from keras.layers import Dense, Dropout, Activation, Embedding\n", | ||
"from keras.layers import Dense, Dropout, Embedding, LSTM, Input, Bidirectional\n", | ||
"from keras.datasets import imdb\n", | ||
"from keras.utils.np_utils import to_categorical\n", | ||
"from sklearn.metrics import (precision_score, recall_score,\n", | ||
" f1_score, accuracy_score,mean_squared_error,mean_absolute_error)\n", | ||
"from sklearn import metrics\n", | ||
"from sklearn.preprocessing import Normalizer\n", | ||
"import h5py\n", | ||
"from keras import callbacks" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"dataset = np.loadtxt(\"pima-indians-diabetes.csv\", delimiter=\",\")\n", | ||
"# split into input (X) and output (Y) variables\n", | ||
"X = dataset[:,0:8]\n", | ||
"Y = dataset[:,8]\n", | ||
"\n", | ||
"#normalize the data\n", | ||
"scaler = Normalizer().fit(X)\n", | ||
"X = scaler.transform(X)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.33, random_state=42)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# reshape input to be [samples, time steps, features]\n", | ||
"X_train = np.reshape(trainX, (trainX.shape[0], 1, trainX.shape[1]))\n", | ||
"X_test = np.reshape(testT, (testT.shape[0], 1, testT.shape[1]))" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# 1. define the network\n", | ||
"model = Sequential()\n", | ||
"model.add(Bidirectional(SimpleRNN(4),input_shape=(1, 8)))\n", | ||
"model.add(Dropout(0.1))\n", | ||
"model.add(Dense(1))\n", | ||
"model.add(Activation('sigmoid'))" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# try using different optimizers and different optimizer configs\n", | ||
"model.compile(loss='binary_crossentropy',optimizer='adam',metrics=['accuracy'])\n", | ||
"checkpointer = callbacks.ModelCheckpoint(filepath=\"logs/bidirectioanl-rnn/checkpoint-{epoch:02d}.hdf5\", verbose=1, save_best_only=True, monitor='val_acc',mode='max')\n", | ||
"model.fit(X_train, y_train, batch_size=batch_size, nb_epoch=1000, validation_data=(X_test, y_test),callbacks=[checkpointer])\n", | ||
"model.save(\"logs/bidirectioanl-rnn/lstm1layer_model.hdf5\")\n", | ||
"\n", | ||
"loss, accuracy = model.evaluate(X_test, y_test)\n", | ||
"print(\"\\nLoss: %.2f, Accuracy: %.2f%%\" % (loss, accuracy*100))" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "securetensor", | ||
"language": "python", | ||
"name": "securetensor" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 2 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython2", | ||
"version": "2.7.12" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |
Oops, something went wrong.